CN112738969A - 一种加速器中子源固态锂靶 - Google Patents

一种加速器中子源固态锂靶 Download PDF

Info

Publication number
CN112738969A
CN112738969A CN202011529995.2A CN202011529995A CN112738969A CN 112738969 A CN112738969 A CN 112738969A CN 202011529995 A CN202011529995 A CN 202011529995A CN 112738969 A CN112738969 A CN 112738969A
Authority
CN
China
Prior art keywords
target
film
lithium
neutron source
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011529995.2A
Other languages
English (en)
Inventor
王盛
乔朝蓬
李晓博
吕永盛
谢宇鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202011529995.2A priority Critical patent/CN112738969A/zh
Publication of CN112738969A publication Critical patent/CN112738969A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/02Neutron sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种加速器中子源固态锂靶,包括衬底、固态金属锂以及靶膜,其中,固态金属锂位于衬底上,靶膜覆盖于固态金属锂表面,该锂靶能够实现锂与空气的隔绝,同时对质子的能降较低。

Description

一种加速器中子源固态锂靶
技术领域
本发明属于工程设计技术领域,涉及一种加速器中子源固态锂靶。
背景技术
中子由于其不带电、穿透性强的特性,在无损检测、同位素生产、材料特性诊断、医疗等领域具有广泛的应用。中子源有多种,包括反应堆中子源、同位素中子源、加速器中子源等。其中,加速器中子源是通过加速器对带电粒子进行加速后轰击靶材,在靶材内部发生核反应产生中子。相比反应堆中子源,加速器中子源体积小、重量轻、设备简洁,可以做到随开随停、容易控制。相比同位素中子源,加速器中子源能产生高通量的中子,可以在很宽的能区上获得单能中子,也可通过调制获得脉冲中子源。
靶材是加速器中子源的核心部分,其性能和运行寿命直接决定了整套中子源设备的使用效果和安全性。如非专利文献1(YAMAGATA Y,HIROTA K,JU J,et al.,2015.Development of a Neutron Generating Target for Compact Neutron SourcesUsing Low Energy Proton Beams[J].Journal of Radioanalytical and NuclearChemistry,305(3):787–794.DOI:10.1007/s10967-015-4059-8.)、非专利文献2(MURAZ J-F,SANTOS D,GHETTA V,et al.,2020.Development of a Regenerated Beryllium Targetand a Thermal Test Facility for Compact Accelerator-Based Neutron Sources[J].EPJ Web of Conferences,231:03003.DOI:10.1051/epjconf/202023103003.)及非专利文献3(KASATOV D,KOSHKAREV A,KUZNETSOV A,et al.,2018.Accelerator-Based NeutronSource for Boron Neutron Capture Therapy[J].Journal of Physics:ConferenceSeries,769(1).DOI:10.1088/1742-6596/769/1/012064.)记载,锂靶、铍靶是常用的中子源靶。其中,7Li(p,n)7Be的反应阈能较低,只有1.88MeV,而且在2.5MeV附近有一个共振峰,对能量在7MeV以下的质子束,锂靶比铍靶具有更高的中子产额。但是锂靶存在高化学活泼性、低熔点等问题,具体表现为:锂是一种化学性质非常活泼的金属,常温下能迅速与空气中的水蒸气、二氧化碳、氮气发生反应、变质,这增加了锂靶的保存、运输、更换难度;锂的熔点是180.6℃,锂靶在工作过程中会产生大量热,有可能导致锂熔化、蒸气扩散;锂靶在工作过程中会产生Be-7,这是一种半衰期为53.4天的放射性核素,给妥善处理废靶的工作带来了难度和挑战。
目前国际上已经有大量针对锂靶改进的研究,试图解决锂靶低熔点、易与空气反应、封存Be-7等问题,但是仍然面临技术不成熟、实现代价大等问题。在非专利文献4(HALFON S,PAUL M,ARENSHTAM A,et al.,2011.High-Power Liquid-Lithium TargetPrototype for Accelerator-Based Boron Neutron Capture Therapy[J/OL].AppliedRadiation and Isotopes,69(12):1654–1656.)及非专利文献5(KOBAYASHI T,MIURA K,HAYASHIZAKI N,et al.,2014.Development of Liquid-Lithium Film Jet-Flow for theTarget Of7Li(p,n)7Be Reactions for BNCT[J/OL].Applied Radiation and Isotopes,88:198–202.)中,以色列和日本的团队分别提出用锂帘形式的液态锂靶代替固态锂靶,这样能够克服固态锂靶受热导致熔化的问题,但液态锂的扩散会导致电气设备耐久性下降,同时增加了锂的泄露风险,另外液态锂靶对屏蔽提出了更高的要求。在非专利文献6(ISHIYAMA S,BABA Y,FUJII R,et al.,2012.Synthesis of Lithium Nitride forNeutron Production Target of BNCT by in Situ Lithium Deposition and IonImplantation[J/OL].Nuclear Instruments and Methods in Physics Research,Section B:Beam Interactions with Materials and Atoms,293:42–47.)及非专利文献7(ISHIYAMA S,BABA Y,FUJII R,et al.,2012.In-Situ Vacuum Deposition Technique ofLithium on Neutron Production Target for BNCT[J/OL].Nuclear Instruments andMethods in Physics Research,Section B:Beam Interactions with Materials andAtoms,288:18–22.)中,日本原子能机构的S.Ishiyama等通过在锂靶表面合成一层厚度几至几十纳米的氮化锂达到隔绝锂与空气的目的。虽然氮化锂可以在数月内保持稳定,但是目前该团队还没有得出氮化锂薄膜是否能有效保护锂不与空气进一步发生反应的结论,且相比本专利中的物理气相沉积技术,氮化速率低,工艺复杂。在专利文献1(国际公开第2016/179381号)中,更换锂靶的过程中,需要利用大功率除湿机将靶室内的空气相对湿度维持在2%以下,可以减弱化学性质活泼的锂与空气中水蒸气之间的反应速率。该方法的缺点是除湿机体积大,需要占用额外的空间,增加了整个中子源系统的负载,而且并未彻底阻止锂靶在空气中的变质问题。在专利文献2(国际公开第2014/010704号)中,T.Kazuki采用热等静压方法将一层约十微米厚的金属箔与钽或铁基板上的凸起结构结合在一起,同时将锂密封在基板的凹部中。该方法理论上能保证隔绝空气与锂,且锂发生熔化也能正常工作,但是十微米的金属箔会对入射质子造成数百keV的能降,进而降低中子产额,影响锂靶的正常使用。
发明内容
本发明的目的在于克服上述现有技术的缺点,提供了一种加速器中子源固态锂靶,该锂靶能够实现锂与空气的隔绝,同时对质子的能降较低。
为达到上述目的,本发明所述的加速器中子源固态锂靶包括衬底、固态金属锂以及靶膜,其中,固态金属锂位于衬底上,靶膜覆盖于固态金属锂表面。
靶膜通过物理气相沉积方法制备得到。
靶膜通过真空蒸镀方法、溅射镀膜方法、电弧等离子体镀方法、离子镀膜方法或分子束外延方法制备得到。
靶膜为纯金属薄膜。
靶膜为钛膜、铝膜、铬膜、TiN复合薄膜、TiCrN复合薄膜或TiCrAlN复合薄膜。
衬底内开设有冷却剂通道。
本发明具有以下有益效果:
本发明所述的加速器中子源固态锂靶在具体操作时,靶膜覆盖于固态金属锂表面,通过靶膜将固态金属锂与空气隔绝,其中,靶膜对入射质子的能降可以忽略。
附图说明
图1为2.5MeV质子在200nm厚的钛膜与400nm厚的锂金属中的径迹图;
图2为本发明的示意图;
图3为本发明的截面图。
其中,1为衬底、2为靶膜、3为固态金属锂、4为冷却剂通道。
具体实施方式
下面结合附图对本发明做进一步详细描述:
参考图2及图3,本发明所述的加速器中子源固态锂靶包括衬底1、固态金属锂3以及靶膜2,其中,固态金属锂3位于衬底1上,靶膜2覆盖于固态金属锂3表面,衬底1内开设有冷却剂通道4。
靶膜2通过物理气相沉积方法制备得到,其中,靶膜2通过真空蒸镀方法、溅射镀膜方法、电弧等离子体镀方法、离子镀膜方法或分子束外延方法制备得到。
靶膜2为纯金属薄膜;靶膜2为钛膜、铝膜、铬膜、TiN复合薄膜、TiCrN复合薄膜或TiCrAlN复合薄膜。
图1为利用蒙特卡洛模拟软件SRIM对2.5MeV质子在200nm厚的钛膜与400nm厚的锂金属中的入射径迹进行计算的结果,可以看出,200nm厚的钛膜对入射质子的散射影响很小,对于尺寸在厘米级的锂靶,这一影响可以忽略,另外,SRIM计算结果显示,对于入射能量为2.5MeV的质子束,200nm厚的钛膜对质子的能降为几个keV,不足5‰。
在制备时,可以选择控溅射方法,该方法具有低温和高速两大特点。本发明的优选方案是在锂靶接受质子照射一侧通过磁控溅射方法镀厚度为200nm的钛膜。具体如下:使用北京创世威纳科技有限公司生产的MSP-300B磁控溅射镀膜机,中诺新材(北京)科技有限公司生产的纯度为99.995%的高纯钛靶作为靶材,工作气体为高纯氩气,氩气流量为25sccm,工作气压为0.5Pa,镀膜功率为100W,偏压为-70V。首先将待镀膜的锂靶作为基底固定在镀膜机的样品盘上,通过送样杆将基底传入镀膜室,靶材预溅射5min后,移开基底挡板开始给基底镀膜,镀膜时间为20min,以上步骤均在保护气氛下完成,镀膜结束后,基底成为以钛膜作为靶膜2的固态锂靶。经测试,经以上步骤得到的样品,钛膜厚度约200nm,可保证锂靶在相对湿度60%的空气中至少存放11小时不发生变质。
非专利文献4及非专利文献5中提出的液态锂靶结构复杂,除了需要熔融锂和循环锂的设备,还需要大型密封空间放置液态锂靶以避免锂与空气发生反应,而且锂蒸气会造成电气设备的耐久性下降。本发明简单,运行时不需要其他辅助设施,而且能够防止锂蒸气的扩散。
非专利文献6及非专利文献7采用的氮化技术,氮化速率低,生成的氮化锂薄膜厚度为几纳米至几十纳米,对锂靶的保护效果未作出有效说明。本发明需要的物理气相沉积镀膜技术成熟,设备简单,方便快捷,几纳米至几百微米区间可以自由控制成膜厚度,而且实验结果表明PVD制备的薄膜能有效隔绝锂与空气,达到保护锂靶的效果。
综上,本发明中的靶膜2制备简单,厚度、成分可控,能有效隔绝固态金属锂3与空气,含靶膜2的固态锂靶可以无附加条件在空气中完成换靶,靶膜2对入射质子造成的能降可以忽略,可防止锂蒸气扩散,可将锂靶工作过程中产生的Be-7封存在靶内部。

Claims (6)

1.一种加速器中子源固态锂靶,其特征在于,包括衬底(1)、固态金属锂(3)以及靶膜(2),其中,固态金属锂(3)位于衬底(1)上,靶膜(2)覆盖于固态金属锂(3)表面。
2.根据权利要求1所述的加速器中子源固态锂靶,其特征在于,靶膜(2)通过物理气相沉积方法制备得到。
3.根据权利要求2所述的加速器中子源固态锂靶,其特征在于,靶膜(2)通过真空蒸镀方法、溅射镀膜方法、电弧等离子体镀方法、离子镀膜方法或分子束外延方法制备得到。
4.根据权利要求1所述的加速器中子源固态锂靶,其特征在于,靶膜(2)为纯金属薄膜。
5.根据权利要求1所述的加速器中子源固态锂靶,其特征在于,靶膜(2)为钛膜、铝膜、铬膜、TiN复合薄膜、TiCrN复合薄膜或TiCrAlN复合薄膜。
6.根据权利要求1所述的加速器中子源固态锂靶,其特征在于,衬底(1)内开设有冷却剂通道(4)。
CN202011529995.2A 2020-12-22 2020-12-22 一种加速器中子源固态锂靶 Pending CN112738969A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011529995.2A CN112738969A (zh) 2020-12-22 2020-12-22 一种加速器中子源固态锂靶

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011529995.2A CN112738969A (zh) 2020-12-22 2020-12-22 一种加速器中子源固态锂靶

Publications (1)

Publication Number Publication Date
CN112738969A true CN112738969A (zh) 2021-04-30

Family

ID=75605693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011529995.2A Pending CN112738969A (zh) 2020-12-22 2020-12-22 一种加速器中子源固态锂靶

Country Status (1)

Country Link
CN (1) CN112738969A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058692A (zh) * 2022-05-19 2022-09-16 原子高科股份有限公司 一种中子管靶的靶膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW574388B (en) * 2001-12-06 2004-02-01 Metal Ind Res & Dev Ct Metallized target for physical vapor deposition
CN104429168A (zh) * 2012-07-13 2015-03-18 株式会社八神制作所 中子产生装置用的靶及其制造方法
CN108827994A (zh) * 2018-06-04 2018-11-16 西安交通大学 一种车载加速器中子源固态锂靶系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW574388B (en) * 2001-12-06 2004-02-01 Metal Ind Res & Dev Ct Metallized target for physical vapor deposition
CN104429168A (zh) * 2012-07-13 2015-03-18 株式会社八神制作所 中子产生装置用的靶及其制造方法
CN108827994A (zh) * 2018-06-04 2018-11-16 西安交通大学 一种车载加速器中子源固态锂靶系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115058692A (zh) * 2022-05-19 2022-09-16 原子高科股份有限公司 一种中子管靶的靶膜的制备方法
CN115058692B (zh) * 2022-05-19 2023-09-15 原子高科股份有限公司 一种中子管靶的靶膜的制备方法

Similar Documents

Publication Publication Date Title
EP2874473B1 (en) Target for neutron-generating device and manufacturing method therefor
CN109074890B (zh) 靶、靶的制造方法、及中子发生装置
Skinner et al. Plasma wall interaction and tritium retention in TFTR
Kreter Reactor-relevant plasma-material interaction studies in linear plasma devices
JP5697021B2 (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
CN112738969A (zh) 一种加速器中子源固态锂靶
Hirooka et al. Evaluation of tungsten as a plasma-facing material for steady state magnetic fusion devices
JP5700536B2 (ja) 複合型ターゲット
Agostinetti et al. Conceptual design of the Gas Injection and Vacuum System for DTT NBI
Uccello et al. Linear plasma device GyM for plasma-material interaction studies
JP2012243640A (ja) 複合型ターゲット、複合型ターゲットを用いる中性子発生方法、及び複合型ターゲットを用いる中性子発生装置
Sharapov Discharge chamber plasma-chemical conditioning in magnetic confinement fusion devices
Hirooka et al. Interactions of bulk-boronized graphites with deuterium plasmas in the Pisces-B facility
Wang et al. Influence mechanism of lithium surface oxidation on neutron yield of lithium target for accelerator-based neutron source
Dylla et al. Tritium retention in TFTR
CN113823433B (zh) 一种中子源锂靶及其制备方法和车载加速器
WO2020149955A1 (en) Low emission cladding and ion implanter
Wright et al. Plasma‐Surface Interaction Research At The Cambridge Laboratory Of Accelerator Studies Of Surfaces
Trickett 23. The vacuum system for the Daresbury synchrotron radiation source
Tabarés et al. Plasma-Assisted Wall Conditioning of Fusion Devices: A Review
Petrovskaya et al. Ion-Plasma Technology for Nuclear Power Plants Deactivation
Kugel et al. Initial boronization of PBX-M using ablation from solid boronized probes
Passoni et al. Linear plasma device GyM for plasma-material interaction studies
Increasing Outline of the Talk
Yukhimchuk et al. RFNC-VNIIEF experience in development and operation of hydrogen isotopes gas-handling systems for basic research

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210430