CN112748626A - 一种用于冲击波高速数字阴影成像的可视化装置 - Google Patents

一种用于冲击波高速数字阴影成像的可视化装置 Download PDF

Info

Publication number
CN112748626A
CN112748626A CN202110142294.1A CN202110142294A CN112748626A CN 112748626 A CN112748626 A CN 112748626A CN 202110142294 A CN202110142294 A CN 202110142294A CN 112748626 A CN112748626 A CN 112748626A
Authority
CN
China
Prior art keywords
short
xenon lamp
speed digital
arc xenon
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110142294.1A
Other languages
English (en)
Other versions
CN112748626B (zh
Inventor
张伟
赵庚
姜雄文
陈拓
魏宏健
徐施佳
单宝路
冯文举
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202110142294.1A priority Critical patent/CN112748626B/zh
Publication of CN112748626A publication Critical patent/CN112748626A/zh
Application granted granted Critical
Publication of CN112748626B publication Critical patent/CN112748626B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • G03B15/03Combinations of cameras with lighting apparatus; Flash units
    • G03B15/05Combinations of cameras with electronic flash apparatus; Electronic flash units

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种用于冲击波高速数字阴影成像的可视化装置,属于高速瞬态阴影成像的可视化测量领域,本发明为解决现有阴影成像所使用点光源存在易灼伤致盲,价格昂贵的问题。本发明包括短弧氙灯点光源、超高速数字相机和正投反光屏;超高速数字相机的相机镜头中心位置设置45度杆镜;短弧氙灯点光源的光轴与超高速数字相机的光轴呈90度夹角;短弧氙灯点光源发出的点光源汇聚至45度杆镜表面,并以光锥形式反射至正投反光屏上,由超高速数字相机记录在正投反光屏上形成的阴影。本发明用于观察冲击波阴影成像。

Description

一种用于冲击波高速数字阴影成像的可视化装置
技术领域
本发明属于高速瞬态阴影成像的可视化测量领域。
背景技术
随着我国航天技术、武器装备和基础学科的发展,涉及超高速空气动力学、超高速撞击、爆炸与冲击等领域的研究不断深入。在这些研究工作中,许多现象是持续时间很短的瞬态变化过程,需要有高速数字可视化系统才能够对这一过程进行清晰、连续地成像记录,以便掌握物理现象的本质。美国加里·塞特尔(G.S.Settles)在其2001年出版的专著《纹影与阴影技术——透明介质中的可视化现象》中对纹影成像和阴影成像的技术发展历史和在各个领域的应用及未来的发展进行总结和展望。作者认为纹影成像技术不适用于大视场实验,而简单的阴影成像技术可以为大视场实验提供强有力的解决方案。作者对直接阴影成像技术进行了详细的介绍,给出了直接阴影成像技术的工作原理设置图:点光源-高速相机-反光屏,对流场冲击波和扰动的可视化研究具有简单性和通用性。但直接阴影成像技术需要高亮度的点光源以及高增益的反光屏,成为阻碍直接阴影成像技术发展应用的瓶颈。
目前,国内外相关研究主要采用大功率高频近红外激光光源,属于不可见光,易于灼伤致盲,价格昂贵,一套光源需要40多万人民币。
发明内容
本发明目的是为了解决现有阴影成像所使用点光源存在易灼伤致盲,价格昂贵的问题,提供了一种用于冲击波高速数字阴影成像的可视化装置。
本发明所述一种用于冲击波高速数字阴影成像的可视化装置,包括短弧氙灯点光源18、超高速数字相机14和正投反光屏17;
超高速数字相机14的相机镜头15中心位置设置45度杆镜16;
短弧氙灯点光源18的光轴与超高速数字相机14的光轴呈90度夹角;
短弧氙灯点光源18发出的点光源汇聚至45度杆镜16表面,并以光锥形式反射至正投反光屏17上,由超高速数字相机14记录在正投反光屏17上形成的阴影。
优选地,短弧氙灯点光源18包括短弧氙灯灯管3、短弧氙灯控制电源、正极散热片2、负极散热片7、短弧氙灯管安装调整机构8、球面反射镜11、平凸光学透镜组和机箱13;
短弧氙灯灯管3上端的阳极设置有正极散热片2,短弧氙灯灯管3下端的阴极设置有负极散热片7,所述负极散热片7通过短弧氙灯管安装调整机构8安装于机箱13底板上,短弧氙灯灯管3的阴阳极分别连接短弧氙灯控制电源的正负极;
平凸光学透镜组由入光侧平凸透镜4、出光侧平凸透镜6和透镜组安装圆筒5构成,入光侧平凸透镜4和出光侧平凸透镜6同轴安装在透镜组安装圆筒5内,透镜组安装圆筒5安装在机箱13一侧壁上;
球面反射镜11为凹面球面反射镜,并安装于机箱13对侧侧壁上;
短弧氙灯灯管3的球形玻壳位于球面反射镜11和平凸光学透镜组之间且三者水平同轴设置,球面反射镜11和入光侧平凸透镜4的焦点均位于短弧氙灯灯管3的弧隙处;
球面反射镜11将短弧氙灯灯管3发出的发散光汇聚至焦点后继续前行入射至入光侧平凸透镜4,入光侧平凸透镜4将汇聚光变为平行光,该平行光经出光侧平凸透镜6汇聚为点光源输出。
优选地,还包括冷却风扇1,所述冷却风扇1设置于机箱13顶部,冷却风扇1与短弧氙灯灯管3竖直方向同轴设置。
优选地,在机箱13的侧壁设置系列通风孔。
