CN112707508B - 基于bp-ann的农污设施cod处理效果预测方法、装置、平台 - Google Patents

基于bp-ann的农污设施cod处理效果预测方法、装置、平台 Download PDF

Info

Publication number
CN112707508B
CN112707508B CN202011612416.0A CN202011612416A CN112707508B CN 112707508 B CN112707508 B CN 112707508B CN 202011612416 A CN202011612416 A CN 202011612416A CN 112707508 B CN112707508 B CN 112707508B
Authority
CN
China
Prior art keywords
electrode
facility
cod
rural domestic
domestic sewage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011612416.0A
Other languages
English (en)
Other versions
CN112707508A (zh
Inventor
罗安程
林强
梁志伟
张研
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202011612416.0A priority Critical patent/CN112707508B/zh
Publication of CN112707508A publication Critical patent/CN112707508A/zh
Application granted granted Critical
Publication of CN112707508B publication Critical patent/CN112707508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Biotechnology (AREA)
  • Data Mining & Analysis (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种基于BP‑ANN的农污设施COD处理效果预测方法、装置、平台,属于水质监测设备领域。该预测方法通过收集不同工艺类型的不同农村生活污水处理设施出水pH,进水电导,出水电导,厌氧池ORP,出水浊度等运行状态参数,并将其代入在线数据平台内嵌的人工神经网络预测设施出水COD浓度。整体而言,该装置预测性能良好,具有较高的应用推广价值。

Description

基于BP-ANN的农污设施COD处理效果预测方法、装置、平台
技术领域
本发明属于水质监测领域,具体涉及一种基于BP-ANN的农污设施COD处理效果预测方法、装置、平台。
背景技术
COD是我国农村生活污水处理设施出水水质的主要监测指标之一,它是一个重要的有机物污染参数,反映了水中受还原性物质污染的程度。当前对于设施出水COD的检测方法主要为运维人员手工采样,实验室化学法检测,该方法虽然测量精度高,但由于我国农村生活污水处理设施普遍点位分散且数量众多,部分地级市内已包含数万个农村生活污水处理设施,相关政府机构每年都要投入大量的人力物力用于运维工作。同时,该方法还存在另一大明显弊端,即为运维管理的滞后性,即从采样到发现出水情况异常再到运维人员到现场调试往往需要几周的时间。在这段时间内,污水处理设施常常处于非正常状态运行,这将导致:一方面,由于出水情况未达排放标准,对受纳水体水质造成破坏;另一方面,长期的非正常情况运行,会加剧污水处理设施的损耗程度,给运维工作造成极大困扰。
近年来,已有研究表明人工神经网络模型对于市政等污水处理设施出水COD的预测效果。但该类型研究绝大部分仍已单个设施为研究对象,不同研究确立的模型对于研究对象外的不同工艺,不同处理设施预测性能存疑。而在我国农村生活污水处理设施普遍存在工艺繁杂(涵盖诸如A2O,A2O+人工湿地,A2O+滤池等主流工艺),数量众多特点,基于此,提出一种基于人工神经网络(ANN)的农污设施COD处理效果预测方法破解目前设施运维的难题具有重要意义。
BP人工神经网络(BP-ANN)是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络。在申请号为CN201910226953.2的发明专利中,申请人已经公开了一种农村生活污水A2O处理终端出水COD浓度软测量方法及装置。在该方案中,我们提出一种基于人工神经网络,以出水pH,进水电导,出水电导,出水浊度,进水氨氮浓度与出水氨氮浓度为输入型指标,适用于同一区域内不同AO处理工艺设施的出水COD浓度软测量预测。然而,该方法在应用时面临一个输入指标检测较为困难的问题,其原因主要受限于其中的进水氨氮浓度与出水氨氮浓度两个指标的测定。氨氮的测定主要依赖于实验室分析或者便携式的成套设备,但此类设备无法直接用于连续的现场实时监测。目前虽然市面上已有诸如氨气敏电极等可用于监测进出水氨氮浓度的电极,但该类型电极的检测灵敏性和准确性不高,而且需要定期添加化学试剂因此对运维要求较高,不易成套化安装至现场状态检测设备中。因此,如何对此类方法和设备进行改进,使得其能够通过监测容易检测的指标,实现农污设施COD处理效果的实时预测,是目前亟待解决的技术问题。
发明内容
本发明在对数百个农村生活污水处理设施的实地调研基础上,要解决的技术问题是针对上述的现状而提出的一种基于BP-ANN的农污设施COD处理效果预测方法及其装置。
本发明解决上述技术问题所采用的技术方案如下:
第一方面,本发明提供了一种基于BP-ANN的农污设施COD处理效果预测方法,所述农污设施为运行A2O工艺或含有A2O的组合工艺的农村生活污水处理设施,其步骤如下:
S1:利用安装于待预测农村生活污水处理设施进水端的电导电极、A2O工艺厌氧池中的ORP以及出水端的pH电极、电导电极和浊度电极,实时获取该农村生活污水处理设施中出水pH、进水电导、出水电导、A2O工艺厌氧池ORP和出水浊度五个运行状态参数的瞬时值,并上传至在线数据平台;
S2:在线数据平台接收现场状态监测设备传输的五个运行状态参数的瞬时值后,以五个运行状态参数作为输入层指标,以出水COD浓度作为输出层指标,利用经过训练的BP神经网络模型对农村生活污水处理设施的出水COD浓度进行预测。
作为优选,所述的BP神经网络模型包括输入层、隐藏层和输出层,输入层有5个输入神经元,分别对应五个运行状态参数,隐藏层有16个隐藏神经元,输出层有1个输出神经元,对应预测的出水COD浓度。
作为优选,所述的五个运行状态参数经由电极测量后,经过模数转换获得数字信号,再通过通信网络实时传输至在线数据平台。
作为优选,所述的通信网络为无线通信网络。
作为优选,所述的在线数据平台为云平台或者监控端服务器。
作为优选,所述在线数据平台内内置的BP神经网络模型在训练时,采用不同农村生活污水处理设施的运行数据作为样本集进行训练,且每个农村生活污水处理设施也均运行A2O工艺或含有A2O的组合工艺,所述运行数据包含不同时刻的所述五个运行状态参数和出水COD浓度。
作为优选,所述农村生活污水处理设施为A2O处理设施、A2O与人工湿地串联的处理设施或A2O与滤池串联的处理设施。
作为优选,所述电极需安装定期冲洗装置或人工定期冲洗,以维持上述电极探头清洁,同时需定期校正电极,维持上述电极读数准确。
第二方面,本发明提供了一种基于BP-ANN的农污设施COD处理效果预测装置,所述农污设施为运行A2O工艺或含有A2O的组合工艺的农村生活污水处理设施,其包括:
现场状态监测设备,包括安装于待预测农村生活污水处理设施进水端的电导电极、A2O工艺厌氧池中的ORP以及出水端的pH电极、电导电极和浊度电极,用于实时获取该农村生活污水处理设施中出水pH、进水电导、出水电导、A2O工艺厌氧池ORP和出水浊度五个运行状态参数的瞬时值;
信号传输系统,用于将现场状态监测设备获取到的五个运行状态参数数据实时发送至在线数据平台;
在线数据平台,平台中内嵌有经过训练的BP神经网络模型,用于以信号传输系统发送的五个运行状态参数作为输入层指标,输出农村生活污水处理设施的出水COD浓度的预测值。
第三方面,本发明提供了一种基于BP-ANN的农污设施COD处理效果预测在线数据平台,所述农污设施为运行A2O工艺或含有A2O的组合工艺的农村生活污水处理设施,其包括:
数据获取模块,用于获取待预测农村生活污水处理设施的五个运行状态参数,所述五个运行状态参数包括农村生活污水处理设施中出水pH、进水电导、出水电导、A2O工艺厌氧池ORP和出水浊度五个运行状态参数的瞬时值,分别由安装于待预测农村生活污水处理设施进水端的电导电极、A2O工艺厌氧池中的ORP以及出水端的pH电极、电导电极和浊度电极实时获取;
BP神经网络模块,其内置经过训练的BP神经网络模型,用于以所述五个运行状态参数作为输入层指标,对农村生活污水处理设施的出水COD浓度进行预测;
数据存储模块,用于存储数据获取模块和BP神经网络模块产生的数据,并对外提供数据查询和调用接口。
相对于现有技术而言,本发明采用pH电极、电导电极、ORP电极、浊度电极对工艺参数进行监测,通过物联网技术和人工智能技术,实现了农村生活污水处理设施中COD浓度的准确预测,大大降低了传统COD浓度检测所需的时间,提高了工艺运维的反应速度。本发明无需对氨氮进行检测,采用的均是高度商业化的成品电极,避免了氨氮传感器运维成本过高、检测实时性和准确性差的问题。
附图说明
图1为一种基于BP-ANN的农污设施COD处理效果预测方法及其装置;
图2为人工神经网络模型基础结构;
图3为本装置在A2O工艺类型中的安装情况;
图4为本装置在A2O+滤池工艺类型中的安装情况;
图5为本装置在A2O+人工湿地工艺类型中的安装情况;
图6为本装置对于不同工艺类型和不同农村生活污水处理设施的出水COD浓度预测效果。
图中附图标记:电导电极1,ORP电极2,出水浊度电极3,pH电极4,电导电极5,电控箱6,空气开关7,表头显示区域8,表头按键区域9,485和4G传输模块10,稳压器11,数据接收模块12,在线数据平台13,出水COD预测值14,输入层神经元15,隐藏层神经元16,输出层神经元17,进水池18,格栅池19,调节池20,厌氧池21,兼氧池22,好氧池23,滤池24,出水池25,机房26,人工湿地27。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步阐述和说明。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。
本发明构建了一种基于BP人工神经网络(BP-ANN)的农污设施COD处理效果预测装置,其中农污设施为运行A2O工艺或含有A2O的组合工艺的农村生活污水处理设施,该预测装置包括以下组成:
现场状态监测设备,包括安装于待预测农村生活污水处理设施进水端的电导电极、A2O工艺厌氧池中的ORP以及出水端的pH电极、电导电极和浊度电极,用于实时获取该农村生活污水处理设施中出水pH、进水电导、出水电导、A2O工艺厌氧池ORP和出水浊度五个运行状态参数的瞬时值;
信号传输系统,用于将现场状态监测设备获取到的五个运行状态参数数据实时发送至在线数据平台;
在线数据平台,平台中内嵌有经过训练的BP神经网络模型,用于以信号传输系统发送的五个运行状态参数作为输入层指标,输出农村生活污水处理设施的出水COD浓度的预测值。
上述现场状态监测设备中五个运行状态参数经由电极测量后,经过模数转换获得数字信号,再通过通信网络实时传输至在线数据平台。通信网络优选采用无线通信网络。在线数据平台为云平台或者监控端服务器,根据实际需求而定。
本发明的核心在于BP神经网络模型,其输入的指标体系为出水pH、进水电导、出水电导、A2O工艺厌氧池ORP和出水浊度五个运行状态参数的瞬时值,而输出为农村生活污水处理设施的出水COD浓度。相对于申请号为CN201910226953.2的在先申请,本发明中摒弃了氨氮指标,而是采用了均可通过高度商业化的成品电极检测的五个指标,其中特别的是加入了氧化还原电位(ORP)。经过申请人对A2O工艺的大量研究发现,ORP是农污设施内氧化物质和还原物质进行氧化还原反应的综合结果,可以反应水体的氧化还原能力。在生物处理系统中,可以利用ORP间接表示有机物的降解程度,ORP的变化与COD的降解程度密切相关。考虑到上述原因,同时出于降低设备成本考量,本发明在CN201910226953.2的基础上,精简输入型指标,同时添加ORP,最终形成上述五个运行状态参数作为人工神经网络的输入。相比于在先申请,优化后的指标体系与神经网络模型不仅适用于预测以A2O为处理工艺的农村生活污水处理设施出水COD浓度,同时还对A2O+人工湿地,A2O+滤池处理工艺的农村生活污水处理设施出水COD浓度也有良好的预测效果。
本发明在30个农村生活污水处理设施(涵盖24个A2O,5个A2O+人工湿地,1个A2O+滤池)内安装上述预测装置。本装置涵盖现场状态监测设备以及在线数据平台13。其中,现场状态监测设备通过调节池20内的电导电极1,厌氧池21内的ORP电极2,出水池25内的电导电极5,浊度电极3,pH电极4实时收集设施运行状态参数。电控箱6内的表头显示区域8与按键区域9负责显示上述运行状态参数。485模块和4G传输模块10负责将上述运行状态参数传输至在线数据平台13。考虑到农村地区电压不稳,易损伤仪器,本设备同时配备有稳压器11及空气开关7。在线数据平台13配备数据接收模块12接收来自现场状态监测设备的数据。在线数据平台13内嵌有已经过仿真及验证过的人工神经网络模型,可实现对设施出水COD浓度14的预测。本装置在A2O工艺类型、A2O+滤池工艺类型、A2O+人工湿地工艺类型中的安装情况分别参见图3、图4和图5所示。其中图示的三种污水处理系统都是A2O处理设施为基础的,A2O处理设施由进水池18、格栅池19、调节池20、厌氧池21、兼氧池22、好氧池23和出水池25连接而成。由于此处设置了调节池20,其中的水质更能代表A2O处理设施的进水水质,因此电导电极1安装于调节池20中,ORP电极2安装于厌氧池21中,出水浊度电极3、pH电极4、电导电极5均安装于出水池25中,现场状态监测设备中除了电极之外的设备安装于机房26中。图4和图5中的A2O处理设施后可以组合滤池24和人工湿地27。当然,在其他实施例中,若不设置调节池,也可以将进水的电导电极1安装于进水池18中。
在上述在线数据平台中,其核心模块可以概况为:
数据获取模块,用于获取待预测农村生活污水处理设施的五个运行状态参数,所述五个运行状态参数包括农村生活污水处理设施中出水pH、进水电导、出水电导、A2O工艺厌氧池ORP和出水浊度五个运行状态参数的瞬时值,分别由安装于待预测农村生活污水处理设施进水端的电导电极、A2O工艺厌氧池中的ORP以及出水端的pH电极、电导电极和浊度电极实时获取。
BP神经网络模块,其内置经过训练的BP神经网络模型,用于以所述五个运行状态参数作为输入层指标,对农村生活污水处理设施的出水COD浓度进行预测;
数据存储模块,用于存储数据获取模块和BP神经网络模块产生的数据,并对外提供数据查询和调用接口。
其中BP神经网络模块是整个在线数据平台的核心,其中的BP神经网络模型需要在嵌入平台之前进行训练,模型在训练时,最好采用不同农村生活污水处理设施的运行数据作为样本集进行训练,以扩大样本涵盖的普适性。且作为样本的每个农村生活污水处理设施也均运行A2O工艺或含有A2O的组合工艺,运行数据包含不同时刻的所述五个运行状态参数和出水COD浓度。本实施例中训练的具体做法如下:
通过现场状态监测设备定期记录30个设施运行状态参数瞬时值,并利用COD哈希试剂盒得到出水COD浓度实测值,累计收集得到99组数据(每组数据7个,涵盖五个运行状态参数与出水COD浓度实测值),选取62组数据建立仿真数据库,选取37组数据建立验证数据库。人工神经网络模型以BP神经网络核心建立而成。参见图2所示,整个模型涵盖输入层,隐藏层和输出层三层,其中,输入层有五个输入神经元15(对应五个运行状态参数),隐藏层有16个隐藏神经元16,输出层有1个输出神经元17(设施出水COD浓度预测值14)。以62组仿真数据库为基础,对BP神经网络进行训练以优化模型参数。模型确立后,将上述37组验证数据库内数据代入人工神经网络模型,得到设施出水COD浓度预测值14,比对实测值与预测值的误差,验证模型可靠性。
人工神经网络模型经仿真与验证后,其结果如下:
仿真阶段R2为0.79,均方根误差为15.31mg/L;验证阶段R2为0.71,均方根误差为25.71mg/L;总体R2为0.74,均方根误差为19.84mg/L。从COD实测预测对比图可以看出,出水COD预测浓度与实测值的变化趋势一致。
人工神经网络模型经仿真与验证后,即可用于进行COD浓度预测。预测过程中,BP神经网络内部的计算过程属于现有技术。为了便于理解,下面简述如下:
(1)参数均一化
Figure BDA0002873251250000061
Figure BDA0002873251250000062
Figure BDA0002873251250000063
Figure BDA0002873251250000064
Figure BDA0002873251250000065
上述EF_pH,IN_Conductivity,EF_Conductivity,Anaerobic_ORP,EF_Turbidity分别代表出水pH,进水电导率,出水电导率,厌氧池ORP,出水浊度五个参数,带有下标i的参数代表第i个设施归一化后的数值,带有下标ir的参数代表第i个设施测量值,带有下标min的参数代表该参数在数据库内的最小值,带有下标max的参数代表该参数在数据库内的最大值。
(2)人工神经网络运算
人工神经网络模型含有输入层,隐藏层,输出层三层结构。输入层神经元15为上述五个运行状态参数。输入层神经元15至隐藏层神经元16运算过程如下:
Figure BDA0002873251250000066
本方案的人工神经网络模型共涵盖16个隐藏层神经元16。上述w,j代表五个运行状态参数从输入层传至隐藏层的权重,Pj代表隐藏层神经元16连接阈值,F(x)为传递函数。
隐藏层神经元16至输出层神经元17运算过程如下。
Figure BDA0002873251250000071
上述vj表示第j个隐藏层神经元16传递至输出层神经元17时所被赋予的权重,Q为输出层神经元17连接阈值,F(x)为传递函数。
本实施方案中,水质指标单位分别为:COD浓度为mg/L,电导单位为us/cmORP单位为mV,浊度单位为NTU,pH无量纲。
图6为本实施例的仿真数据库和验证数据库在该BP神经网络模型中的出水COD浓度预测效果,结果表明该装置对于预测不同类型和不同农村生活污水处理设施出水COD浓度具有较高的可行性。
因此,在实际使用时,可以针对某一待预测的农污设施,安装上述现场状态监测设备,并将现场状态监测设备通过信号传输系统与在先数据平台建立通信连接。基于BP-ANN的农污设施COD处理效果预测方法如下:
S1:利用安装于待预测农村生活污水处理设施进水端的电导电极、A2O工艺厌氧池中的ORP以及出水端的pH电极、电导电极和浊度电极,实时获取该农村生活污水处理设施中出水pH、进水电导、出水电导、A2O工艺厌氧池ORP和出水浊度五个运行状态参数的瞬时值,并上传至在线数据平台。
S2:在线数据平台接收现场状态监测设备传输的五个运行状态参数的瞬时值后,以五个运行状态参数作为输入层指标,以出水COD浓度作为输出层指标,利用经过训练的BP神经网络模型对农村生活污水处理设施的出水COD浓度进行预测。
需要注意的是,考虑到农村生活污水中富含大量有机组分,易附着生物膜,从而影响电极读数,因此本装置人工定期冲洗以维持上述电极探头清洁。为维持上述电极读数精准,本装置应同时定期校正电极。本方案在实施过程中,每半月定期人工清洗电极。每两月定期校正电极,其中,ORP电极2、电导电极1和5、pH电极4采用标准液校正。电极的清洗与校正需考虑实际情况,有机组分含量较高,天气温度较高易生长生物膜的区域,建议安装安装冲洗装置定期重启。
另外,在使用过程中,在线数据平台内嵌的人工神经网络模型可后期替换,平台内置的人工神经网络模型也需要进行定期校正。即人工神经网络模型经过仿真与验证后,需定期通过上述验证方法确定本装置在使用过程中的可靠性,若准确性降低则需要重新进行训练。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (10)

1.一种基于BP-ANN的农污设施COD处理效果预测方法,所述农污设施为运行A2O工艺或含有A2O的组合工艺的农村生活污水处理设施,其特征在于,步骤如下:
S1:利用安装于待预测农村生活污水处理设施进水端的电导电极、A2O工艺厌氧池中的ORP电极以及出水端的pH电极、电导电极和浊度电极,实时获取该农村生活污水处理设施中出水pH、进水电导、出水电导、A2O工艺厌氧池ORP电极和出水浊度五个运行状态参数的瞬时值,并上传至在线数据平台;
S2:在线数据平台接收现场状态监测设备传输的五个运行状态参数的瞬时值后,以五个运行状态参数作为输入层指标,以出水COD浓度作为输出层指标,利用经过训练的BP神经网络模型对农村生活污水处理设施的出水COD浓度进行预测。
2.如权利要求1所述的基于BP-ANN的农污设施COD处理效果预测方法,其特征在于,所述的BP神经网络模型包括输入层、隐藏层和输出层,输入层有5个输入神经元,分别对应五个运行状态参数,隐藏层有16个隐藏神经元,输出层有1个输出神经元,对应预测的出水COD浓度。
3.如权利要求1所述的基于BP-ANN的农污设施COD处理效果预测方法,其特征在于,所述的五个运行状态参数经由电极测量后,经过模数转换获得数字信号,再通过通信网络实时传输至在线数据平台。
4.如权利要求3所述的基于BP-ANN的农污设施COD处理效果预测方法,其特征在于,所述的通信网络为无线通信网络。
5.如权利要求1所述的基于BP-ANN的农污设施COD处理效果预测方法,其特征在于,所述的在线数据平台为云平台或者监控端服务器。
6.如权利要求1所述的基于BP-ANN的农污设施COD处理效果预测方法,其特征在于,所述在线数据平台内置的BP神经网络模型在训练时,采用不同农村生活污水处理设施的运行数据作为样本集进行训练,且每个农村生活污水处理设施也均运行A2O工艺或含有A2O的组合工艺,所述运行数据包含不同时刻的所述五个运行状态参数和出水COD浓度。
7.如权利要求1所述的基于BP-ANN的农污设施COD处理效果预测方法,其特征在于,所述农村生活污水处理设施为A2O处理设施、A2O与人工湿地串联的处理设施或A2O与滤池串联的处理设施。
8.如权利要求1所述的基于BP-ANN的农污设施COD处理效果预测方法,其特征在于,所述电极需安装定期冲洗装置或人工定期冲洗,以维持上述电极探头清洁,同时需定期校正电极,维持上述电极读数准确。
9.一种基于BP-ANN的农污设施COD处理效果预测装置,所述农污设施为运行A2O工艺或含有A2O的组合工艺的农村生活污水处理设施,其特征在于,包括:
现场状态监测设备,包括安装于待预测农村生活污水处理设施进水端的电导电极、A2O工艺厌氧池中的ORP电极以及出水端的pH电极、电导电极和浊度电极,用于实时获取该农村生活污水处理设施中出水pH、进水电导、出水电导、A2O工艺厌氧池ORP电极和出水浊度五个运行状态参数的瞬时值;
信号传输系统,用于将现场状态监测设备获取到的五个运行状态参数数据实时发送至在线数据平台;
在线数据平台,平台中内嵌有经过训练的BP神经网络模型,用于以信号传输系统发送的五个运行状态参数作为输入层指标,输出农村生活污水处理设施的出水COD浓度的预测值。
10.一种基于BP-ANN的农污设施COD处理效果预测在线数据平台,所述农污设施为运行A2O工艺或含有A2O的组合工艺的农村生活污水处理设施,其特征在于,包括:
数据获取模块,用于获取待预测农村生活污水处理设施的五个运行状态参数,所述五个运行状态参数包括农村生活污水处理设施中出水pH、进水电导、出水电导、A2O工艺厌氧池ORP电极和出水浊度五个运行状态参数的瞬时值,分别由安装于待预测农村生活污水处理设施进水端的电导电极、A2O工艺厌氧池中的ORP电极以及出水端的pH电极、电导电极和浊度电极实时获取;
BP神经网络模块,其内置经过训练的BP神经网络模型,用于以所述五个运行状态参数作为输入层指标,对农村生活污水处理设施的出水COD浓度进行预测;
数据存储模块,用于存储数据获取模块和BP神经网络模块产生的数据,并对外提供数据查询和调用接口。
CN202011612416.0A 2020-12-30 2020-12-30 基于bp-ann的农污设施cod处理效果预测方法、装置、平台 Active CN112707508B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011612416.0A CN112707508B (zh) 2020-12-30 2020-12-30 基于bp-ann的农污设施cod处理效果预测方法、装置、平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011612416.0A CN112707508B (zh) 2020-12-30 2020-12-30 基于bp-ann的农污设施cod处理效果预测方法、装置、平台

Publications (2)

Publication Number Publication Date
CN112707508A CN112707508A (zh) 2021-04-27
CN112707508B true CN112707508B (zh) 2022-04-05

Family

ID=75547315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011612416.0A Active CN112707508B (zh) 2020-12-30 2020-12-30 基于bp-ann的农污设施cod处理效果预测方法、装置、平台

Country Status (1)

Country Link
CN (1) CN112707508B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113233715A (zh) * 2021-06-07 2021-08-10 王德仓 一种基于神经网络控制的城市污水处理设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101923083B (zh) * 2009-06-17 2013-04-10 复旦大学 基于支持向量机和神经网络的污水化学需氧量软测量方法
CN102122134A (zh) * 2011-02-14 2011-07-13 华南理工大学 基于模糊神经网络的溶解氧控制的废水处理方法及系统
CN102854296B (zh) * 2012-08-30 2015-03-11 北京工业大学 一种基于集成神经网络的污水处理软测量方法
CN109975366B (zh) * 2019-03-25 2020-08-14 浙江大学 农村生活污水a2o处理终端出水cod浓度软测量方法及装置

Also Published As

Publication number Publication date
CN112707508A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
CN112784476B (zh) 不同工艺类型农污处理设施出水氨氮软测量方法及装置
CN112786119B (zh) 多工艺类型农污设施tn处理效果预测方法、装置、介质
CN108896706B (zh) 大数据驱动的恶臭气体多点集中式电子鼻仪器在线分析方法
CN111553468A (zh) 一种准确预测污水处理厂出水水质的方法
CN112782232B (zh) 基于人工神经网络的农污设施出水总磷软测量方法及装置
CN109975366B (zh) 农村生活污水a2o处理终端出水cod浓度软测量方法及装置
CN114047719A (zh) 一种农村生活污水处理设施远程监测评估系统与运行方法
CN107402586A (zh) 基于深度神经网络的溶解氧浓度控制方法及系统
KR100483580B1 (ko) 미생물연료전지를 이용한 수질 내 독극물 감지 장치
AU2020101377A4 (en) A process and device for on-line detection of chemical oxygen demand (cod) and biological oxygen demand (bod) in water
CN111579618A (zh) 基于微生物燃料电池的生化需氧量在线自动检测系统及方法
CN112707508B (zh) 基于bp-ann的农污设施cod处理效果预测方法、装置、平台
CN112964843A (zh) 污水处理设施水质监测的物联网传感器系统及监测方法
CN114839343B (zh) 一种便携式水质监测巡检仪装置及使用方法
CN115078667A (zh) 一种基于物联网技术的工业污水排放处理在线监测分析预警系统
CN110222916B (zh) 农村生活污水a2o处理终端出水总氮浓度软测量方法及装置
CN117164103A (zh) 生活污水处理系统的智能控制方法、终端及系统
CN114149076B (zh) 一种厌氧氨氧化污水处理系统的智能调试系统
CN115372447A (zh) 一种监测水质的快速方法
CN110619488A (zh) 一种评价二次供水水箱清洁状况的方法
CN115754207A (zh) 一种污水生物处理工艺模拟仿真方法和系统
CN202204535U (zh) 水质自动检测装置
JP2001027634A (ja) 水質監視システム
CN117236893B (zh) 一种基于农业物联网平台大数据应用于生产管控的系统
CN115859770B (zh) 基于ga和ffnn的生活污水粪大肠菌群在线监测系统和装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant