CN112727440B - 一种基于钻时数据的缝洞性油气藏的储层识别方法 - Google Patents

一种基于钻时数据的缝洞性油气藏的储层识别方法 Download PDF

Info

Publication number
CN112727440B
CN112727440B CN202110027766.9A CN202110027766A CN112727440B CN 112727440 B CN112727440 B CN 112727440B CN 202110027766 A CN202110027766 A CN 202110027766A CN 112727440 B CN112727440 B CN 112727440B
Authority
CN
China
Prior art keywords
standard
drilling
well
drilling time
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110027766.9A
Other languages
English (en)
Other versions
CN112727440A (zh
Inventor
吴丰
梁芸
习研平
史彪
代槿
何江
杨辉廷
李玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN202110027766.9A priority Critical patent/CN112727440B/zh
Publication of CN112727440A publication Critical patent/CN112727440A/zh
Application granted granted Critical
Publication of CN112727440B publication Critical patent/CN112727440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B45/00Measuring the drilling time or rate of penetration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Theoretical Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Evolutionary Computation (AREA)
  • Economics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Geophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Geometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Earth Drilling (AREA)

Abstract

本发明公开了一种基于钻时数据的缝洞性油气藏的储层识别方法,包括以下步骤:选择缝洞性油气藏中同时具有钻时数据、测井数据与解释结果的井作为标准井;根据所述标准井的测井解释结果,结合所述标准井的钻时数据,确定所述缝洞性油气藏基于钻时数据的储层划分标准;收集缝洞性油气藏目标井的原始钻时数据,并对所述原始钻时数据进行校正,获得所述目标井消除受钻井措施影响的校正钻时数据;根据所述校正钻时数据,结合所述储层划分标准,确定所述目标井的储层划分结果。本发明能够在没有充足的测录井资料支持的情况下,直接利用钻时数据对缝洞性油气藏的储层进行识别,保障缝洞性油气藏勘探开发的顺利进行。

Description

一种基于钻时数据的缝洞性油气藏的储层识别方法
技术领域
本发明涉及油气勘探技术领域,特别涉及一种基于钻时数据的缝洞性油气藏的储层识别方法。
背景技术
钻时录井(也称钻速录井)是油气田勘探阶段的必测项目之一,钻时录井所获取的钻时数据作为钻井现场的第一手资料,具有简便、及时的特点。钻时指每钻进单位厚度的岩层所需要的时间,单位通常是分钟/米(min/m)。钻时可反映岩石的可钻性,不同性质的岩石软硬程度不同,因此抗钻头破碎的能力也不同,不同的钻井措施对钻时也有一定的影响。一般影响钻时大小的因素主要有:(1)岩性:岩性越致密、硬度越大,则钻时越高;(2)钻压:钻压越大,则钻时越低;(3)钻井液性能:钻井液密度越大,则钻时越高;(4)钻头类型:使用不同类型的钻头得到的钻时也不同。
由于钻头钻井速度的快慢,一方面取决于地下岩石本身的物理性质(可钻性),另一方面又受到工程因素(钻井措施),如钻压、转速、排量的配合、钻井液性能、钻头类型及使用情况等的影响,因此目前钻时数据主要是作为一种辅助手段,配合测井资料和其他录井资料开展岩性识别、储层识别等工作。随着非常规油气藏勘探的逐渐深入,越来越多的缝洞性油气藏被发现,但钻井过程中常出现井况复杂导致无法测井的情况,因此有必要开发一套可直接在钻井现场根据钻时数据(没有充足的测录井资料支持的情况下)对缝洞性油气藏的储层进行识别的方法,以保障缝洞性油气藏勘探开发的顺利进行。
发明内容
针对上述问题,本发明旨在提供一种基于钻时数据的缝洞性油气藏的储层识别方法。
本发明的技术方案如下:
一种基于钻时数据的缝洞性油气藏的储层识别方法,包括以下步骤:
S1:选择缝洞性油气藏中同时具有钻时数据、测井数据与解释结果的井作为标准井。
作为优选,当所述缝洞性油气藏中同时具有钻时数据、测井数据与解释结果的井有多口时,针对同时有钻时数据、测井数据与解释结果的井,绘制钻时频率分布直方图,选择所述钻时频率分布直方图中钻时数据频率分布居中的一口井作为标准井。
S2:根据所述标准井的测井解释结果,结合所述标准井的钻时数据,确定所述缝洞性油气藏基于钻时数据的储层划分标准。
S3:收集缝洞性油气藏目标井的原始钻时数据,并对所述原始钻时数据进行校正,获得所述目标井消除受钻井措施影响的校正钻时数据。
作为优选,对所述原始钻时数据进行校正,具体包括以下子步骤:
S31:选择标准层并分别建立标准井和目标井的标准层钻时深度关系式,所述标准层为浅层碎屑岩层或稳定灰岩层;
作为优选,当所述标准层为浅层碎屑岩层时:
所述标准井的标准层钻时深度关系式为:
Depth=a1T标准井+b1 (1)
式中:Depth为深度,m;T标准井为标准井标准层的钻时,min/m;a1、b1为拟合参数,无量纲;
所述目标井的标准层钻时深度关系式为:
Depth=a2T目标井+b2 (2)
式中:T目标井为目标井标准层的钻时,min/m;a2、b2为拟合参数,无量纲。
作为优选,当所述标准层为稳定灰岩层时:
所述标准井的标准层钻时深度关系式为:
Figure BDA0002890948880000021
式中:
Figure BDA0002890948880000022
为标准井标准层的钻时平均值,min/m;T标准井i为标准井标准层的钻时,min/m;m为标准井标准层顶部深度至底部深度之间的钻时数据点个数;
所述目标井的标准层钻时深度关系式为:
Figure BDA0002890948880000023
式中:
Figure BDA0002890948880000024
为目标井标准层的钻时平均值,min/m;T目标井i为目标井标准层的钻时,min/m;n为目标井标准层顶部深度至底部深度之间的钻时数据点个数。
S32:根据所述标准井的标准层钻时深度关系式和所述目标井的标准层钻时深度关系式,获得标准井标准层钻时和目标井标准层钻时关系式。
作为优选,当所述标准层为浅层碎屑岩层时,所述标准井标准层钻时和目标井标准层钻时关系式为:
T标准井=(a2/a1)T目标井+(b2-b1)/a1 (3)
作为优选,当所述标准层为稳定灰岩层时,所述标准井标准层钻时和目标井标准层钻时关系式为:
Figure BDA0002890948880000031
式中:b为校正参数,无量纲。
S33:根据所述标准井标准层钻时和目标井标准层钻时关系式,获得目标井目的层钻时数据的校正模型。
作为优选,当所述标准层为浅层碎屑岩层时,所述校正模型为:
T校正后=(a2/a1)T校正前+(b2-b1)/a1 (4)
式中:T校正后为校正后的钻时,min/m;T校正前为校正前的钻时,min/m。
作为优选,当所述标准层为稳定灰岩层时,所述校正模型为:
T校正后=T校正前+b (8)
S34:根据所述校正模型对目标井目的层的钻时数据进行校正,获得所述目标井目的层的校正钻时数据。
S4:根据所述校正钻时数据,结合所述储层划分标准,确定所述目标井的储层划分结果。
作为优选,所述储层划分标准为:
当校正钻时数据小于等于A时,地层为Ⅰ类储层;
当校正钻时数据大于A且小于等于B时,地层为Ⅱ类储层;
当校正钻时数据大于B且小于等于C时,地层为Ⅲ类储层;
当校正钻时数据大于C时,地层为非储层;
其中A、B、C为根据所述标准井的测井解释结果结合所述标准井的钻时数据确定的储层划分钻时分界值,且其数值满足A<B<C。
本发明的有益效果是:
本发明能够对缝洞性油气藏中未采集测井数据井的储层进行识别,可以在没有充足的测录井资料支持的情况下,保障缝洞性油气藏勘探开发的顺利进行。其中,通过构建标准井和目标井在标准层的钻时深度关系,得到以标准井为标准的钻时校正模型,应用所述校正模型来消除目标井钻时受钻井措施的影响,使得校正后的钻时数据能够更真实地反映岩石本身的可钻性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实施例同时含有钻时数据、测井数据与解释结果的4口井的钻时频数分布直方图;
图2为实施例1中的标准井和目标井的标准层钻时-深度散点图;
图3为实施例缝洞性油气藏中基于钻时数据的储层划分标准示意图;
图4为实施例1目标井基于钻时数据的缝洞性油气藏的储层识别方法识别结果示意图;
图5为实施例2目标井基于钻时数据的缝洞性油气藏的储层识别方法识别结果示意图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的技术特征可以相互结合。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本发明中,在未作相反说明的情况下,使用的术语“第一”、“第二”等是用于区别类似的对象,而不是用于描述特定的顺序或先后次序。应该理解这样使用的术语;使用的术语中“上”、“下”、“左”、“右”等通常是针对附图所示的方向而言,或者是针对部件本身在竖直、垂直或重力方向上而言;同样地,为便于理解和描述,“内”、“外”等是指相对于各部件本身的轮廓的内、外。但上述方位词并不用于限制本发明。
实施例1
以我国西部地区某缝洞性油藏为例,选择浅层碎屑岩层作为标准层,该缝洞性油藏的基于钻时数据的储层识别方法,包括以下步骤:
①收集数据
收集目标缝洞性油藏内10口井的数据,包括钻时数据、测井数据与解释结果,其中4口井既有钻时数据也有测井数据与解释结果,另外6口井只有钻时数据没有测井数据与解释结果,将这10口井作为样本井进行以下操作。
②选取标准井和目标井
针对同时含有钻时数据、测井数据与解释结果的4口井,将这4口井的钻时数据进行统计并绘制如图1所示的钻时频数分布直方图,选择图1中钻时数据分布居中的井1作为标准井,除标准井以外的9口其他样本井作为目标井。在本实施例中,选择同时含有钻时数据、测井数据与解释结果的井2作为代表目标井,利用该井的钻时数据展示本发明的剩余操作步骤及储层分类结果,利用该井的测井解释结果验证本发明的准确性。
③选择标准层
选择目的层附近深度较浅(4990~5590m)的三叠系~石炭系下统巴楚组顶部(砂泥岩)作为标准层,该段地层厚度大,钻时数据充足。
④建立标准层钻时深度关系式
绘制如图2所示的标准井和目标井的标准层钻时-深度散点图,线性拟合得到标准井和目标井的标准层钻时-深度线性关系式分别如下所示:
Depth=36.933T标准井+4446 (9)
Depth=21.2T目标井+4576 (10)
⑤建立校正模型
联立公式(9)和公式(10)求解,获得标准井标准层钻时和目标井标准层钻时关系式:
T标准井=(21.2/36.933)T目标井+(4576-4446)/36.933 (11)
根据公式(11),获得目标井目的层钻时数据的校正模型:
Figure BDA0002890948880000051
⑥获得校正钻时数据
根据公式(12),对所选取的目标井目的层(一间房组~鹰山组地层)的钻时数据进行校正。目标井目的层的原始钻时数据数值太高,主要分布在0~50min/m之间,进行校正后钻时值降低至5~30min/m之间。这样该井目的层(一间房组~鹰山组地层)的钻时数据受钻井措施影响的工程因素就被消除了,使得校正后钻时数据反映岩石本身的可钻性。
⑦确定储层划分标准
根据所述标准井的测井解释结果,选取其中典型的I类储层、II类储层、III类储层、非储层作为代表,结合所述标准井各类储层对应的钻时数据,确定如图3或表1所示的缝洞性油气藏基于钻时数据的储层划分标准。
表1缝洞性油气藏基于钻时数据的储层划分标准
储层类型 钻时(min/m)
I类储层(洞穴型储层) 钻时≤6
II类储层(裂缝孔洞型储层) 6<钻时≤10
III类储层(裂缝型储层) 10<钻时≤15
非储层 15<钻时
⑧识别储层
依据步骤⑦的储层划分标准,结合步骤⑥得到的目标井目的层校正钻时数据,对目标井目的层进行储层识别。识别结果如图4中(a)所示,深度5995m~6003m为I类储层(洞穴型储层),深度6003.5m~6009m为II类储层(裂缝孔洞型储层),深度6013m~6016.5m、深度6033m~6037.5m和深度6056m~6068m为III类储层(裂缝型储层)。结合该目标井本身具有如图4中(b)所示的测井解释结果可以看出,本发明的基于钻时数据的缝洞性油气藏的储层识别方法识别的储层划分结果与测井解释的储层划分结果一致,证明了本发明的准确性。
实施例2
以我国西部地区某缝洞性油藏为例,选择稳定灰岩层作为标准层,该缝洞性油藏的基于钻时数据的储层识别方法,包括以下步骤:
①收集数据
收集目标缝洞性油藏内10口井的数据,包括钻时数据、测井数据与解释结果,其中4口井既有钻时数据也有测井数据与解释结果,另外6口井只有钻时数据没有测井数据与解释结果,将这10口井作为样本井进行以下操作。
②选取标准井和目标井
针对同时含有钻时数据、测井数据与解释结果的4口井,将这4口井的钻时数据进行统计并绘制如图1所示的钻时频数分布直方图,选择图1中钻时数据分布居中的井1作为标准井,除标准井以外的9口其他样本井作为目标井。在本实施例中,选择同时含有钻时数据、测井数据与解释结果的井3作为代表目标井,利用该井的钻时数据展示本发明的剩余操作步骤及储层分类结果,利用该井的测井解释结果验证本发明的准确性。
③选择标准层
选择目的层附近深度(5900~6000m)的泥质含量稳定、低孔隙度的恰尔巴克组作为标准层,该段地层厚度较小,钻时数据少。
④建立标准层钻时深度关系式
选择该井标准层(恰尔巴克组)顶、底深度之间的所有钻时数据点,根据公式(5)计算得到标准井标准层的钻时数据平均值:
Figure BDA0002890948880000061
选择该井标准层(恰尔巴克组)顶、底深度之间的所有钻时数据点,根据公式(6)计算得到目标井标准层的钻时数据平均值:
Figure BDA0002890948880000062
⑤建立校正模型
根据步骤④的计算结果,获得标准井标准层钻时和目标井标准层钻时关系式:
Figure BDA0002890948880000063
根据公式(13),获得目标井目的层钻时数据的校正模型:
T校正后=T校正前-18 (14)
⑥获得校正钻时数据
根据公式(14),对所选取的目标井目的层(恰尔巴克组)的钻时数据进行校正。目标井目的层的原始钻时数据数值太高,主要分布在20~60min/m之间,进行校正后钻时值降低至5~40min/m之间。这样该井目的层(恰尔巴克组)的钻时数据受钻井措施影响的工程因素就被消除了,使得校正后钻时数据主要反映岩石本身的可钻性。
⑦确定储层划分标准
根据所述标准井的测井解释结果,选取其中典型的I类储层、II类储层、III类储层、非储层作为代表,结合所述标准井各类储层对应的钻时数据,确定如图3或表1所示的缝洞性油气藏基于钻时数据的储层划分标准。
⑧识别储层
依据步骤⑦的储层划分标准,结合步骤⑥得到的目标井目的层校正钻时数据,对目标井目的层进行储层识别。识别结果如图5中(a)所示,深度6013.5m~6028.5m、深度6046m~6052m和深度6074m~6080m为II类储层(裂缝孔洞型储层),深度5983m~6003m、深度6007m~6013.5m、深度6032m~6036.5m和深度6041m~6046m为III类储层(裂缝型储层)。结合该目标井本身具有如图5中(b)所示的测井解释结果可以看出,本发明的基于钻时数据的缝洞性油气藏的储层识别方法识别的储层划分结果与测井解释的储层划分结果一致,证明了本发明的准确性。
需要说明的是,实施例1和实施例2中同时含有钻时数据、测井数据与解释结果的井具有多口,在上述两个实施例中通过绘制该多口井的钻时频数分布直方图并选择图中钻时数据分布居中的井作为标准井,如此选择的标准井更具有代表性,能够尽量减少目标井的校正量。
需要说明的是,本发明也可直接选择任意一口同时含有钻时数据、测井数据与解释结果的井作为标准井,实验结果表明选择井1、井2、井3、井4中的任意一口井作为标准井,其余目标井采用本发明所识别的储层结果均是一样的。
需要说明的是,实施例1选择浅层碎屑岩层作为标准层对9口目标井进行储层识别的结果与实施例2选择稳定灰岩层作为标准层对9口目标井进行储层识别的结果也保持一致。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (5)

1.一种基于钻时数据的缝洞性油气藏的储层识别方法,其特征在于,包括以下步骤:
选择缝洞性油气藏中同时具有钻时数据、测井数据与解释结果的井作为标准井;
根据所述标准井的测井解释结果,结合所述标准井的钻时数据,确定所述缝洞性油气藏基于钻时数据的储层划分标准;
收集缝洞性油气藏目标井的原始钻时数据,并对所述原始钻时数据进行校正,获得所述目标井消除受钻井措施影响的校正钻时数据;对所述原始钻时数据进行校正,具体包括以下子步骤:
选择标准层并分别建立标准井和目标井的标准层钻时深度关系式,所述标准层为浅层碎屑岩层或稳定灰岩层;
根据所述标准井的标准层钻时深度关系式和所述目标井的标准层钻时深度关系式,获得标准井标准层钻时和目标井标准层钻时关系式;
根据所述标准井标准层钻时和目标井标准层钻时关系式,获得目标井目的层钻时数据的校正模型;
根据所述校正模型对目标井目的层的钻时数据进行校正,获得所述目标井目的层的校正钻时数据;
根据所述校正钻时数据,结合所述储层划分标准,确定所述目标井的储层划分结果。
2.根据权利要求1所述的基于钻时数据的缝洞性油气藏的储层识别方法,其特征在于,当所述缝洞性油气藏中同时具有钻时数据、测井数据与解释结果的井有多口时,针对同时有钻时数据、测井数据与解释结果的井,绘制钻时频率分布直方图,选择所述钻时频率分布直方图中钻时数据频率分布居中的一口井作为标准井。
3.根据权利要求1所述的基于钻时数据的缝洞性油气藏的储层识别方法,其特征在于,当所述标准层为浅层碎屑岩层时:
所述标准井的标准层钻时深度关系式为:
Depth=a1T标准井+b1 (1)
式中:Depth为深度,m;T标准井为标准井标准层的钻时,min/m;a1、b1为拟合参数,无量纲;
所述目标井的标准层钻时深度关系式为:
Depth=a2T目标井+b2 (2)
式中:T目标井为目标井标准层的钻时,min/m;a2、b2为拟合参数,无量纲;
所述标准井标准层钻时和目标井标准层钻时关系式为:
T标准井=(a2/a1)T目标井+(b2-b1)/a1 (3)
所述校正模型为:
T校正后=(a2/a1)T校正前+(b2-b1)/a1 (4)
式中:T校正后为校正后的钻时,min/m;T校正前为校正前的钻时,min/m。
4.根据权利要求1所述的基于钻时数据的缝洞性油气藏的储层识别方法,其特征在于,当所述标准层为稳定灰岩层时:
所述标准井的标准层钻时深度关系式为:
Figure FDA0003404930500000021
式中:
Figure FDA0003404930500000022
为标准井标准层的钻时平均值,min/m;T标准井i为标准井标准层的钻时,min/m;m为标准井标准层顶部深度至底部深度之间的钻时数据点个数;
所述目标井的标准层钻时深度关系式为:
Figure FDA0003404930500000023
式中:
Figure FDA0003404930500000024
为目标井标准层的钻时平均值,min/m;T目标井i为目标井标准层的钻时,min/m;n为目标井标准层顶部深度至底部深度之间的钻时数据点个数;
所述标准井标准层钻时和目标井标准层钻时关系式为:
Figure FDA0003404930500000025
式中:b为校正参数,无量纲;
所述校正模型为:
T校正后=T校正前+b (8)
式中:T校正后为校正后的钻时,min/m;T校正前为校正前的钻时,min/m。
5.根据权利要求1-4中任意一项所述的基于钻时数据的缝洞性油气藏的储层识别方法,其特征在于,所述储层划分标准为:
当校正钻时数据小于等于A时,地层为Ⅰ类储层;
当校正钻时数据大于A且小于等于B时,地层为Ⅱ类储层;
当校正钻时数据大于B且小于等于C时,地层为Ⅲ类储层;
当校正钻时数据大于C时,地层为非储层;
其中A、B、C为根据所述标准井的测井解释结果结合所述标准井的钻时数据确定的储层划分钻时分界值,且其数值满足A<B<C。
CN202110027766.9A 2021-01-11 2021-01-11 一种基于钻时数据的缝洞性油气藏的储层识别方法 Active CN112727440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110027766.9A CN112727440B (zh) 2021-01-11 2021-01-11 一种基于钻时数据的缝洞性油气藏的储层识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110027766.9A CN112727440B (zh) 2021-01-11 2021-01-11 一种基于钻时数据的缝洞性油气藏的储层识别方法

Publications (2)

Publication Number Publication Date
CN112727440A CN112727440A (zh) 2021-04-30
CN112727440B true CN112727440B (zh) 2022-02-01

Family

ID=75589975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110027766.9A Active CN112727440B (zh) 2021-01-11 2021-01-11 一种基于钻时数据的缝洞性油气藏的储层识别方法

Country Status (1)

Country Link
CN (1) CN112727440B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383788A (zh) * 2011-09-16 2012-03-21 中国石油化工股份有限公司 一种地下储层孔隙度随钻测量方法
CN103806911A (zh) * 2014-03-07 2014-05-21 中国石油集团川庆钻探工程有限公司 利用随钻钻井液录井资料进行储层流体类型的判别方法
CN104634295A (zh) * 2015-02-10 2015-05-20 西南石油大学 碳酸盐岩洞穴型储层有效体积估算方法
CN108798661A (zh) * 2018-06-11 2018-11-13 中国石油集团川庆钻探工程有限公司 利用录井气测组分参数识别油井储层及含流体性质的方法
CN108798657A (zh) * 2018-05-31 2018-11-13 中国石油集团川庆钻探工程有限公司 基于钻井液录井参数气测值的录井解释方法
CN109403959A (zh) * 2018-09-06 2019-03-01 中国石油集团川庆钻探工程有限公司 基于工程录井参数的储层智能解释方法
CN111259509A (zh) * 2018-11-30 2020-06-09 中国石油化工股份有限公司 一种钻井过程仿真方法以及系统
CN111963148A (zh) * 2020-08-19 2020-11-20 中国石油天然气股份有限公司 碳酸盐岩缝洞型油气藏压力系数与钻井泥浆密度确定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980940B1 (en) * 2000-02-22 2005-12-27 Schlumberger Technology Corp. Intergrated reservoir optimization
US7373813B2 (en) * 2006-02-21 2008-05-20 Baker Hughes Incorporated Method and apparatus for ion-selective discrimination of fluids downhole
CN105735978B (zh) * 2016-02-19 2018-12-04 中国石油集团川庆钻探工程有限公司 碳酸盐层间岩溶型储层布井方法
CN108194077B (zh) * 2017-12-15 2021-06-11 中国石油集团川庆钻探工程有限公司 一种气测全烃校正方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383788A (zh) * 2011-09-16 2012-03-21 中国石油化工股份有限公司 一种地下储层孔隙度随钻测量方法
CN103806911A (zh) * 2014-03-07 2014-05-21 中国石油集团川庆钻探工程有限公司 利用随钻钻井液录井资料进行储层流体类型的判别方法
CN104634295A (zh) * 2015-02-10 2015-05-20 西南石油大学 碳酸盐岩洞穴型储层有效体积估算方法
CN108798657A (zh) * 2018-05-31 2018-11-13 中国石油集团川庆钻探工程有限公司 基于钻井液录井参数气测值的录井解释方法
CN108798661A (zh) * 2018-06-11 2018-11-13 中国石油集团川庆钻探工程有限公司 利用录井气测组分参数识别油井储层及含流体性质的方法
CN109403959A (zh) * 2018-09-06 2019-03-01 中国石油集团川庆钻探工程有限公司 基于工程录井参数的储层智能解释方法
CN111259509A (zh) * 2018-11-30 2020-06-09 中国石油化工股份有限公司 一种钻井过程仿真方法以及系统
CN111963148A (zh) * 2020-08-19 2020-11-20 中国石油天然气股份有限公司 碳酸盐岩缝洞型油气藏压力系数与钻井泥浆密度确定方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Origin, characteristics and significance of collapsed-paleocave systems in Sinian to Permian carbonate strata in Central Sichuan Basin, SW China;WenkeLI;《Petroleum Exploration and Development》;20141231;563-573 *
Seismic sedimentology, facies analyses, and high-quality reservoir predictions in fan deltas: A case study of the Triassic Baikouquan Formation on the western slope of the Mahu Sag in China"s Junggar Basin;Wei Wu;《Marine and Petroleum Geology》;20200625;1-16 *
基于测井和录井信息相结合的泥页岩储层识别方法——以苏北盆地高邮凹陷阜宁组为例;闫建平;《岩性油气藏》;20150831;第27卷(第4期);89-95 *
岩石气水两相渗流的玻璃刻蚀驱替实验与有限元数值模拟对比;吴丰;《岩性油气藏》;20190830;第31卷(第4期);121-132 *

Also Published As

Publication number Publication date
CN112727440A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
CN110321595B (zh) 一种测井提取静态品质系数的断层封闭性评价方法
CN110412661B (zh) 细粒岩油气藏甜点段优势段簇的评价方法及装置
US20200340356A1 (en) Method for evaluating difference in gas injection effect of gas injection wells in carbonate reservoir
CN111749686A (zh) 一种基于地层抗钻参数的钻头快速优选方法
CN102116871A (zh) 一种提高地震反演数据预测储层能力的方法
CN109033541B (zh) 一种基于eur的压后页岩气藏非均质性评价方法
CN103993871A (zh) 针对薄互层地层的测井资料标准化处理方法及装置
CN107346455A (zh) 一种用于识别页岩气产能的方法
CN110727035A (zh) 一种低渗强非均质气藏气水层识别方法
CN105257252A (zh) 利用测井资料优选页岩气水平井分簇射孔井段的方法
CN116122801A (zh) 一种页岩油水平井体积压裂可压性综合评价方法
CN112727440B (zh) 一种基于钻时数据的缝洞性油气藏的储层识别方法
CN111749688B (zh) 一种优势渗流通道发育层位和方向的预测方法
CN112160734B (zh) 注采井相关性分析方法、装置、存储介质及计算机设备
CN108763751A (zh) 一种石油地质录井中气测全烃数据的校正方法
CN105201491A (zh) 一种确定水淹强度的方法及装置
US20210010368A1 (en) Method and apparatus for determining oil-gas-water interface based on formation pressure equivalent density
CN111379548B (zh) 井眼轨迹的确定方法、装置、设备及存储介质
CN115434698B (zh) 基于光电吸收截面指数的地层钙质胶结物含量计算方法
CN110410068B (zh) 一种确定地层破裂压力梯度的测井方法
CN112394416A (zh) 非均质断裂控制储层预测方法及装置
CN106909717B (zh) 湖相低丰度、多产层致密油田主力产油层的确定方法
CN109296358B (zh) 固井用井身质量评价方法
CN110334376A (zh) 致密油甜点储层的识别方法
Zhao et al. Stacked Completion and Production of Lacustrine Shale Oil Deposit Lateral Wells in the Kongdian Formation, China

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant