CN112737328B - 一种非隔离型高增益三端口变换器 - Google Patents

一种非隔离型高增益三端口变换器 Download PDF

Info

Publication number
CN112737328B
CN112737328B CN202011513504.5A CN202011513504A CN112737328B CN 112737328 B CN112737328 B CN 112737328B CN 202011513504 A CN202011513504 A CN 202011513504A CN 112737328 B CN112737328 B CN 112737328B
Authority
CN
China
Prior art keywords
port
diode
load
switch tube
photovoltaic cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011513504.5A
Other languages
English (en)
Other versions
CN112737328A (zh
Inventor
林国庆
黄毅敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Lijing New Energy Technology Co.,Ltd.
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202011513504.5A priority Critical patent/CN112737328B/zh
Publication of CN112737328A publication Critical patent/CN112737328A/zh
Application granted granted Critical
Publication of CN112737328B publication Critical patent/CN112737328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种非隔离型高增益三端口变换器。包括光伏电池输入端口,蓄电池端口,负载端口,第一开关管、第二开关管、第三开关管、第四开关管,第一二极管、第二二极管、第三二极管、第四二极管、第五二极管、第六二极管,第一电感、第二电感、第三电感,第一电容、第二电容、第三电容。通过对四个开关管的控制,采用一个变换器即可实现光伏电池、蓄电池和负载三者之间的能量管理与控制。该直流变换器具有四种工作模式,在一个变换器中就可以完成多个单输入单输出变换器的功能。具有成本低、增益高、变换效率高,工作方式灵活和可靠性高等优点。

Description

一种非隔离型高增益三端口变换器
技术领域
本发明属于电力电子技术领域,具体涉及一种非隔离型高增益三端口变换器。
背景技术
随着人类对能源需求的增长和全球一次能源的逐渐枯竭,太阳能光伏发电和燃料电池发电系统等越来越受到重视。由于太阳能电池等新能源发电系统存在电力供应不稳定、不连续和随环境条件变化等缺点,需要配备储能装置以提供峰值功率和回收多余能量,保证供电的连续性和可靠性。
在传统的新能源联合发电系统中,每种新能源的接入均需要对应一个DC-DC变换器,将各能源变换成直流电压输出,并联在公共的直流母线上,其存在两方面的缺陷:一方面结构复杂且成本较高;另一方面,变换器中开关管和二极管的电压应力高。为了简化电路结构以及降低系统成本,采用一个多输入直流变换器代替多个单输入直流变换器,成为当前新能源联合发电系统的发展趋势。
由于单体燃料电池或光伏电池的直流输出电压等级较低,无法满足并网逆变器直流侧的电压等级要求,因此需要在发电系统的直流母线侧前端增加高增益直流变换器来提升电压等级,供给后级的并网逆变器。因此,高增益多端口变换器是开关变换器领域的研究热点。
发明内容
本发明的目的在于提供一种非隔离型高增益三端口变换器,该变换器具有四种工作模式,在一个变换器中就可以完成多个单输入单输出变换器的功能。具有成本低、增益高、变换效率高,工作方式灵活和可靠性高等优点。
为实现上述目的,本发明的技术方案是:一种非隔离型高增益三端口变换器,包括光伏电池输入端口,蓄电池端口,负载端口,开关管S1-S4,二极管D1-D6,电感L1-L3,电容C1、C2、CBAT;蓄电池端口正极与CBAT的正极、S3的漏极、L3的一端连接,蓄电池端口负极与CBAT的负极、D1的阳极、光伏电池输入端口负极、S1的源极、C2的负极、负载端口负极连接,光伏电池输入端口正极与S2的漏极连接,S1的漏极与L2的一端、D5的阴极、D6的阳极连接,S2的源极与D2的阳极连接,D2的阴极与L1的一端、C1的负极、D3的阴极连接,S3的源极与D3的阳极连接,S4的源极与D1的阴极与L3的另一端连接,S4的漏极与C1的正极、L2的另一端、D4的阴极连接,D4的阳极与L1的另一端、D5的阳极连接,D6的阴极与C2的正极、负载端口正极连接。
在本发明一实施例中,所述变换器通过对开关管S1-S4的控制,即可实现光伏电池、蓄电池和负载三者之间的能量管理与控制。
在本发明一实施例中,所述变换器有如下四种工作模式控制方法:
1)光伏电池单独对负载供电模式:S2始终处于导通状态,S3、S4始终处于关断状态,通过控制S1实现光伏电池对负载供电;
2)蓄电池单独供电模式:S3始终处于导通状态,S2和S4始终处于关断状态,通过控制S1实现蓄电池对负载供电;
3)光伏电池对负载供电以及对蓄电池充电模式:S2始终处于导通状态,S3始终处于关断状态,通过控制S1实现光伏电池对负载供电,通过控制S4实现光伏电池对蓄电池充电;
4)光伏电池和蓄电池双输入供电模式:S4始终处于关断状态,S1和S2同时导通,S2和S3互补工作,通过控制S1和S2实现光伏电池对负载供电,通过控制S1和S3实现蓄电池对负载供电。
相较于现有技术,本发明具有以下有益效果:本发明变换器具有四种工作模式,在一个变换器中就可以完成多个单输入单输出变换器的功能。具有成本低、增益高、变换效率高,工作方式灵活和可靠性高等优点。
附图说明
图1为本发明的非隔离型高增益三端口变换器原理图。
图2为光伏电池单独对负载供电模式工作过程。
图3为蓄电池单独对负载供电模式工作过程。
图4为光伏电池对负载供电和对蓄电池充电模式工作过程。
图5为光伏电池和蓄电池双输入供电模式工作过程。
具体实施方式
下面结合附图,对本发明的技术方案进行具体说明。
本发明提供了一种非隔离型高增益三端口变换器,包括光伏电池输入端口,蓄电池端口,负载端口,开关管S1-S4,二极管D1-D6,电感L1-L3,电容C1、C2、CBAT;蓄电池端口正极与CBAT的正极、S3的漏极、L3的一端连接,蓄电池端口负极与CBAT的负极、D1的阳极、光伏电池输入端口负极、S1的源极、C2的负极、负载端口负极连接,光伏电池输入端口正极与S2的漏极连接,S1的漏极与L2的一端、D5的阴极、D6的阳极连接,S2的源极与D2的阳极连接,D2的阴极与L1的一端、C1的负极、D3的阴极连接,S3的源极与D3的阳极连接,S4的源极与D1的阴极与L3的另一端连接,S4的漏极与C1的正极、L2的另一端、D4的阴极连接,D4的阳极与L1的另一端、D5的阳极连接,D6的阴极与C2的正极、负载端口正极连接。所述变换器通过对开关管S1-S4的控制,即可实现光伏电池、蓄电池和负载三者之间的能量管理与控制。所述变换器有如下四种工作模式控制方法:
1)光伏电池单独对负载供电模式:S2始终处于导通状态,S3、S4始终处于关断状态,通过控制S1实现光伏电池对负载供电;
2)蓄电池单独供电模式:S3始终处于导通状态,S2和S4始终处于关断状态,通过控制S1实现蓄电池对负载供电;
3)光伏电池对负载供电以及对蓄电池充电模式:S2始终处于导通状态,S3始终处于关断状态,通过控制S1实现光伏电池对负载供电,通过控制S4实现光伏电池对蓄电池充电;
4)光伏电池和蓄电池双输入供电模式:S4始终处于关断状态,S1和S2同时导通,S2和S3互补工作,通过控制S1和S2实现光伏电池对负载供电,通过控制S1和S3实现蓄电池对负载供电。
以下为本发明的具体实现过程。
如图1所示,本发明的一种非隔离型高增益三端口变换器,包括光伏输入端口、蓄电池端口、负载端口、四个开关管、六个二极管、三个电感、三个电容等。
本发明提出的非隔离高增益三端口变换器有四种工作模式,各模式工作原理如下:
1、光伏电池单独对负载供电模式:在该模式中,开关管S2始终处于导通状态,S3、S4始终处于关断状态。各工作模态的等效电路和主要工作波形如图2所示。
1)模态1[t0-t1]:t0时刻,S1导通,此时D2和D5正向导通,D4和D6反向截止,光伏电池通过S1和D5给电感L1充电,光伏电池和电容C1串联后通过S1给L2充电,电感L1和L2的电流线性上升。
2)模态2[t1-t2]:t1时刻,S1关断,此时D2、D4和D6正向导通,D5反向截止,电感L1通过D4给电容C1充电,光伏电池、电感L1和L2通过D4和D6给C2和负载供电。
电压增益分析
根据伏秒平衡原理,
对于L1,有:VPVD1TS=VC1(1-D1)TS
对于L2,有:(VPV+VC1)D1TS=(VO-VC1-VPV)(1-D1)TS
可得:
Figure BDA0002846017870000031
Figure BDA0002846017870000032
2、蓄电池单独供电模式:该工作模式下开关管S3始终处于导通状态,S2和S4始终处于关断状态。各工作模态的等效电路和主要工作波形如图3所示。
1)模态1[t0-t1]:t0时刻,S1导通,此时D3和D5正向导通,D4和D6反向截止,蓄电池VBAT通过S1和D5给电感L1充电,蓄电池VBAT和电容C1串联后通过S1给L2充电,电感L1和L2的电流线性上升。
2)模态2[t1-t2]:t1时刻,S1关断,此时D3、D4和D6正向导通,D5反向截止,电感L1通过D4给电容C1充电,蓄电池VBAT、电感L1和L2通过D4和D6给C2和负载供电。
电压增益分析
根据伏秒平衡原理,
对于L1,有:VBATD1TS=VC1(1-D1)TS
对于L2,有:(VBAT+VC1)D1TS=(VO-VC1-VBAT)(1-D1)TS
可得:
Figure BDA0002846017870000041
Figure BDA0002846017870000042
3、光伏电池对负载供电和对蓄电池充电工作模式:该工作模式下开关管S2始终处于导通状态,S3始终处于关断状态,S1和S4同时导通。各工作模态的等效电路和主要工作波形如图4所示。
1)模态1[t0-t1]:t0时刻,S1和S4同时导通,此时D2和D5正向导通,D1、D4和D6反向截止。光伏电池Vpv通过S1和D5给电感L1充电。光伏电池Vpv和电容C1串联后通过S1给L2充电,通过S4给电感L3和蓄电池VBAT充电。
2)模态2[t1-t2]:t1时刻,S4关断,D1导通续流,电感L3给蓄电池VBAT充电,电感电流iL3线性下降。此时S1仍然保持导通,D2和D5仍然保持正向导通,D4和D6仍然保持反向截止。光伏电池Vpv通过S1和D5给电感L1充电,光伏电池Vpv和电容C1串联后通过S1给L2充电。
3)模态3[t2-t3]:t2时刻,S1关断,此时D1仍然保持导通续流,电感L3继续放能给蓄电池VBAT充电。D2、D4和D6正向导通,D5反向截止,电感L1通过D4给电容C1充电,光伏电池Vpv、电感L1和L2通过D4和D6给C2和负载供电。
电压增益分析
根据伏秒平衡原理,
对于L1,有:VPVD1TS=VC1(1-D1)TS
对于L2,有:(VPV+VC1)D1TS=(VO-VC1-VPV)(1-D1)TS
对于L3,有:(VPV+VC1-VBAT)D4TS=VBAT(1-D4)TS
可得:
Figure BDA0002846017870000051
Figure BDA0002846017870000052
Figure BDA0002846017870000053
4、光伏电池和蓄电池双输入供电模式:该工作模式下开关管S4始终处于关断状态,S1和S2同时导通,S2和S3互补工作。各工作模态的等效电路和主要工作波形如图5所示。
1)模态1[t0-t1]:t0时刻,S1和S2同时导通,此时D2和D5正向导通,D3、D4和D6反向截止,光伏电池Vpv通过S1和D5给电感L1充电,光伏电池Vpv和电容C1串联后通过S1给L2充电,输出电容C2向负载R供电。
2)模态2[t1-t2]:t1时刻,S3导通,同时S2关断,S1仍然保持导通。此时D3和D5正向导通,D2和D4反向截止,蓄电池VBAT通过S1和D5给电感L1充电,蓄电池VBAT和电容C1串联后通过S1给L2充电,输出电容C2继续向负载R供电。
3)模态3[t2-t3]:t2时刻,S1关断,S3保持导通,此时D3、D4和D6正向导通,D5反向截止,电感L1通过D4给电容C1充电,蓄电池VBAT、电感L1和L2通过D4和D6给C2和负载供电。
电压增益分析
根据伏秒平衡定理,
对于L1,有:VPVD2TS+VBAT(D1-D2)TS=VC1(1-D1)TS
对于L2,有:(VPV+VC1)D2TS+(D1-D2)(VBAT+VC1)TS=(VC4-VC1-VBAT)(1-D1)TS
可得:
Figure BDA0002846017870000054
Figure BDA0002846017870000055
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (3)

1.一种非隔离型高增益三端口变换器,其特征在于,包括光伏电池输入端口、蓄电池端口、负载端口、开关管S1-S4、二极管D1-D6、电感L1-L3、电容C1、电容C2、电容CBAT;蓄电池端口正极与电容CBAT的正极、开关管S3的漏极、电感L3的一端连接,蓄电池端口负极与电容CBAT的负极、二极管D1的阳极、光伏电池输入端口负极、开关管S1的源极、电容C2的负极、负载端口负极连接,光伏电池输入端口正极与开关管S2的漏极连接,开关管S1的漏极与电感L2的一端、二极管D5的阴极、二极管D6的阳极连接,开关管S2的源极与二极管D2的阳极连接,二极管D2的阴极与电感L1的一端、电容C1的负极、二极管D3的阴极连接,开关管S3的源极与二极管D3的阳极连接,开关管S4的源极与二极管D1的阴极与电感L3的另一端连接,开关管S4的漏极与电容C1的正极、电感L2的另一端、二极管D4的阴极连接,二极管D4的阳极与电感L1的另一端、二极管D5的阳极连接,二极管D6的阴极与电容C2的正极、负载端口正极连接。
2.根据权利要求1所述的一种非隔离型高增益三端口变换器,其特征在于,所述非隔离型高增益三端口变换器通过对开关管S1-S4的控制,即可实现光伏电池、蓄电池和负载三者之间的能量管理与控制。
3.根据权利要求1所述的一种非隔离型高增益三端口变换器,其特征在于,所述非隔离型高增益三端口变换器有如下四种工作模式控制方法:
1)光伏电池单独对负载供电模式:开关管S2始终处于导通状态,开关管S3、开关管S4始终处于关断状态,通过控制开关管S1实现光伏电池对负载供电;
2)蓄电池单独供电模式:开关管S3始终处于导通状态,开关管S2和开关管S4始终处于关断状态,通过控制S1实现蓄电池对负载供电;
3)光伏电池对负载供电以及对蓄电池充电模式:开关管S2始终处于导通状态,开关管S3始终处于关断状态,通过控制开关管S1实现光伏电池对负载供电,通过控制开关管S4实现光伏电池对蓄电池充电;
4)光伏电池和蓄电池双输入供电模式:开关管S4始终处于关断状态,开关管S1和开关管S2同时导通,开关管S2和开关管S3互补工作,通过控制开关管S1和开关管S2实现光伏电池对负载供电,通过控制开关管S1和开关管S3实现蓄电池对负载供电。
CN202011513504.5A 2020-12-18 2020-12-18 一种非隔离型高增益三端口变换器 Active CN112737328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011513504.5A CN112737328B (zh) 2020-12-18 2020-12-18 一种非隔离型高增益三端口变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011513504.5A CN112737328B (zh) 2020-12-18 2020-12-18 一种非隔离型高增益三端口变换器

Publications (2)

Publication Number Publication Date
CN112737328A CN112737328A (zh) 2021-04-30
CN112737328B true CN112737328B (zh) 2022-04-05

Family

ID=75603593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011513504.5A Active CN112737328B (zh) 2020-12-18 2020-12-18 一种非隔离型高增益三端口变换器

Country Status (1)

Country Link
CN (1) CN112737328B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11543130B1 (en) * 2021-06-28 2023-01-03 Collins Engine Nozzles, Inc. Passive secondary air assist nozzles
CN113890356B (zh) * 2021-09-10 2023-12-19 三峡大学 一种新型的高增益双输入dc-dc变换器
CN115347788B (zh) * 2022-10-14 2023-02-24 四川大学 一种非隔离三端口变换器及其控制方法、控制电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633838B (zh) * 2013-11-14 2016-04-13 华南理工大学 带耦合电感的高效率高增益dc-dc变换器
CN104218802A (zh) * 2014-09-26 2014-12-17 三峡大学 一种非隔离型高降压比dc/dc变换器
US10498236B2 (en) * 2016-04-11 2019-12-03 Tianshu Liu Two-phase three-level converter and controller therefor
CN105978325B (zh) * 2016-06-17 2018-03-27 华中科技大学 非隔离型单磁芯三端口直流变换器
CN106026657B (zh) * 2016-07-08 2018-09-28 西华大学 非隔离高增益dc-dc升压变换器
CN110312344B (zh) * 2019-07-05 2021-06-29 福州大学 一种双输入低纹波降压Cuk LED驱动电路

Also Published As

Publication number Publication date
CN112737328A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
CN112737328B (zh) 一种非隔离型高增益三端口变换器
CN108092512B (zh) 一种多工况高增益多端口dc/dc变换器
CN111371315B (zh) 一种零输入电流纹波高增益dc-dc变换器
CN113783418B (zh) 一种低输入电流纹波高增益软开关直流变换器
CN113965081B (zh) 一种基于Cuk的多工况高增益三端口DC-DC变换器
CN112803768B (zh) 一种三端口高增益直流变换器
CN115411768A (zh) 一种基于部分功率变换的四端口能量路由拓扑及控制策略
CN111245224B (zh) 一种可扩展的零输入电流纹波高增益直流变换器
CN109474183B (zh) 一种双输入高增益dc/dc变换器
CN112865536B (zh) 一种高电压增益非隔离三端口变换器
CN214674892U (zh) 一种高增益三端口dc/dc变换器
CN114285281B (zh) 一种准开关电容型高增益dc-dc变换器
CN216625586U (zh) 一种宽范围输入非隔离三端口dc-dc变换器
CN114221545A (zh) 一种高压增益升压cuk电路及控制方法、控制装置
CN215934729U (zh) 一种新型宽输入范围三端口变换器
CN109921638B (zh) 一种双开关高升压比直流变换器
CN111130343B (zh) 一种带有泵升电容的双输入高升压比直流变换器
CN109905025B (zh) 一种高增益dc-dc开关变换器
CN113890359B (zh) 一种三端口高可靠性的cuk DC-DC变换器
CN113890356B (zh) 一种新型的高增益双输入dc-dc变换器
CN113890357B (zh) 一种基于Sepic的多工况高增益三端口DC-DC变换器
CN113691131B (zh) 一种宽输入范围三端口变换器控制方法
CN216599418U (zh) 一种融合开关电容技术的高增益耦合电感dc-dc变换器
CN111030450B (zh) 一种升降压非隔离型三端口直流变换器
CN116566023B (zh) 一种锂电池组主动均衡电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230308

Address after: No. 406, Anbian Road, Min'an Street, Xiang'an District, Xiamen City, Fujian Province, 361000

Patentee after: Xiamen Lijing New Energy Technology Co.,Ltd.

Address before: Fuzhou University, No.2, wulongjiang North Avenue, Fuzhou University Town, Minhou County, Fuzhou City, Fujian Province

Patentee before: FUZHOU University