优选地,还包括支承底座9和高度调整机构10,机箱13位于支承底座9上,所述支承底座9通过高度调整机构10令机箱13与地面或工作台保持距离。
优选地,透镜组安装圆筒5沿水平方向相对于机箱13移动以调节透镜焦点位置。
优选地,还包括球面反射镜安装调整机构12,球面反射镜11通过球面反射镜安装调整机构12安装于机箱13侧壁上。
优选地,还包括UV镜,相机镜头15上安装UV镜,UV镜的中心粘贴45度杆镜16。
优选地,在光锥中部的扰动部19加载扰动或者透明的物体,光线发生弯曲后折射在正投反光屏16上形成直接阴影,通过超高速数字相机记录所述阴影图像;
扰动部19设置原则为:G/H≈0.5,其中G为扰动部19与正投反光屏17的距离,H为点光源与正投反光屏17的距离。
优选地,入光侧平凸透镜4的数量为1个或2个。
本发明的有益效果:本发明阴影成像系统所使用点光源为短弧氙灯点光源,短弧氙灯点光源在短弧氙灯基础上设计开发而成,短弧氙灯本身是一种具有极高亮度的点光源,色温为6000K左右,光色接近太阳光,是一种显色性最好的光源,适用于探照、火车车头以及模拟太阳光等方面;但若将短弧氙灯作为点光源直接进行阴影成像,其光轴不易确定,因此不易满足与相机呈90度夹角的状态,进而造成双重阴影图像的不良结果,无法有效观测阴影成像,因此,本领域技术人员并不能将短弧氙灯作为点光源直接应用于阴影成像技术。
本发明所述的短弧氙灯点光源不但能输出满足实验需求的、稳定的点光源,而且其光轴易定位,平凸光学透镜组的光轴即为点光源光轴,该实验装置可轻松满足点光源与相机90度夹角的要求;并且本发明短弧氙灯点光源的成本低廉,利用于市场推广。
本发明为研究水下和空气中爆炸所形成冲击波波阵面以及超音速运动弹体前面的冲击波波阵面等的研究提供了有效的实验技术手段,其光学系统具有更简单、更完善的部件和高的灵敏度等独有的特点,适用于在实验室、大尺度场地和户外环境气候条件下开展水下和空气中爆炸冲击波、高速运动目标弹体前冲击波等的高速数字阴影成像的可视化实验研究。
附图说明
图1是本发明所述一种用于冲击波高速数字阴影成像的可视化装置的结构示意图;
图2是短弧氙灯点光源的结构示意图;
图3是采用本发明装置观测弹体高速入水在空气和水中产生的冲击波波阵面的可视化图片的实验结果,弹体入水速度1072m/s。
其中图3(a)为0ms时观测的阴影图像;图3(b)为0.05ms时观测的阴影图像;图3(c)为0.1ms时观测的阴影图像;图3(d)为0.15ms时观测的阴影图像;图3(e)为0.2ms时观测的阴影图像;图3(f)为0.25ms时观测的阴影图像;图3(g)为0.3ms时观测的阴影图像;图3(h)为0.35ms时观测的阴影图像。
具体实施方式
具体实施方式一:下面结合图1至图3说明本实施方式,本实施方式所述一种用于冲击波高速数字阴影成像的可视化装置,包括短弧氙灯点光源18、超高速数字相机14和正投反光屏17;
超高速数字相机14的相机镜头15中心位置设置45度杆镜16;
进一步的,相机镜头15上安装UV镜,在UV镜的中心粘贴10毫米直径45度角镀铝杆镜。
短弧氙灯点光源18的光轴与超高速数字相机14的光轴呈90度夹角;
短弧氙灯点光源18发出的点光源汇聚至45度杆镜16表面,并以光锥形式反射至正投反光屏17上,由超高速数字相机14记录在正投反光屏17上形成的阴影。
短弧氙灯点光源18包括短弧氙灯灯管3、短弧氙灯控制电源、正极散热片2、负极散热片7、短弧氙灯管安装调整机构8、球面反射镜11、平凸光学透镜组和机箱13;
1000瓦的短弧氙灯灯管3上端的阳极设置有正极散热片2,短弧氙灯灯管3下端的阴极设置有负极散热片7,正极散热片2、负极散热片7用于防止电极过热而设置。所述负极散热片7通过短弧氙灯管安装调整机构8安装于机箱13底板上,短弧氙灯灯管3的阴阳极分别连接短弧氙灯控制电源的正负极;
平凸光学透镜组由入光侧平凸透镜4、出光侧平凸透镜6和透镜组安装圆筒5构成,入光侧平凸透镜4和出光侧平凸透镜6同轴安装在透镜组安装圆筒5内,透镜组安装圆筒5安装在机箱13一侧壁上;入光侧平凸透镜4的直径75毫米焦距为75毫米,入光侧平凸透镜4将汇聚光平行,焦点在A处;出光侧平凸透镜6的直径75毫米焦距为200毫米,将平行光汇聚到其焦点O处。
球面反射镜11为凹面球面反射镜,球面反射镜11通过球面反射镜安装调整机构12安装于机箱13侧壁上,直径为172毫米焦距为96毫米,球面反射镜11的焦点在A处。
短弧氙灯灯管3的球形玻壳位于球面反射镜11和平凸光学透镜组之间且三者水平同轴设置,球面反射镜11和入光侧平凸透镜4的焦点A均位于短弧氙灯灯管3的弧隙处;
球面反射镜11将短弧氙灯灯管3发出的发散光汇聚至焦点后继续前行入射至入光侧平凸透镜4,入光侧平凸透镜4将汇聚光变为平行光,该平行光经出光侧平凸透镜6汇聚为点光源输出。出光侧平凸透镜6的焦点O即为点光源所在点。
透镜组安装圆筒5沿水平方向相对于机箱13移动以调节透镜焦点位置。
在光锥中部的扰动部19加载扰动或者透明的物体,光线发生弯曲后折射在正投反光屏16上形成直接阴影,通过超高速数字相机记录所述阴影图像;
扰动部19设置原则为:G/H≈0.5,其中G为扰动部19与正投反光屏17的距离,H为点光源与正投反光屏17的距离。
结合图3对采用本发明装置观测的实验进行说明,弹体以1072m/s的入水速度进行高速入水实验,相当于加载扰动,加载位置在扰动部19处附近,在一系列时间拍摄到的图像如图3(a)~(h)所示,从图示可以看出,由于系统灵敏度高,弹体入水瞬间产生的冲击波能被清晰的观测到,为后续实验提供了丰富可靠的基础数据。
具体实施方式二:下面结合图2说明本实施方式,本实施方式对实施方式一作进一步说明,还包括冷却风扇1,所述冷却风扇1设置于机箱13顶部,冷却风扇1与短弧氙灯灯管3竖直方向同轴设置。通过吹入冷风,实现对所述短弧氙灯灯管3、球面反射镜11和平凸透镜4等的冷却散热;机箱13的两个侧面面板上加工有一系列通风孔,用于气体换热。
具体实施方式三:下面结合图2说明本实施方式,本实施方式对实施方式一作进一步说明,还包括支承底座9和高度调整机构10,机箱13位于支承底座9上,所述支承底座9通过高度调整机构10令机箱13与地面或工作台保持距离。
具体实施方式四:下面结合图2说明本实施方式,本实施方式对实施方式一作进一步说明,入光侧平凸透镜4的数量为1个或2个。
入光侧平凸透镜4为1个即为实现将汇聚光平行的目的,若入光侧平凸透镜4为2个则平行光更稳定。

Claims (10)

1.一种用于冲击波高速数字阴影成像的可视化装置,其特征在于,包括短弧氙灯点光源(18)、超高速数字相机(14)和正投反光屏(17);
超高速数字相机(14)的相机镜头(15)中心位置设置45度杆镜(16);
短弧氙灯点光源(18)的光轴与超高速数字相机(14)的光轴呈90度夹角;
短弧氙灯点光源(18)发出的点光源汇聚至45度杆镜(16)表面,并以光锥形式反射至正投反光屏(17)上,由超高速数字相机(14)记录在正投反光屏(17)上形成的阴影。
2.根据权利要求1所述一种用于冲击波高速数字阴影成像的可视化装置,其特征在于,短弧氙灯点光源(18)包括短弧氙灯灯管(3)、短弧氙灯控制电源、正极散热片(2)、负极散热片(7)、短弧氙灯管安装调整机构(8)、球面反射镜(11)、平凸光学透镜组和机箱(13);
短弧氙灯灯管(3)上端的阳极设置有正极散热片(2),短弧氙灯灯管(3)下端的阴极设置有负极散热片(7),所述负极散热片(7)通过短弧氙灯管安装调整机构(8)安装于机箱(13)底板上,短弧氙灯灯管(3)的阴阳极分别连接短弧氙灯控制电源的正负极;
平凸光学透镜组由入光侧平凸透镜(4)、出光侧平凸透镜(6)和透镜组安装圆筒(5)构成,入光侧平凸透镜(4)和出光侧平凸透镜(6)同轴安装在透镜组安装圆筒(5)内,透镜组安装圆筒(5)安装在机箱(13)一侧壁上;
球面反射镜(11)为凹面球面反射镜,并安装于机箱(13)对侧侧壁上;
短弧氙灯灯管(3)的球形玻壳位于球面反射镜(11)和平凸光学透镜组之间且三者水平同轴设置,球面反射镜(11)和入光侧平凸透镜(4)的焦点均位于短弧氙灯灯管(3)的弧隙处;
球面反射镜(11)将短弧氙灯灯管(3)发出的发散光汇聚至焦点后继续前行入射至入光侧平凸透镜(4),入光侧平凸透镜(4)将汇聚光变为平行光,该平行光经出光侧平凸透镜(6)汇聚为点光源输出。
3.根据权利要求2所述一种用于冲击波高速数字阴影成像的可视化装置,其特征在于,还包括冷却风扇(1),所述冷却风扇(1)设置于机箱(13)顶部,冷却风扇(1)与短弧氙灯灯管(3)竖直方向同轴设置。
4.根据权利要求3所述一种用于冲击波高速数字阴影成像的可视化装置,其特征在于,在机箱(13)的侧壁设置系列通风孔。
5.根据权利要求2所述一种用于冲击波高速数字阴影成像的可视化装置,其特征在于,还包括支承底座(9)和高度调整机构(10),机箱(13)位于支承底座(9)上,所述支承底座(9)通过高度调整机构(10)令机箱(13)与地面或工作台保持距离。
6.根据权利要求2所述一种用于冲击波高速数字阴影成像的可视化装置,其特征在于,透镜组安装圆筒(5)沿水平方向相对于机箱(13)移动以调节透镜焦点位置。
7.根据权利要求1所述一种用于冲击波高速数字阴影成像的可视化装置,其特征在于,还包括球面反射镜安装调整机构(12),球面反射镜(11)通过球面反射镜安装调整机构(12)安装于机箱(13)侧壁上。
8.根据权利要求1所述一种用于冲击波高速数字阴影成像的可视化装置,其特征在于,还包括UV镜,相机镜头(15)上安装UV镜,UV镜的中心粘贴45度杆镜(16)。
9.根据权利要求1所述一种用于冲击波高速数字阴影成像的可视化装置,其特征在于,在光锥中部的扰动部(19)加载扰动或者透明的物体,光线发生弯曲后折射在正投反光屏(16)上形成直接阴影,通过超高速数字相机记录所述阴影图像;
扰动部(19)设置原则为:G/H≈0.5,其中G为扰动部(19)与正投反光屏(17)的距离,H为点光源与正投反光屏(17)的距离。
10.根据权利要求1所述一种用于冲击波高速数字阴影成像的可视化装置,其特征在于,入光侧平凸透镜(4)的数量为1个或2个。
CN202110142294.1A 2021-02-02 2021-02-02 一种用于冲击波高速数字阴影成像的可视化装置 Active CN112748626B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110142294.1A CN112748626B (zh) 2021-02-02 2021-02-02 一种用于冲击波高速数字阴影成像的可视化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110142294.1A CN112748626B (zh) 2021-02-02 2021-02-02 一种用于冲击波高速数字阴影成像的可视化装置

Publications (2)

Publication Number Publication Date
CN112748626A true CN112748626A (zh) 2021-05-04
CN112748626B CN112748626B (zh) 2021-11-26

Family

ID=75653534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110142294.1A Active CN112748626B (zh) 2021-02-02 2021-02-02 一种用于冲击波高速数字阴影成像的可视化装置

Country Status (1)

Country Link
CN (1) CN112748626B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114879444A (zh) * 2022-04-14 2022-08-09 中北大学 一种便携式超高速激光反射阴影成像装置
CN115113456A (zh) * 2022-07-20 2022-09-27 哈尔滨瞬态加载试验设备技术开发有限公司 用于轻气炮高速撞击阴影成像的矩形光源及可视化装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1410563A (en) * 1972-02-11 1975-10-15 Euratom Photographing shock waves
US4706171A (en) * 1986-08-25 1987-11-10 General Electric Company Containment shield for a replaceable xenon lamp and reflector module
US4812039A (en) * 1986-10-16 1989-03-14 Olympus Optical Co., Ltd. Schlieren optical device
US20020154814A1 (en) * 2001-03-09 2002-10-24 Michael Gerhard Method and apparatus for analysis of schlieren
CN104111202A (zh) * 2014-07-22 2014-10-22 中国科学院上海光学精密机械研究所 模拟灯管压力冲击波检测装置
CN108226188A (zh) * 2018-01-02 2018-06-29 中国科学院上海光学精密机械研究所 大尺寸激光钕玻璃条纹检测装置
CN109765230A (zh) * 2018-12-27 2019-05-17 中国航天空气动力技术研究院 一种气液两相流场观测装置
CN110823498A (zh) * 2019-07-16 2020-02-21 中国人民解放军空军工程大学 基于高速纹影的超声速分离区测量装置及测量方法
CN111855134A (zh) * 2020-07-15 2020-10-30 中国空气动力研究与发展中心 一种基于自适应生成刀口栅的聚焦纹影系统及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1410563A (en) * 1972-02-11 1975-10-15 Euratom Photographing shock waves
US4706171A (en) * 1986-08-25 1987-11-10 General Electric Company Containment shield for a replaceable xenon lamp and reflector module
US4812039A (en) * 1986-10-16 1989-03-14 Olympus Optical Co., Ltd. Schlieren optical device
US20020154814A1 (en) * 2001-03-09 2002-10-24 Michael Gerhard Method and apparatus for analysis of schlieren
CN104111202A (zh) * 2014-07-22 2014-10-22 中国科学院上海光学精密机械研究所 模拟灯管压力冲击波检测装置
CN108226188A (zh) * 2018-01-02 2018-06-29 中国科学院上海光学精密机械研究所 大尺寸激光钕玻璃条纹检测装置
CN109765230A (zh) * 2018-12-27 2019-05-17 中国航天空气动力技术研究院 一种气液两相流场观测装置
CN110823498A (zh) * 2019-07-16 2020-02-21 中国人民解放军空军工程大学 基于高速纹影的超声速分离区测量装置及测量方法
CN111855134A (zh) * 2020-07-15 2020-10-30 中国空气动力研究与发展中心 一种基于自适应生成刀口栅的聚焦纹影系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114879444A (zh) * 2022-04-14 2022-08-09 中北大学 一种便携式超高速激光反射阴影成像装置
CN115113456A (zh) * 2022-07-20 2022-09-27 哈尔滨瞬态加载试验设备技术开发有限公司 用于轻气炮高速撞击阴影成像的矩形光源及可视化装置

Also Published As

Publication number Publication date
CN112748626B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN112748626B (zh) 一种用于冲击波高速数字阴影成像的可视化装置
CN101441326B (zh) 模拟太阳照射光源的变焦装置
CN201041610Y (zh) 具有带开口的光屏蔽板的用于保护棒状积分器的结构
JP2002324410A (ja) フレネルレンズライト用、特にスポットライトあるいはフラッドライト用光学系
CN202791803U (zh) 可大范围连续调整照明角度的激光照明器
CN109164667A (zh) 一种投影仪
CN201293911Y (zh) 微型投影非成像照明光机
CN201812123U (zh) 红外球型摄像机
CN104483813A (zh) 一种曝光机光源改造方法及uvled光源机构
CN109459905A (zh) 一种新型lcd投影机
CN1177075A (zh) 聚光装置
CN200952672Y (zh) 大功率全反射变焦冷光聚光灯
CN103775978A (zh) 偏光准直组件及led灯具
CN201265803Y (zh) 一种可调焦距的灯具
CN2593234Y (zh) Lcos液晶板照明装置
CN209149047U (zh) 一种新型自动对焦led投影仪
CN101620364A (zh) 以大功率led阵列为光源的投影装置
CN201284935Y (zh) 复眼式led光学叠加泛光照明灯
CN102650410A (zh) 一种舞台追光灯
CN109210422A (zh) 一种投影灯的光学结构及其应用
EP2400212A2 (en) LED lamp forming light distribution mode of approximate parallel optical array by using lenses
CN115113456B (zh) 用于轻气炮高速撞击阴影成像的矩形光源及可视化装置
CN216718901U (zh) 一种投影式光刻机用uv-led光引擎设备
CN201477354U (zh) 以大功率led阵列为光源的投影装置
CN219224537U (zh) 内同轴光源结构、光源装置及外观检测系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant