CN112701331B - 一种氢燃料电池系统测试过程中电堆性能的评判方法 - Google Patents

一种氢燃料电池系统测试过程中电堆性能的评判方法 Download PDF

Info

Publication number
CN112701331B
CN112701331B CN202011535788.8A CN202011535788A CN112701331B CN 112701331 B CN112701331 B CN 112701331B CN 202011535788 A CN202011535788 A CN 202011535788A CN 112701331 B CN112701331 B CN 112701331B
Authority
CN
China
Prior art keywords
value
fuel cell
hydrogen
air
cell stack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011535788.8A
Other languages
English (en)
Other versions
CN112701331A (zh
Inventor
李昌泉
郝义国
魏永琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grove Hydrogen Energy Technology Group Co ltd
Original Assignee
Wuhan Grove Hydrogen Energy Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Grove Hydrogen Energy Automobile Co Ltd filed Critical Wuhan Grove Hydrogen Energy Automobile Co Ltd
Priority to CN202011535788.8A priority Critical patent/CN112701331B/zh
Publication of CN112701331A publication Critical patent/CN112701331A/zh
Application granted granted Critical
Publication of CN112701331B publication Critical patent/CN112701331B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04417Pressure; Ambient pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04567Voltage of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供一种氢燃料电池系统测试过程中电堆性能的评判方法,步骤如下:采集燃料电池电堆的所有单片电压值,获得单片电压的最高值和最低值,并发送给燃料电池系统控制单元;分别检测燃料电池电堆的氢气参数值、空气参数值和冷却液参数值,并发送给燃料电池系统控制单元;所述燃料电池系统控制单元将单片电压的最高值、单片电压的最低值、燃料电池电堆的氢气参数值、空气参数值和冷却液参数值发送给上位机;所述上位机判断单片电压的最高值是否超过U以及单片电压的最高值和最低值的差值是否超过ΔU,若超过,则调控燃料电池电堆的氢气参数值、空气参数值和冷却液参数值,直至单片电压的最高值不超过U、差值不超过ΔU。

Description

一种氢燃料电池系统测试过程中电堆性能的评判方法
技术领域
本发明涉及氢燃料电池技术领域,尤其涉及一种氢燃料电池系统测试过程中电堆性能的评判方法。
背景技术
一般地,对于燃料电池电堆运行性能的研究,最为依靠的就是对燃料电池电堆各单片电压的电压值的监测,根据极化曲线比对当前燃料电池电堆的输出电流所对应的单片电压值与实际单片监测值进行相应的核对,如果两者相差的数值在±10mv以内,则燃料电池在一个较为合适的运行环境下,并且最高单体的电压值与最低单体的电压值在一个稳定的范围内,则说明多项参数较为可靠。
燃料电池系统的测试是一个较为复杂的过程,对于燃料电池电堆性能的研究涉及到多个参数,同时也代表着燃料电池是一个非线性的系统。而燃料电池系统的正确性的评判最主要依靠当前燃料电池各单体的输出电压值和压差范围。
燃料电池电堆是以氢气和氧气为原料,并且相应的输出电流对应相应的空气流量和氢气流量。
燃料电池的氢气流量、空气流量和压力值有着较强的耦合性,在满足当前电堆电流输出的情况下,氢气压强大于空气压力不能超过40Kpa,较大的压力差会对燃料电池膜造成不可挽回的损坏。
燃料电池冷却液的温度的高低也严重影响着燃料电池电堆的输出特性,过高,会造成催化剂的脱落;过低,会造成燃料电池电堆输出效率的降低。所以燃料电池的冷却液的温度要在一稳定范围内。
空气和氢气的相对湿度大小会影响到燃料电池内部的阻值的大小。而相较于氢气湿度,空气湿度的控制更为重要,在阴极侧不仅有氧气的消耗,还有水的产生。空气湿度较高,会发生堆内积水;过低会造成膜变干,降低燃料电池电堆的使用寿命。
发明内容
有鉴于此,本发明提供了一种氢燃料电池系统测试过程中电堆性能的评判方法。
本发明提供一种氢燃料电池系统测试过程中电堆性能的评判方法,包括以下步骤:
S1,利用燃料电池单片电压巡检仪采集燃料电池电堆的所有单片电压值,获得单片电压的最高值和最低值,并将单片电压的最高值和最低值发送给燃料电池系统控制单元;
S2,分别检测燃料电池电堆的氢气参数值、空气参数值和冷却液参数值,并将燃料电池电堆的氢气参数值、空气参数值和冷却液参数值发送给燃料电池系统控制单元;
S3,所述燃料电池系统控制单元将单片电压的最高值、单片电压的最低值、燃料电池电堆的氢气参数值、空气参数值和冷却液参数值发送给上位机;
S4,所述上位机判断单片电压的最高值是否超过U以及单片电压的最高值和最低值的差值是否超过ΔU,若所述单片电压的最高值超过U以及单片电压的最高值和最低值的差值超过ΔU,则所述上位机发送信号给燃料电池系统控制单元,所述燃料电池系统控制单元接收到信号后调控燃料电池电堆的氢气参数值、空气参数值和冷却液参数值,直至单片电压的最高值不超过U、单片电压的最高值和最低值的差值不超过ΔU。
进一步地,所述氢气参数值包括氢气流量值和氢气压力值,所述空气参数值包括空气流量值、空气压力值、空气温度值和空气湿度值,所述冷却液参数值包括冷却液进堆温度值和冷却液出堆温度值。
进一步地,U的取值为800mv,ΔU的取值为25mv。
进一步地,根据当前燃料电池电堆的输出电流值所需要的氢气流量设定进入燃料电池电堆的氢气压力值。
进一步地,空气湿度值的范围控制在70%-85%。
进一步地,进入燃料电池电堆的空气压力值小于等于当前燃料电池电堆所需要的进入燃料电池电堆的氢气压力值。
进一步地,进入燃料电池电堆的空气温度值应低于冷却液进堆温度值。
本发明提供的技术方案带来的有益效果是:本发明提供的评判方法在燃料电池系统的测试过程中,严格监控燃料电池电堆的单体电压在电流拉载过程中最高值不得超过800mv,并监控燃料电池电堆的单片电压的最高值和最低值的差值不得超过25mv,在满足当前电流所需氢气和空气流量的前提下,确保氢气与空气压强差、冷却液进堆和出堆温度、温度差、空气的相对湿度均在一个合理的范围。
附图说明
图1是本发明一种氢燃料电池系统测试过程中电堆性能的评判方法的流程示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
请参考图1,本发明的实施例提供了一种氢燃料电池系统测试过程中电堆性能的评判方法,包括以下步骤:
步骤S1,利用燃料电池单片电压巡检仪采集燃料电池电堆的所有单片电压值,获得单片电压的最高值和最低值,并将单片电压的最高值和最低值发送给燃料电池系统控制单元;
步骤S2,利用相应的传感器分别检测燃料电池电堆的氢气流量值(由氢气流量传感器测量)、氢气压力值(由氢气压力传感器测量)、空气流量值(由空气流量传感器测量)、空气压力值(由空气压力传感器测量)、空气温度值(由空气温度传感器测量)、空气湿度值(由空气湿度传感器测量)、冷却液进堆温度值(由设置在冷却液进堆处的冷却液温度传感器测量)和冷却液出堆温度值(由设置在冷却液出堆处的冷却液温度传感器测量),并将燃料电池电堆的氢气流量值、氢气压力值、空气流量值、空气压力值、空气温度值、空气湿度值、冷却液进堆温度值和冷却液出堆温度值发送给燃料电池系统控制单元;
步骤S3,燃料电池系统控制单元将单片电压的最高值、单片电压的最低值、燃料电池电堆的氢气流量值、氢气压力值、空气流量值、空气压力值、空气温度值、空气湿度值、冷却液进堆温度值和冷却液出堆温度值发送给上位机;
步骤S4,上位机判断单片电压的最高值是否超过800mv以及单片电压的最高值和最低值的差值是否超过25mv,若单片电压的最高值超过800mv以及单片电压的最高值和最低值的差值超过25mv,则上位机发送信号给燃料电池系统控制单元,燃料电池系统控制单元接收到信号后调控燃料电池电堆的氢气流量值、氢气压力值、空气流量值、空气压力值、空气温度值、空气湿度值、冷却液进堆温度值和冷却液出堆温度值,直至单片电压的最高值不超过800mv、单片电压的最高值和最低值的差值不超过25mv。
其中,根据当前燃料电池电堆的输出电流值所需要的氢气流量设定进入燃料电池电堆的氢气压力值,在满足氢气进气流量的同时,氢气目标压强尽可能与空气入口压力值相等。氢气目标流量m的计算公式为:
Figure BDA0002853036420000051
式中,λan为氢气过量系数;Ncells为燃料电池电堆单体数量;Ist为燃料电池电堆的输出电流。
空气湿度值的范围控制在70%-85%。
空气流量值在满足当前燃料电堆输出电流所需要的空气流量和燃料电池电堆开路电压(燃料电池电堆开路电压根据电堆规格设定,当大于或等于设定的燃料电池电堆开路电压值时,进行DC使能和加载)的前提下,不能超过所需要流量值的10%,以降低空压机的功耗。
进入燃料电池电堆的空气压力值小于等于当前燃料电池电堆所需要的进入燃料电池电堆的氢气压力值。
在燃料电池电堆的起始期间,要尽可能的将冷却液出堆温度值上升到50℃以上,当在燃料电池电堆的正常加载过程中,冷却液出堆温度值要控制在75℃左右,当燃料电池电堆输出功率达到45KW以上时,冷却液出堆温度值最高不超过80℃,并且燃料电池系统在测试过程中,冷却液出堆温度值、冷却液进堆温度值不能超过10℃。
进入燃料电池电堆的空气温度值需要低于冷却液进堆温度值。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种氢燃料电池系统测试过程中电堆性能的评判方法,其特征在于,包括以下步骤:
S1,利用燃料电池单片电压巡检仪采集燃料电池电堆的所有单片电压值,获得单片电压的最高值和最低值,并将单片电压的最高值和最低值发送给燃料电池系统控制单元;
S2,分别检测燃料电池电堆的氢气参数值、空气参数值和冷却液参数值,并将燃料电池电堆的氢气参数值、空气参数值和冷却液参数值发送给燃料电池系统控制单元;
S3,所述燃料电池系统控制单元将单片电压的最高值、单片电压的最低值、燃料电池电堆的氢气参数值、空气参数值和冷却液参数值发送给上位机;
S4,所述上位机判断单片电压的最高值是否超过800mv以及单片电压的最高值和最低值的差值是否超过25mv,若所述单片电压的最高值超过800mv以及单片电压的最高值和最低值的差值超过25mv,则所述上位机发送信号给燃料电池系统控制单元,所述燃料电池系统控制单元接收到信号后调控燃料电池电堆的氢气参数值、空气参数值和冷却液参数值,直至单片电压的最高值不超过800mv、单片电压的最高值和最低值的差值不超过25mv。
2.根据权利要求1所述的氢燃料电池系统测试过程中电堆性能的评判方法,其特征在于,所述氢气参数值包括氢气流量值和氢气压力值,所述空气参数值包括空气流量值、空气压力值、空气温度值和空气湿度值,所述冷却液参数值包括冷却液进堆温度值和冷却液出堆温度值。
3.根据权利要求1所述的氢燃料电池系统测试过程中电堆性能的评判方法,其特征在于,根据当前燃料电池电堆的输出电流值所需要的氢气流量设定进入燃料电池电堆的氢气压力值。
4.根据权利要求1所述的氢燃料电池系统测试过程中电堆性能的评判方法,其特征在于,空气湿度值的范围控制在70%-85%。
5.根据权利要求1所述的氢燃料电池系统测试过程中电堆性能的评判方法,其特征在于,进入燃料电池电堆的空气压力值小于等于当前燃料电池电堆所需要的进入燃料电池电堆的氢气压力值。
6.根据权利要求1所述的氢燃料电池系统测试过程中电堆性能的评判方法,其特征在于,进入燃料电池电堆的空气温度值低于冷却液进堆温度值。
CN202011535788.8A 2020-12-23 2020-12-23 一种氢燃料电池系统测试过程中电堆性能的评判方法 Active CN112701331B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011535788.8A CN112701331B (zh) 2020-12-23 2020-12-23 一种氢燃料电池系统测试过程中电堆性能的评判方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011535788.8A CN112701331B (zh) 2020-12-23 2020-12-23 一种氢燃料电池系统测试过程中电堆性能的评判方法

Publications (2)

Publication Number Publication Date
CN112701331A CN112701331A (zh) 2021-04-23
CN112701331B true CN112701331B (zh) 2022-11-22

Family

ID=75510970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011535788.8A Active CN112701331B (zh) 2020-12-23 2020-12-23 一种氢燃料电池系统测试过程中电堆性能的评判方法

Country Status (1)

Country Link
CN (1) CN112701331B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113970412A (zh) * 2021-10-21 2022-01-25 上海捷氢科技有限公司 一种燃料电池的开路状态检测装置及方法
CN114243065A (zh) * 2021-12-20 2022-03-25 重庆地大工业技术研究院有限公司 燃料电池系统额定工况点气体反应物供给压力的修正方法
CN115000456A (zh) * 2022-05-12 2022-09-02 亿创氢能源科技(张家港)有限公司 一种燃料电池系统中电堆短路试验方法
CN114843559B (zh) * 2022-05-17 2024-01-02 成都亿华通动力科技有限公司 一种氢气不纯导致燃料电池单低的诊断方法及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8057941B2 (en) * 2007-06-15 2011-11-15 GM Global Technology Operations LLC Comprehensive method for triggering anode bleed events in a fuel cell system
JP6725449B2 (ja) * 2017-04-10 2020-07-15 株式会社Soken 燃料電池システム
US10634727B2 (en) * 2017-11-29 2020-04-28 GM Global Technology Operations LLC Fuel cell stack cell voltage sensor diagnostic
CN110970642B (zh) * 2019-07-29 2021-07-27 北京亿华通科技股份有限公司 一种燃料电池的空气系统控制方法
CN112086666A (zh) * 2020-09-18 2020-12-15 全球能源互联网研究院有限公司 一种燃料电池发电系统的控制方法及控制系统

Also Published As

Publication number Publication date
CN112701331A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
CN112701331B (zh) 一种氢燃料电池系统测试过程中电堆性能的评判方法
CN111082093B (zh) 一种氢燃料电池电堆耐久性测试系统及方法
US7354668B2 (en) Operation state determining apparatus and method for fuel cell
US9905869B2 (en) Fuel cell system and method of controlling the same
CN111029624B (zh) 在线监控和恢复燃料电池水状态的系统及方法
JP2000243418A (ja) 燃料電池システム
US20020081466A1 (en) Technique to regulate an efficiency of a fuel cell system
CN102347502B (zh) 具有按优先顺序仲裁的堆供电的燃料电池监测装置
CN113782778B (zh) 基于定频阻抗和气体压降的电堆水管理调控方法及装置
CN114914488B (zh) 一种燃料电池缺氢检测与诊断方法
US20110151347A1 (en) Fuel cell system and fuel cell status detection method
JP4852854B2 (ja) 燃料電池システム
CN112582652B (zh) 一种监测质子交换膜燃料电池反极程度的方法
CA2508517A1 (en) Method and apparatus for monitoring fuel cell voltages
US9853312B2 (en) Method for determining membrane protonic resistance of a fuel cell stack
JP4876368B2 (ja) 燃料電池システムの運転制御
US11476479B2 (en) Fuel cell system and method for determining fuel cell stack reusability
US20110318663A1 (en) Stack cathode inlet rh (relative humidity) control without rh sensing device feedback
JP4945882B2 (ja) 燃料電池の性能解析方法
CN109461953B (zh) 一种钒电池电堆内电解液分布情况的测试方法及装置
CN116344874B (zh) 一种燃料电池的电堆状态的判断方法、优化方法及应用
CN115632141B (zh) 车载燃料电池电堆自增湿控制方法及车辆
CN116995273B (zh) 一种大功率燃料电池系统含水状态检测方法及装置
CN112909300B (zh) 一种燃料电池停机吹扫的判定方法
CN218975488U (zh) 一种用于限制燃料电池高电位的控制系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 430000 Building 1, No. 99, Weilai Third Road, Donghu New Technology Development Zone, Wuhan City, Hubei Province

Patentee after: Grove Hydrogen Energy Technology Group Co.,Ltd.

Address before: 430000 Building 1, No. 99, Weilai Third Road, Donghu New Technology Development Zone, Wuhan City, Hubei Province

Patentee before: WUHAN LUOGEFU HYDROGEN ENERGY AUTOMOBILE Co.,Ltd.

CP03 Change of name, title or address
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method for evaluating the performance of fuel cell stacks during the testing process of hydrogen fuel cell systems

Granted publication date: 20221122

Pledgee: Jinan Luneng Kaiyuan Group Co.,Ltd.

Pledgor: Grove Hydrogen Energy Technology Group Co.,Ltd.

Registration number: Y2024980009137

PE01 Entry into force of the registration of the contract for pledge of patent right