CN112741907A - 用于干细胞示踪的磁共振-荧光双模态对比剂及其制备方法 - Google Patents

用于干细胞示踪的磁共振-荧光双模态对比剂及其制备方法 Download PDF

Info

Publication number
CN112741907A
CN112741907A CN202011230265.2A CN202011230265A CN112741907A CN 112741907 A CN112741907 A CN 112741907A CN 202011230265 A CN202011230265 A CN 202011230265A CN 112741907 A CN112741907 A CN 112741907A
Authority
CN
China
Prior art keywords
contrast agent
magnetic resonance
dspe
fluorescence
peg2k
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011230265.2A
Other languages
English (en)
Inventor
孙继红
和庆钢
胡溪
王晓燕
余开武
田梅
张宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202011230265.2A priority Critical patent/CN112741907A/zh
Publication of CN112741907A publication Critical patent/CN112741907A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0052Small organic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0054Macromolecular compounds, i.e. oligomers, polymers, dendrimers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/14Peptides, e.g. proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/088Assessment or manipulation of a chemical or biochemical reaction, e.g. verification whether a chemical reaction occurred or whether a ligand binds to a receptor in drug screening or assessing reaction kinetics

Abstract

本发明提供了一种用于干细胞示踪的磁共振‑荧光双模态对比剂及其制备方法,它是在有机分子结构的基础上,通过加入具有磁共振成像效果的无机离子,然后通过自组装的方式,合成兼具磁共振和荧光双模态成像特性的纳米材料。该方法制备简单,可得到在水溶液中均匀分散的,平均粒径为100nm的纳米材料。这些纳米粒子具有良好的细胞相容性,可以通过内吞作用被干细胞摄取。由于它们的聚集诱导发光和超顺磁特性,这种具有红色荧光发射和磁共振成像性能的纳米材料,在干细胞成像等生物医学领域展现出巨大的应用价值。

Description

用于干细胞示踪的磁共振-荧光双模态对比剂及其制备方法
技术领域
本发明涉及分子影像示踪领域,尤其涉及一种兼具磁共振-荧光双重特性纳米粒子的制备技术领域,具体包括磁共振-荧光双重特性的对比剂及其制备方法。
背景技术
荧光生物探针是一种有效的光学生物成像方式,可用于多种生物医学标记,具有高灵敏度,低成本等优势。迄今为止,已经开发出多种荧光功能性纳米材料,并且广泛应用于生物医学、检验诊断、光电发光等领域。然而,传统的荧光生色团在高浓度下荧光会减弱甚至不发光,即聚集淬灭的现象。聚集诱导发光材料是一种特殊的荧光发光团,在分散的水溶液中几乎没有荧光,而在聚集状态或固体薄膜下具有较强的荧光量子效率,受激发波激发时,能发出较强的荧光强度。自此类荧光分子被报道以来,越来越多的具有此类特性的有机分子被合成并广泛应用于检测、监测、细胞成像和有机光电发光等领域。但是,单一的光学成像方式并不能提供完整的结构组织像,且组织穿透能力低,无法达到高空间分辨率的效果。
磁共振成像是利用体内体液和组织中的氢质子在外加磁场的作用下,所产生的纵向及横向弛豫信号经重建成像的一种影像学技术。具有高的空间分辨率和较深的穿透能力,已广泛应用于生物医学成像和疾病的诊断。目前,广泛应用于医学成像的对比剂是钆喷酸葡胺(Gd-DTPA),但是钆具有肾毒性和神经毒性。越来越多的研究者们开始利用超顺磁性氧化铁制备磁共振对比剂。然而,核磁共振的灵敏度较低,限制了磁共振对比剂的进一步发展。因此,将磁共振成像与荧光成像整合到一种纳米材料中,两者优势互补,有效克服彼此成像的局限性,获得更加精准、清晰的结构组织像。
随着分子影像技术的不断发展,越来越多的以超顺磁性氧化铁为核心的磁共振对比剂被合成出来,其中,应用最多的磁性材料是Fe3O4。但是单一的以Fe3O4为核心的超顺磁性纳米粒子的弛豫性能较低,较难体现出对比剂注射前后的差异性。因此,提高纳米材料的弛豫性能和检测的灵敏度显得尤为重要。
本发明提出一种用于干细胞示踪的磁共振-荧光双模态对比剂及其制备方法,该纳米粒子的制备过程操作简单,具有弛豫性能好、灵敏度高、水分散性优异等特点。在干细胞成像和体内示踪方面具有潜在的应用价值。
发明内容
根据以上所述,本发明的目的在于提供一种用于干细胞示踪的磁共振-荧光双模态对比剂及其制备方法,本发明是以超顺磁性四氧化三铁纳米粒子和聚集诱导发光分子为核心,以两亲性聚合物为包覆材料,通过自组装制备具有磁共振和荧光双重成像性能的纳米对比剂。
本发明采用的技术方案是:
一种用于干细胞示踪的磁共振-荧光双模态对比剂的制备方法,其特征在于包括以下步骤:
将超顺磁性四氧化三铁纳米颗粒、聚集诱导发光分子、DSPE-PEG2k聚合物以及DSPE-PEG2k-Tat聚合物超声分散于氯仿中,然后通过旋转蒸发除去有机溶剂氯仿,加入水,超声混合均匀,通过0.22μm滤膜过滤,得到具有磁共振和荧光成像性能的双模态对比剂。
所述聚集诱导发光分子的结构式如下所示:
Figure BDA0002764966970000021
在本发明的方法中,通过改变DSPE-PEG2k和DSPE-PEG2k-Tat的用量会影响最终制备的对比剂的弛豫率。优选地,超顺磁性四氧化三铁纳米颗粒、聚集诱导发光分子、DSPE-PEG2k聚合物和DSPE-PEG2k-Tat聚合物的使用比例为2:1:5:1~2:1:9:3,改变DSPE-PEG2k和DSPE-PEG2k-Tat的配比会影响最终制备的对比剂的弛豫率。
本发明可以采用以下具体方案:将2mg超顺磁性四氧化三铁纳米颗粒,1mg聚集诱导发光分子,5~9mg DSPE-PEG2k聚合物以及1~3mg DSPE-PEG2k-Tat聚合物超声分散于氯仿中,然后通过旋转蒸发除去有机溶剂氯仿,加入5mL水,超声2min,通过0.22μm滤膜过滤,得到具有磁共振和荧光成像性能的双模态对比剂;
当加入7mg DSPE-PEG2k和2mg DSPE-PEG-2k-Tat时,所制备的双模态对比剂具有最大的弛豫率,446mM-1·s-1(图3);而当加入5mg DSPE-PEG2k和1mg DSPE-PEG-2k-Tat时,所制备的双模态对比剂的弛豫率为232.64mM-1·s-1(图7);当加入9mg DSPE-PEG2k和3mgDSPE-PEG-2k-Tat时,所制备的双模态对比剂的弛豫率为87.56mM-1·s-1(图8),这说明聚合物的用量会影响所制备的双模态对比剂的弛豫率,进而影响其磁共振成像效果。
根据本发明的上述方法可制备得在水溶液中均匀分散且长期稳定的,粒径约为100nm的纳米材料。该类材料具有良好的生物相容性,较强的红色荧光和磁共振成像性能,能作为用于干细胞示踪的磁共振-荧光双模态对比剂,在干细胞示踪等生物成像领域具有潜在的应用价值。
本发明制备方法及制备的具有磁共振和荧光双模态成像性能的对比剂具有如下优点:
1.本发明制备的具有磁共振和荧光双模态成像特性的对比剂,具有操作简单,制备成本低等优势,且材料使用商业的四氧化三铁纳米粒子和DSPE-PEG2k聚合物材料,具有良好的生物相容性和安全性,在干细胞示踪等领域具有良好的应用前景。
2.本发明制备的对比剂粒径适中,在水溶液中分散性好,且能够维持2周以上的稳定性,适合用于干细胞示踪成像。
3.本发明通过调控聚合物用量,得到弛豫性能较强的对比剂,其弛豫率约为临床使用的T2对比剂Resovist(铁羧葡胺)的3倍,从而可以大大提高对比剂的磁共振成像灵敏度。
附图说明
图1-1和1-2分别是本发明实施例1中对比剂的荧光吸收和发射谱图;
图2是本发明实施例1中对比剂的粒径图;
图3是本发明实施例1中对比剂的弛豫率测试图;
图4是本发明实施例1中对比剂的磁共振成像图;
图5是:本发明实施例1中对比剂的细胞相容性图;
图6是本发明实施例1中对比剂的细胞荧光成像图;
图7是本发明实施例2中对比剂的弛豫率测试图;
图8是本发明实施例3中对比剂的弛豫率测试图。
如图1所示:在对比剂在480nm处有较强的荧光吸收,在680nm处有较强的荧光发射。
如图2所示:对比剂具有100nm的平均粒径。
如图3所示:对比剂具有较高的弛豫率。
如图4所示:随着铁浓度的增加,磁共振成像图逐渐变暗,表现出良好的T2磁共振成像效果。
如图5所示:对比剂浓度在30μM以内,干细胞具有较高的存活率,展现良好的生物相容性。
如图6所示:有荧光的地方均存在细胞,表明对比剂已经成功进入到细胞中,并能够用于干细胞示踪。
具体实施方式
下面通过实施例对本发明做进一步的描述,但本发明的实施方式不限于此,不能理解为对本发明保护范围的限制。
实施例1:
将2mg超顺磁性四氧化三铁纳米颗粒,1mg聚集诱导发光分子,7mg DSPE-PEG2k聚合物以及2mg DSPE-PEG2k-Tat聚合物超声分散于氯仿中,然后通过旋转蒸发除去有机溶剂氯仿,加入5mL水,超声2min,通过0.22μm滤膜过滤,得到具有磁共振和荧光成像性能的双模态对比剂,铁浓度为58μg/mL。本实施例的方法制备过程简单,可快速制备出荧光/MRI双模态对比剂。进一步通过光谱表征(图1)表明对比剂在480nm处有较强的吸收,在700nm处有强烈的荧光发射;图5所示细胞毒性分析结果表明对比剂对干细胞毒性较小,具有良好的生物相容性;图6所示细胞成像结果则进一步说明纳米对比剂可被干细胞高效摄取且具有优异的荧光成像性能。粒径表征(图2)结果表明对比剂在水溶液中具有良好的分散性,平均粒径100nm。磁共振成像(图3,图4)结果表明对比剂具有较高的弛豫率,达446.39mM-1·s-1,而临床使用的T2对比剂Resovist(铁羧葡胺)的弛豫率仅为150mM-1·s-1,体现了所制备的对比剂优异的磁共振成像性能,从而可以在较低浓度条件下得到对比度较高的磁共振成像效果。
实施例2:
将2mg超顺磁性四氧化三铁纳米颗粒,1mg聚集诱导发光分子,5mg DSPE-PEG2k聚合物以及1mg DSPE-PEG2k-Tat聚合物超声分散于氯仿中,然后通过旋转蒸发除去有机溶剂氯仿,加入5mL水,超声2min,通过0.22μm滤膜过滤,得到具有磁共振和荧光成像性能的双模态对比剂,铁浓度为0.2μg/mL。
实施例3:
将2mg超顺磁性四氧化三铁纳米颗粒,1mg聚集诱导发光分子,9mg DSPE-PEG2k聚合物以及3mg DSPE-PEG2k-Tat聚合物超声分散于氯仿中,然后通过旋转蒸发除去有机溶剂氯仿,加入5mL水,超声2min,通过0.22μm滤膜过滤,得到具有磁共振和荧光成像性能的双模态对比剂,铁浓度为52μg/mL。

Claims (5)

1.一种用于干细胞示踪的磁共振-荧光双模态对比剂的制备方法,其特征在于包括以下步骤:
将超顺磁性四氧化三铁纳米颗粒、聚集诱导发光分子、DSPE-PEG2k聚合物以及DSPE-PEG2k-Tat聚合物超声分散于氯仿中,然后通过旋转蒸发除去有机溶剂氯仿,加入水,超声混合均匀,通过0.22μm滤膜过滤,得到具有磁共振和荧光成像性能的双模态对比剂。
2.如权利要求1所述的用于干细胞示踪的磁共振-荧光双模态对比剂的制备方法,其特征在于:所述聚集诱导发光分子的结构式如下所示:
Figure FDA0002764966960000011
3.如权利要求1所述的用于干细胞示踪的磁共振-荧光双模态对比剂制备方法,其特征在于:超顺磁性四氧化三铁纳米颗粒、聚集诱导发光分子、DSPE-PEG2k聚合物和DSPE-PEG2k-Tat聚合物的使用比例为2:1:5:1~2:1:9:3,改变DSPE-PEG2k和DSPE-PEG2k-Tat的配比会影响最终制备的对比剂的弛豫率。
4.如权利要求1所述的用于干细胞示踪的磁共振-荧光双模态对比剂的制备方法,其特征在于:将2mg超顺磁性四氧化三铁纳米颗粒,1mg聚集诱导发光分子,5~9mg DSPE-PEG2k聚合物以及1~3mg DSPE-PEG2k-Tat聚合物超声分散于氯仿中,然后通过旋转蒸发除去有机溶剂氯仿,加入5mL水,超声2min,通过0.22μm滤膜过滤,得到具有磁共振和荧光成像性能的双模态对比剂;
当加入7mg DSPE-PEG2k和2mg DSPE-PEG-2k-Tat时,所制备的双模态对比剂具有最大的弛豫率,446mM-1·s-1
5.用于干细胞示踪的磁共振-荧光双模态对比剂,其特征在于:是由权利要求1~4任何一项所述的方法制备而得。
CN202011230265.2A 2020-11-06 2020-11-06 用于干细胞示踪的磁共振-荧光双模态对比剂及其制备方法 Pending CN112741907A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011230265.2A CN112741907A (zh) 2020-11-06 2020-11-06 用于干细胞示踪的磁共振-荧光双模态对比剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011230265.2A CN112741907A (zh) 2020-11-06 2020-11-06 用于干细胞示踪的磁共振-荧光双模态对比剂及其制备方法

Publications (1)

Publication Number Publication Date
CN112741907A true CN112741907A (zh) 2021-05-04

Family

ID=75648892

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011230265.2A Pending CN112741907A (zh) 2020-11-06 2020-11-06 用于干细胞示踪的磁共振-荧光双模态对比剂及其制备方法

Country Status (1)

Country Link
CN (1) CN112741907A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114470243A (zh) * 2022-01-19 2022-05-13 广州兆瑞医学生物科技有限公司 一种用于心梗治疗的双模态成像介导纳米平台及其制备方法和应用
CN114767882A (zh) * 2022-04-20 2022-07-22 中国科学院苏州生物医学工程技术研究所 靶向肿瘤部位的荧光磁共振双模态成像纳米探针

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106085416A (zh) * 2016-06-02 2016-11-09 华南理工大学 一种聚集诱导发光纳米粒子及其制备方法和应用
WO2017176216A1 (en) * 2016-04-06 2017-10-12 Agency For Science, Technology And Research A multimodal fluorescent probe
CN108714223A (zh) * 2018-05-31 2018-10-30 吉林大学 一种兼具磁共振和荧光双重成像特性的造影剂及其制备方法
CN108815537A (zh) * 2018-06-08 2018-11-16 华中科技大学 一种肿瘤细胞靶向特异性荧光探针及其制备方法与应用
WO2020147653A1 (en) * 2019-01-15 2020-07-23 The Hong Kong University Of Science And Technology Photostable fluorescent compounds for organelle imaging in live cells and deep tissues

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017176216A1 (en) * 2016-04-06 2017-10-12 Agency For Science, Technology And Research A multimodal fluorescent probe
CN106085416A (zh) * 2016-06-02 2016-11-09 华南理工大学 一种聚集诱导发光纳米粒子及其制备方法和应用
CN108714223A (zh) * 2018-05-31 2018-10-30 吉林大学 一种兼具磁共振和荧光双重成像特性的造影剂及其制备方法
CN108815537A (zh) * 2018-06-08 2018-11-16 华中科技大学 一种肿瘤细胞靶向特异性荧光探针及其制备方法与应用
WO2020147653A1 (en) * 2019-01-15 2020-07-23 The Hong Kong University Of Science And Technology Photostable fluorescent compounds for organelle imaging in live cells and deep tissues

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUANGLE NIU,ET AL.: "Highly photostable two-photon NIR AIEgens with tunable organelle specificity and deep tissue penetration", 《BIOMATERIALS》 *
HUIKANG YANG, ET AL.: "Theranostic Nanoparticles with Aggregation-Induced Emission and MRI Contrast Enhancement Characteristics as a Dual-Modal Imaging Platform for Image-Guided Tumor Photodynamic Therapy", 《INTERNATIONAL JOURNAL OF NANOMEDICINE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114470243A (zh) * 2022-01-19 2022-05-13 广州兆瑞医学生物科技有限公司 一种用于心梗治疗的双模态成像介导纳米平台及其制备方法和应用
CN114767882A (zh) * 2022-04-20 2022-07-22 中国科学院苏州生物医学工程技术研究所 靶向肿瘤部位的荧光磁共振双模态成像纳米探针

Similar Documents

Publication Publication Date Title
Shi et al. A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy
Liu et al. Conjugation of NaGdF4 upconverting nanoparticles on silica nanospheres as contrast agents for multi-modality imaging
Pan et al. One-pot synthesis of gadolinium-doped carbon quantum dots for high-performance multimodal bioimaging
Yang et al. Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes
Xu et al. Paramagnetic nanoparticle T 1 and T 2 MRI contrast agents
Iqbal et al. Silica-coated super-paramagnetic iron oxide nanoparticles (SPIONPs): a new type contrast agent of T 1 magnetic resonance imaging (MRI)
Zhang et al. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy
Jin et al. An ultrasmall and metabolizable PEGylated NaGdF 4: Dy nanoprobe for high-performance T 1/T 2-weighted MR and CT multimodal imaging
Ai et al. Near infrared-emitting persistent luminescent nanoparticles for hepatocellular carcinoma imaging and luminescence-guided surgery
Wang et al. A theranostic nanoplatform: magneto-gold@ fluorescence polymer nanoparticles for tumor targeting T 1 & T 2-MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy
Zhang et al. Bioinspired synthesis of gadolinium-based hybrid nanoparticles as MRI blood pool contrast agents with high relaxivity
Huang et al. Facile non-hydrothermal synthesis of oligosaccharide coated sub-5 nm magnetic iron oxide nanoparticles with dual MRI contrast enhancement effects
Xue et al. Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods
Dong et al. Ultrasmall biomolecule-anchored hybrid GdVO 4 nanophosphors as a metabolizable multimodal bioimaging contrast agent
Liao et al. One-pot synthesis of gadolinium (III) doped carbon dots for fluorescence/magnetic resonance bimodal imaging
Shao et al. A novel one‐step synthesis of Gd3+‐incorporated mesoporous SiO2 nanoparticles for use as an efficient MRI contrast agent
CN108324962B (zh) 一种团簇结构的四氧化三铁纳米颗粒的制备方法
Wang et al. Upconverting rare-earth nanoparticles with a paramagnetic lanthanide complex shell for upconversion fluorescent and magnetic resonance dual-modality imaging
Chen et al. Core–shell hybrid upconversion nanoparticles carrying stable nitroxide radicals as potential multifunctional nanoprobes for upconversion luminescence and magnetic resonance dual-modality imaging
CN107955606B (zh) 一种双稀土掺杂碳点磁共振/ct/荧光多模态成像探针及其制备方法
Wang et al. Magneto-fluorescent nanoparticles with high-intensity NIR emission, T 1-and T 2-weighted MR for multimodal specific tumor imaging
Xu et al. AT 1, T 2 magnetic resonance imaging (MRI)-fluorescent imaging (FI) by using ultrasmall mixed gadolinium–europium oxide nanoparticles
CN106913885B (zh) 一种磁性纳米粒子及其制备方法和应用
Liang et al. Ultrasmall gadolinium hydrated carbonate nanoparticle: an advanced T 1 MRI contrast agent with large longitudinal relaxivity
CN112741907A (zh) 用于干细胞示踪的磁共振-荧光双模态对比剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210504