CN112736955A - 一种lcl-hvdc换流电路 - Google Patents

一种lcl-hvdc换流电路 Download PDF

Info

Publication number
CN112736955A
CN112736955A CN202011250565.7A CN202011250565A CN112736955A CN 112736955 A CN112736955 A CN 112736955A CN 202011250565 A CN202011250565 A CN 202011250565A CN 112736955 A CN112736955 A CN 112736955A
Authority
CN
China
Prior art keywords
parallel
capacitor
phase
current
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011250565.7A
Other languages
English (en)
Inventor
郭铭群
李明
罗隆福
武炬臻
赵亮
曹燕明
章浩
李亚男
田野
倪晴
樊纪超
李晨
张益萌
王赞
杨勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
State Grid Economic and Technological Research Institute
Original Assignee
Hunan University
State Grid Economic and Technological Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University, State Grid Economic and Technological Research Institute filed Critical Hunan University
Priority to CN202011250565.7A priority Critical patent/CN112736955A/zh
Publication of CN112736955A publication Critical patent/CN112736955A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种LCL‑HVDC三相换流电路,包括:整流端与逆变端的换流变压器,换流阀,直流场平波电抗器LS,交流场的限流电抗器LY,LD和逆变侧受控插入电容器Cs以及并联电容器Cp,整流端的电桥电路包括三个相互并联的臂,每个臂各对应于三相交流电的一个相,每个臂均从整流端的可控硅阀组引出,依次包括限流电抗器LY和并联电容器Cp,三个相互并联的臂的限流电抗器LYa,LYb,LYc的输出端均连接一可控硅阀组,可控硅阀组的输出端连接直流场平波电抗器LS的输入端,直流场平波电抗器LS的输出端连接逆变端的电桥电路。其可以有效降低换流变压器的超高电磁噪声、消除换相失败以及取消交流测滤波器及并联电容补偿。

Description

一种LCL-HVDC换流电路
技术领域
本发明涉及一种LCL-HVDC三相换流电路,属于电力输运技术领域。
背景技术
目前,高压直流输电系统存在一定的隐患与亟待解决的技术难题,诸如换流器谐波和无功的困扰、系统逆变端容易换相失败以及换流变压器超高电磁噪声等。尤其是系统的逆变端在交流电网故障下,换流器容易发生换相失败,甚至导致换流器闭锁,这也是高压直流输电工程最为典型的故障之一。同时换流变压器本身运行时的超高噪音已经远远超过电力变压器,对换流变压器本身及换流站运维人员乃至周边居民都将产生不利影响。目前对于换流变压器超高噪声的解决手段主要采取被动的隔离方式。即采用Box-in技术在换流变压器外围采取封闭措施,限制噪声传播。该技术虽然对环境降噪有一定效果,但其造价昂贵,占地面积大,且不利于换流变压器的散热,存在一定安全隐患,特别是当换流变压器局部起火时,将无法进行有效的治理措施,只能面临整台换流变压器的烧毁与损坏。
发明内容
针对上述问题,本发明的目的是提供一种LCL-HVDC三相换流电路,其与传统高压直流输电系统相比没有了交流滤波器以及交流无功补偿设备,同时可以有效降低换流变压器的超高电磁噪声,改善换流站运维人员及其附近居民的生活环境,该发明还可以消除逆变侧换相失败,有利于直流输电工程的发展与推进。
为实现上述目的,本发明采取以下技术方案:一种LCL-HVDC三相换流电路,包括:整流端与逆变端的换流变压器,进行交直流变换的换流阀,直流场平波电抗器LS,交流场的限流电抗器LY,LD和受控插入电容器Cs以及并联电容器Cp,整流端的电桥电路包括三个相互并联的臂,每个臂各对应于三相交流电的一个相,每个臂均从整流端的换流阀引出,依次包括限流电抗器LY和并联电容器Cp,三个相互并联的臂的限流电抗器LYa,LYb,LYc的输出端均连接一可控硅阀组,该可控硅阀组的输出端连接直流场平波电抗器LS的输入端,直流场平波电抗器LS的输出端连接逆变端的电桥电路。
进一步,逆变端的电桥电路包括三个相互并联的臂,每个臂各对应于三相交流电的一个相,每个臂均从逆变端的换流阀引出,依次包括限流电抗器LY、受控插入电容器Cs和并联电容器Cp,逆变端的电桥电路的三个臂的限流电抗器LY均连接逆变端的可控硅阀组。
进一步,并联电容器Cp的联结方式为:并联电容器并联于换流变阀侧与限流电抗器LY之间,并联电容器CpYAB,CpYAC和CpYBC分别与AB相、AC相和BC相对应,并联电容CpYAB,CpYAC和CpYBC首尾端互相联结成三角形。
进一步,受控插入电容器Cs包括一电容器Cs和两个与电容器Cs并联的阀模块,电容器Cs设置在两个阀模块之间。
进一步,每个阀模块由两个方向相反的IGBT串联而成,每个IGBT各自反并联一个二极管。
进一步,LCL-HVDC三相换流电路中的元件取值配置方法为:首先根据限制换流阀di/dt的需要,确定限流电抗器的电抗值,然后根据换流器无功需求和交流母线电能质量要求确定并联电容器CP的参数;在并联电容参数确定的基础上,逆变端受控插入电容器CS的参数根据消除换相失败的需要选取。
本发明由于采取以上技术方案,其具有以下优点:1、本发明的晶闸管高压直流输电系统拓扑结构通过并联电容的投入运行,可以有效降低换流变压器的超高电磁噪声,改善换流站运维人员及其附近居民的生活环境,有利于直流输电工程的发展与推进。2、本发明的晶闸管高压直流输电系统拓扑结构通过并联电容的投入运行,能够对换流阀不可避免产生的谐波分量进行吸收,保证交流电网侧的电压畸变符合相关标准,能够取消原高压直流输电系统拓扑中的交流滤波器。3、本发明的LCL-HVDC的拓扑结构中的并联电容器可以取消原高压直流输电系统拓扑中的无功补偿设备。4、本发明的LCL-HVDC的拓扑结构中的受控插入电容器可以增大换相熄弧角消除逆变端的换相失败,保证高压直流输电系统的安全稳定运行。
附图说明
图1是本发明一实施例中LCL-HVDC三相换流电路的电路图。
具体实施方式
为了使本领域技术人员更好的理解本发明的技术方向,通过具体实施例对本发明进行详细的描绘。然而应当理解,具体实施方式的提供仅为了更好地理解本发明,它们不应该理解成对本发明的限制。在本发明的描述中,需要理解的是,所用到的术语仅仅是用于描述的目的,而不能理解为指示或暗示相对重要性。
本实施例公开了一种LCL-HVDC三相换流电路,如图1所示,包括整流端与逆变端的换流变压器,进行交直流变换的换流阀,直流场平波电抗器LS,交流场的限流电抗器LY,LD和受控插入电容器Cs以及并联电容器Cp。本实施例中的整流端和逆变端的换流变压器各包括两个串联的电桥电路。因此,本LCL-HVDC三相换流电路共包括四个电桥电路。
整流端的电桥电路包括三个相互并联的臂,每个臂各对应于三相交流电的一个相。每个臂均从整流端的换流阀引出,依次包括限流电抗器LY和并联电容器Cp。三个相互并联的臂的限流电抗器LYa,LYb,LYc的输出端均连接一可控硅阀组,该可控硅阀组的输出端连接直流场平波电抗器LS的输入端,该直流场平波电抗器LS的输出端连接逆变端的一电桥电路的可控硅阀组,逆变端的电桥电路包括三个相互并联的臂,每个臂各对应于三相交流电的一个相。每个臂均从逆变端的换流阀引出,依次包括限流电抗器LY、受控插入电容器Cs和并联电容器Cp。限流电抗器(LY,LD)的功能为限制换相电流的大小,以防因并接和串接电容器所导致的过电流。
并联电容器Cp三相采取角接形式并联于换流变压器的二次侧。在本实施例中,并联电容器的联结方式为:并联电容并联于换流变阀侧与限流电抗器LY之间,并联电容器CpYAB,CpYAC和CpYBC分别与AB相、AC相和BC相对应,并联电容器CpYAB,CpYAC和CpYBC首尾端互相联结成三角形,其作用为提供阀的换相电压、对换流器进行无功补偿、滤除谐波同时降低换流变压器噪声。
受控插入电容器Cs包括一电容器Cs和两个与电容器Cs并联的阀模块,该电容器该Cs设置在两个阀模块之间。其中,每个阀模块由两个方向相反的IGBT串联而成,每个IGBT(SiYA;i=1,2,3,4)各自反并联一个二极管(DiYA;i=1,2,3,4)。逆变端受控插入电容器CP的功能为改善熄弧角,能够消除换相失败现象。
整流端与逆变端的换流变压器可以是Y-Y(wye-wye)变压器或Y-Δ(delta-wye)变压器。
本发明的高压直流输电系统的拓扑结构取消了常规高压直流输电系统中的交流场滤波器和无功补偿设备。受控插入电容器由四个绝缘栅双极性晶体管(IGBT)开关对电容模块进行有效控制。
本发明LCL-HVDC的电路中的元件取值配置原则与顺序为:首先根据限制换流阀di/dt的需要,确定限流电抗器的电抗值,然后根据换流器无功需求和交流母线电能质量要求确定并联电容CP的参数;在上述并联电容参数确定的基础上,逆变端受控插入电容器CS的参数由消除换相失败的需要选取。以上取值都以输电系统满功率传输为前提。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。上述内容仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (6)

1.一种LCL-HVDC三相换流电路,其特征在于,包括:整流端与逆变端的换流变压器,进行交直流变换的换流阀,直流场平波电抗器LS,交流场的限流电抗器LY,LD和受控插入电容器Cs以及并联电容器Cp
整流端的电桥电路包括三个相互并联的臂,每个臂各对应于三相交流电的一个相,每个臂均从整流端的换流阀引出,依次包括限流电抗器LY和并联电容器Cp,三个相互并联的臂的限流电抗器LYa,LYb,LYc的输出端均连接一可控硅阀组,所述可控硅阀组的输出端连接直流场平波电抗器LS的输入端,所述直流场平波电抗器LS的输出端连接逆变端的电桥电路。
2.如权利要求1所述的LCL-HVDC三相换流电路,其特征在于,所述逆变端的电桥电路包括三个相互并联的臂,每个臂各对应于三相交流电的一个相,每个臂均从逆变端的换流阀引出,依次包括限流电抗器LY、受控插入电容器Cs和并联电容器Cp,所述逆变端的电桥电路的三个臂的限流电抗器LY均连接逆变端的可控硅阀组。
3.如权利要求1所述的LCL-HVDC三相换流电路,其特征在于,并联电容器Cp的联结方式为:并联电容器并联于换流变阀侧与限流电抗器LY之间,并联电容器CpYAB,CpYAC和CpYBC分别与AB相、AC相和BC相对应,并联电容CpYAB,CpYAC和CpYBC首尾端互相联结成三角形。
4.如权利要求3所述的LCL-HVDC三相换流电路,其特征在于,所述受控插入电容器Cs包括一电容器Cs和两个与电容器Cs并联的阀模块,所述电容器Cs设置在两个阀模块之间。
5.如权利要求4所述的LCL-HVDC三相换流电路,其特征在于,每个所述阀模块由两个方向相反的IGBT串联而成,每个IGBT各自反并联一个二极管。
6.如权利要求5所述的LCL-HVDC三相换流电路,其特征在于,所述LCL-HVDC三相换流电路中的元件取值配置方法为:首先根据限制换流阀di/dt的需要,确定限流电抗器的电抗值,然后根据换流器无功需求和交流母线电能质量要求确定并联电容器CP的参数;在所述并联电容参数确定的基础上,逆变端受控插入电容器CS的参数根据消除换相失败的需要选取。
CN202011250565.7A 2020-11-11 2020-11-11 一种lcl-hvdc换流电路 Pending CN112736955A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011250565.7A CN112736955A (zh) 2020-11-11 2020-11-11 一种lcl-hvdc换流电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011250565.7A CN112736955A (zh) 2020-11-11 2020-11-11 一种lcl-hvdc换流电路

Publications (1)

Publication Number Publication Date
CN112736955A true CN112736955A (zh) 2021-04-30

Family

ID=75597451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011250565.7A Pending CN112736955A (zh) 2020-11-11 2020-11-11 一种lcl-hvdc换流电路

Country Status (1)

Country Link
CN (1) CN112736955A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106655236A (zh) * 2016-10-18 2017-05-10 湖南大学 采用吸收与并联电容换向的高压直流输电系统
CN110198044A (zh) * 2019-05-13 2019-09-03 国网内蒙古东部电力有限公司电力科学研究院 考虑传输功率极限的lcc-hvdc换相失败免疫能力评估方法及系统
US20200177071A1 (en) * 2017-07-13 2020-06-04 The University Of Birmingham Elimination of Commutation Failure of LCC HVDC System

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106655236A (zh) * 2016-10-18 2017-05-10 湖南大学 采用吸收与并联电容换向的高压直流输电系统
US20200177071A1 (en) * 2017-07-13 2020-06-04 The University Of Birmingham Elimination of Commutation Failure of LCC HVDC System
CN110198044A (zh) * 2019-05-13 2019-09-03 国网内蒙古东部电力有限公司电力科学研究院 考虑传输功率极限的lcc-hvdc换相失败免疫能力评估方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
侯灵犀 等: "抑制高压直流换相失败的串联电压换相变流器及控制方法", 《中国电机工程学报》 *

Similar Documents

Publication Publication Date Title
Belda et al. Analysis of faults in multiterminal HVDC grid for definition of test requirements of HVDC circuit breakers
Shi et al. Steady-state modeling of modular multilevel converter under unbalanced grid conditions
US9461560B2 (en) Power conversion device with a plurality of series circuits
CN104362662B (zh) 一种lcc-vsc型混合直流输电系统拓扑结构及启动方法
WO2015030359A1 (ko) 초고압직류송전용 컨버터
CN109755954B (zh) 一种混合直流输电系统换流器故障保护方法及装置
US9252684B2 (en) Power conversion apparatus and high-voltage DC transmission system
US9654023B2 (en) DC side fault isolator for high voltage DC convertors
WO2021147514A1 (zh) 模块化多电平交流-直流变换系统
CA2989539C (en) Hybrid back-to-back direct current transmission system and power flow reversal control method
Li et al. Fast fault protection based on direction of fault current for the high-surety power-supply system
Li et al. Analysis of single-phase-to-ground faults at the valve-side of HB-MMCs in bipolar HVDC systems
CN111769520B (zh) 一种混合级联多端直流输电系统故障保护方法及系统
Xu et al. Protection coordination of meshed MMC-MTDC transmission systems under DC faults
Li et al. Ground fault analysis and grounding method of static power converters in flexible AC traction power supply systems
CN106712054A (zh) 一种基于模块化多电平抑制电容电压脉动的statcom装置
Sano et al. A fault protection method for avoiding overvoltage in symmetrical monopole HVDC systems by half-bridge MMC
Bleilevens et al. Algebraic modelling of converters without DC fault ride-through capability for short circuit current calculation of DC distribution grids
CN112736955A (zh) 一种lcl-hvdc换流电路
Liu et al. Thyristor-pair-and damping-submodule-based protection against valve-side single-phase-to-ground faults in MMC-MTDC systems
Pyakuryal et al. Harmonic Analysis for a 6-pulse Rectifier
Facchinello et al. AC-AC hybrid dual active bridge converter for solid state transformer
CN210608555U (zh) 一种基于负序注入的高速铁路不平衡优化补偿装置
CN107134934A (zh) 一种无源补偿低谐波十二脉波自耦变压整流电路
Lüth et al. Choice of AC operating voltage in HV DC/AC/DC system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210430

RJ01 Rejection of invention patent application after publication