CN112699433A - 一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法 - Google Patents

一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法 Download PDF

Info

Publication number
CN112699433A
CN112699433A CN202011280562.8A CN202011280562A CN112699433A CN 112699433 A CN112699433 A CN 112699433A CN 202011280562 A CN202011280562 A CN 202011280562A CN 112699433 A CN112699433 A CN 112699433A
Authority
CN
China
Prior art keywords
model
unit
fuel assembly
nuclear reactor
classification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011280562.8A
Other languages
English (en)
Inventor
李鹏
代成栋
张德春
周跃民
郭严
杨翊仁
刘欢
杨钰莹
李伟才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN202011280562.8A priority Critical patent/CN112699433A/zh
Publication of CN112699433A publication Critical patent/CN112699433A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Algebra (AREA)
  • Computing Systems (AREA)
  • Fluid Mechanics (AREA)
  • Mathematical Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本发明具体涉及一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于包括如下步骤:步骤1.对组件整体依据结构的局部和各部件的运动特征进行分类;步骤2.将步骤1中得到的多种结构类型根据分类进行组合;步骤3.对步骤2中得到的组合进行分类设计;步骤4.总结出组件建模的特点,梳理出其中两类重复的两类基本子结构,分别针对这两类结构发展相应的两类组合单元类型;步骤5.将步骤4中涉及到的两类组合单元类型分为用于模拟可以发生横向振动组件各根组件模型的第一类组合单元有限元模型和用于模拟计算组件外侧的围板的第二类组合单元有限元模型。

Description

一种用于核反应堆燃料组件抗震分析建模子结构类型进行分 类的方法
技术领域
本发明属于新型能源电力生产领域,涉及核反应燃料组件抗震设计分析领域,具体涉及一种用于核反应堆燃料组件抗震分析的新型建模方法。
背景技术
核能作为清洁、高效和安全的绿色能源,具有储量丰富、能量密集度高、低碳无污染的优点,受到各国的极大重视。实现核电技术的完全自主研发,必定需要有完备的基础理论研究予以支撑。针对核电结构中的基础理论问题尤其是基础的力学问题进行研究,并以此储备核电设计技术,对新一代反应堆的自主设计和发展至关重要。
燃料组件是反应堆内的重要部件。压水堆燃料组件的设计准则要求:在极限的事故工况下,如地震及冷却剂丧失工况,燃料组件应保持结构完整,确保堆芯可冷却;燃料组件的横向变形应不影响控制棒组件的插入和反应堆的安全停堆。因此燃料组件在正常运行和事故工况下的结构动力学特性将影响燃料组件的结构完整性,并直接影响反应堆运行的安全性和可靠性。反应堆燃料组件事故工况下的安全性已被各国列为重点安全审查项目,各核能设计机构都需要具备有相应自主开发的计算软件。针对燃料组件事故工况安全评估主要包括计算分析及实验验证两个方面,两者相辅相成互为支撑。横向计算分析在整个设计阶段起着重要作用,可以为燃料组件模型的设计、修改提供所需要的计算数据支持。现阶段针对燃料组件的计算分析主要借助于专用软件及商业软件进行,主要的计算模型可以分为:单个燃料组件横向详细模型、横向简化模型、横向碰撞模型及一排多个燃料组件的抗震计算分析模型,以下简称组件抗震模型,如图1所示。抗震模型的计算分析效率则强烈依赖于多个组件的建模方式。
目前组件抗震模型主要是将多个组件依次排列成一排而获得。各个组件之间依靠上下管座、围板边界条件及非线性碰撞力相互耦合。采用有限元方法对全部 15个组件进行“全结构”式的离散,如图2所示,通过施加边界条件而获得系统的运动微分方程组。考虑地震等极限工况下的等效外部激励,采用比例阻尼或者模态阻尼的施加系统阻尼,通过直接积分求解该微分方程组获得系统的响应。由于系统中含有碰撞等强非线性环节,需要采用较小的计算时间步进行内外交替迭代求解才能保证结果的收敛性,这显然要以牺牲计算效率为代价。
目前组件抗震模型主要采用繁琐的“全结构”式建模方法,该建模方式存在以下明显的缺陷和不足:
①“全结构”的建模方式未考虑燃料组件结构的自相似特征,建模过程复杂,建模成本高;
②“全结构”的建模方式会导致高维强非线性的求解效率和计算精度低的问题;
③“全结构”的建模方式需要一次性建立全部结构的模型,不适合复杂工况的计算,复杂工况下的计算效率普遍偏低。
发明内容
针对上述现有技术中忽略组件结构存在的“自相似”特征而普遍采用“全结构”式的建模方式而导致建模过程繁复、建模效率低、适用性差、计算效率和计算精度差的问题,本发明充分利用了组件结构的局部特征,发展“子结构”式的建模策略,提出了核反应堆燃料组件抗震分析的建模新方法。
本发明提出的一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于包括如下步骤:
步骤1.对组件整体依据结构的局部和各部件的运动特征进行分类;
步骤2.将步骤1中得到的多种结构类型根据分类进行组合;
步骤3.对步骤2中得到的组合进行分类设计;
步骤4.总结出组件建模的特点,梳理出其中两类重复的两类基本子结构,分别针对这两类结构发展相应的两类组合单元类型;
步骤5.将步骤4中涉及到的两类组合单元类型分为用于模拟可以发生横向振动组件各根组件模型的第一类组合单元有限元模型和用于模拟计算组件外侧的围板的第二类组合单元有限元模型。
所述第一类复合型单元模型包括:梁单元模型、非线性弹性单元模型、线性弹性单元模型和,所述梁单元模型和非线性弹性单元模型为线性弹性单元和间隙单元组合而成。
所述第二类组合单元模型包括:非线性弹性单元模型,其由线性弹性单元和间隙单元组合而成;附加流体质量单元模型。
所述子结构类型包括固定不可发生横向振动的围板结构和可发生横向振动的单根组件结构。
所述梁单元模型、弹簧单元模型、非线性弹簧单元模型和附加流体质量单元的模型基础参数可以根据需求进行修改。
所述梁单元模型包括二维欧拉伯努利有限元梁模型、考虑剪切效应的有限元梁模型和轴向变形的有限元梁模型。
所述弹簧单元为线性弹簧约束的线性弹簧单元模型,其特征在于所述线性弹簧单元用于约束相邻两个节点的位移。
所述非线性弹簧单元由线性弹簧单元模型及间隙单元模型依靠端部节点的位移相耦合组合而成,所述非线性弹簧单元模型同时具备线性弹簧单元和间隙单元的作用。
所述附加流体质量单元模型包括流体附加质量影响系数。
所述系数为外部输入系数,程序内部不计算,只是读取后用于生成流体单元,该系数由其他软件计算而得到。
本发明的有益效果:
1.本发明由于采用“子结构”式的建模方式,会大大降低计算量,提高计算效率。
2.本发明建模方式考虑结构局燃料组件的自相似特征,建模过程简单,建模成本低。
3.本发明不会导致高维强非线性的求解效率问题,提升了求解效率,增加了计算精度。
4.本发明不需要一次性建立全部结构的模型,适合复杂工况的计算,复杂工况下的计算效率高。
附图说明
图1为压水堆及堆内燃料组件示意图;
图2为“全结构”建模方式建立的燃料组件横向排列模型示意图;
图3为两类基本子结构单元---组合类示意图;
图4为有限元派生类示意图;
图5为各个子结构之间的力传递示意图;
图6为各个子结构之间的拼接方式示意图;
图7为子结构振动之间的与预估校正迭代格式的流程图。
具体实施方式:
实施例1:
一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于包括如下步骤:
步骤1.对组件整体依据结构的局部和各部件的运动特征进行分类;
步骤2.将步骤1中得到的多种结构类型根据分类进行组合;
步骤3.对步骤2中得到的组合进行分类设计;
步骤4.总结出组件建模的特点,梳理出其中两类重复的两类基本子结构,分别针对这两类结构发展相应的两类组合单元类型;
步骤5.将步骤4中涉及到的两类组合单元类型分为用于模拟可以发生横向振动组件各根组件模型的第一类组合单元有限元模型和用于模拟计算组件外侧的围板的第二类组合单元有限元模型。
实施例2:
一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于包括如下步骤:
步骤1.对组件整体依据结构的局部和各部件的运动特征进行分类;
步骤2.将步骤1中得到的多种结构类型根据分类进行组合;
步骤3.对步骤2中得到的组合进行分类设计;
步骤4.总结出组件建模的特点,梳理出其中两类重复的两类基本子结构,分别针对这两类结构发展相应的两类组合单元类型;
步骤5.将步骤4中涉及到的两类组合单元类型分为用于模拟可以发生横向振动组件各根组件模型的第一类组合单元有限元模型和用于模拟计算组件外侧的围板的第二类组合单元有限元模型。
所述第一类复合型单元模型包括:梁单元模型、非线性弹性单元模型、线性弹性单元模型和,所述梁单元模型和非线性弹性单元模型为线性弹性单元和间隙单元组合而成。
所述第二类组合单元模型包括:非线性弹性单元模型,其由线性弹性单元和间隙单元组合而成;附加流体质量单元模型。
所述子结构类型包括固定不可发生横向振动的围板结构和可发生横向振动的单根组件结构。
所述梁单元模型、弹簧单元模型、非线性弹簧单元模型和附加流体质量单元的模型基础参数可以根据需求进行修改。
所述非线性弹簧单元由线性弹簧单元模型及间隙单元模型依靠端部节点的位移相耦合组合而成,所述非线性弹簧单元模型同时具备线性弹簧单元和间隙单元的作用。
所述附加流体质量单元模型包括流体附加质量影响系数。
所述系数为外部输入系数,程序内部不计算,只是读取后用于生成流体单元,该系数由其他软件计算而得到。
实施例3:
一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于包括如下步骤:
步骤1.对组件整体依据结构的局部和各部件的运动特征进行分类;
步骤2.将步骤1中得到的多种结构类型根据分类进行组合;
步骤3.对步骤2中得到的组合进行分类设计;
步骤4.总结出组件建模的特点,梳理出其中两类重复的两类基本子结构,分别针对这两类结构发展相应的两类组合单元类型;
步骤5.将步骤4中涉及到的两类组合单元类型分为用于模拟可以发生横向振动组件各根组件模型的第一类组合单元有限元模型和用于模拟计算组件外侧的围板的第二类组合单元有限元模型。
所述第一类复合型单元模型包括:梁单元模型、非线性弹性单元模型、线性弹性单元模型和,所述梁单元模型和非线性弹性单元模型为线性弹性单元和间隙单元组合而成。
所述第二类组合单元模型包括:非线性弹性单元模型,其由线性弹性单元和间隙单元组合而成;附加流体质量单元模型。
所述子结构类型包括固定不可发生横向振动的围板结构和可发生横向振动的单根组件结构。
所述梁单元模型、弹簧单元模型、非线性弹簧单元模型和附加流体质量单元的模型基础参数可以根据需求进行修改。
所述梁单元模型包括二维欧拉伯努利有限元梁模型、考虑剪切效应的有限元梁模型和轴向变形的有限元梁模型。
所述弹簧单元为线性弹簧约束的线性弹簧单元模型,其特征在于所述线性弹簧单元用于约束相邻两个节点的位移。
所述附加流体质量单元模型包括流体附加质量影响系数。
所述系数为外部输入系数,程序内部不计算,只是读取后用于生成流体单元,该系数由其他软件计算而得到。
实施例4:
一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于包括如下步骤:
步骤1.对组件整体依据结构的局部和各部件的运动特征进行分类;
步骤2.将步骤1中得到的多种结构类型根据分类进行组合;
步骤3.对步骤2中得到的组合进行分类设计;
步骤4.总结出组件建模的特点,梳理出其中两类重复的两类基本子结构,分别针对这两类结构发展相应的两类组合单元类型;
步骤5.将步骤4中涉及到的两类组合单元类型分为用于模拟可以发生横向振动组件各根组件模型的第一类组合单元有限元模型和用于模拟计算组件外侧的围板的第二类组合单元有限元模型。
所述第一类复合型单元模型包括:梁单元模型、非线性弹性单元模型、线性弹性单元模型和,所述梁单元模型和非线性弹性单元模型为线性弹性单元和间隙单元组合而成。
所述第二类组合单元模型包括:非线性弹性单元模型,其由线性弹性单元和间隙单元组合而成;附加流体质量单元模型。
所述子结构类型包括固定不可发生横向振动的围板结构和可发生横向振动的单根组件结构。
所述梁单元模型、弹簧单元模型、非线性弹簧单元模型和附加流体质量单元的模型基础参数可以根据需求进行修改。
所述梁单元模型包括二维欧拉伯努利有限元梁模型、考虑剪切效应的有限元梁模型和轴向变形的有限元梁模型。
所述弹簧单元为线性弹簧约束的线性弹簧单元模型,其特征在于所述线性弹簧单元用于约束相邻两个节点的位移。
所述非线性弹簧单元由线性弹簧单元模型及间隙单元模型依靠端部节点的位移相耦合组合而成,所述非线性弹簧单元模型同时具备线性弹簧单元和间隙单元的作用。
所述附加流体质量单元模型包括流体附加质量影响系数。
实施例5:
一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于包括如下步骤:
步骤1.对组件整体依据结构的局部和各部件的运动特征进行分类;
步骤2.将步骤1中得到的多种结构类型根据分类进行组合;
步骤3.对步骤2中得到的组合进行分类设计;
步骤4.总结出组件建模的特点,梳理出其中两类重复的两类基本子结构,分别针对这两类结构发展相应的两类组合单元类型;
步骤5.将步骤4中涉及到的两类组合单元类型分为用于模拟可以发生横向振动组件各根组件模型的第一类组合单元有限元模型和用于模拟计算组件外侧的围板的第二类组合单元有限元模型。
所述第一类复合型单元模型包括:梁单元模型、非线性弹性单元模型、线性弹性单元模型和,所述梁单元模型和非线性弹性单元模型为线性弹性单元和间隙单元组合而成。
所述第二类组合单元模型包括:非线性弹性单元模型,其由线性弹性单元和间隙单元组合而成;附加流体质量单元模型。
所述子结构类型包括固定不可发生横向振动的围板结构和可发生横向振动的单根组件结构。
所述梁单元模型、弹簧单元模型、非线性弹簧单元模型和附加流体质量单元的模型基础参数可以根据需求进行修改。
所述梁单元模型包括二维欧拉伯努利有限元梁模型、考虑剪切效应的有限元梁模型和轴向变形的有限元梁模型。
所述弹簧单元为线性弹簧约束的线性弹簧单元模型,其特征在于所述线性弹簧单元用于约束相邻两个节点的位移。
所述非线性弹簧单元由线性弹簧单元模型及间隙单元模型依靠端部节点的位移相耦合组合而成,所述非线性弹簧单元模型同时具备线性弹簧单元和间隙单元的作用。
所述系数为外部输入系数,程序内部不计算,只是读取后用于生成流体单元,该系数由其他软件计算而得到。
实施例6:
一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于包括如下步骤:
步骤1.对组件整体依据结构的局部和各部件的运动特征进行分类;
步骤2.将步骤1中得到的多种结构类型根据分类进行组合;
步骤3.对步骤2中得到的组合进行分类设计;
步骤4.总结出组件建模的特点,梳理出其中两类重复的两类基本子结构,分别针对这两类结构发展相应的两类组合单元类型;
步骤5.将步骤4中涉及到的两类组合单元类型分为用于模拟可以发生横向振动组件各根组件模型的第一类组合单元有限元模型和用于模拟计算组件外侧的围板的第二类组合单元有限元模型。
所述第一类复合型单元模型包括:梁单元模型、非线性弹性单元模型、线性弹性单元模型和,所述梁单元模型和非线性弹性单元模型为线性弹性单元和间隙单元组合而成。
所述第二类组合单元模型包括:非线性弹性单元模型,其由线性弹性单元和间隙单元组合而成;附加流体质量单元模型。
所述子结构类型包括固定不可发生横向振动的围板结构和可发生横向振动的单根组件结构。
所述梁单元模型、弹簧单元模型、非线性弹簧单元模型和附加流体质量单元的模型基础参数可以根据需求进行修改。
所述梁单元模型包括二维欧拉伯努利有限元梁模型、考虑剪切效应的有限元梁模型和轴向变形的有限元梁模型。
所述弹簧单元为线性弹簧约束的线性弹簧单元模型,其特征在于所述线性弹簧单元用于约束相邻两个节点的位移。
所述非线性弹簧单元由线性弹簧单元模型及间隙单元模型依靠端部节点的位移相耦合组合而成,所述非线性弹簧单元模型同时具备线性弹簧单元和间隙单元的作用。
所述附加流体质量单元模型包括流体附加质量影响系数。
所述系数为外部输入系数,程序内部不计算,只是读取后用于生成流体单元,该系数由其他软件计算而得到。

Claims (9)

1.一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于包括如下步骤:
步骤1.对组件整体依据结构的局部和各部件的运动特征进行分类;
步骤2.将步骤1中得到的多种结构类型根据分类进行组合;
步骤3.对步骤2中得到的组合进行分类设计;
步骤4.总结出组件建模的特点,梳理出其中两类重复的两类基本子结构,分别针对这两类结构发展相应的两类组合单元类型;
步骤5.将步骤4中涉及到的两类组合单元类型分为用于模拟可以发生横向振动组件各根组件模型的第一类组合单元有限元模型和用于模拟计算组件外侧的围板的第二类组合单元有限元模型。
2.根据权利要求1所述一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于:所述第一类复合型单元模型包括:梁单元模型、非线性弹性单元模型、线性弹性单元模型和,所述梁单元模型和非线性弹性单元模型为线性弹性单元和间隙单元组合而成。
3.根据权利要求1所述一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于:所述第二类组合单元模型包括:非线性弹性单元模型,其由线性弹性单元和间隙单元组合而成;附加流体质量单元模型。
4.根据权利要求2所述一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于:所述子结构类型包括固定不可发生横向振动的围板结构和可发生横向振动的单根组件结构。
5.根据权利要求2所述一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于:所述梁单元模型、弹簧单元模型、非线性弹簧单元模型和附加流体质量单元的模型基础参数可以根据需求进行修改。
6.根据权利要求2所述一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于:所述梁单元模型包括二维欧拉伯努利有限元梁模型、考虑剪切效应的有限元梁模型和轴向变形的有限元梁模型。
7.根据权利要求2所述一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于:所述弹簧单元为线性弹簧约束的线性弹簧单元模型,其特征在于所述线性弹簧单元用于约束相邻两个节点的位移。
8.根据权利要求2所述一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于:所述非线性弹簧单元由线性弹簧单元模型及间隙单元模型依靠端部节点的位移相耦合组合而成,所述非线性弹簧单元模型同时具备线性弹簧单元和间隙单元的作用。
9.根据权利要求2所述一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法,其特征在于:所述附加流体质量单元模型包括流体附加质量影响系数。
CN202011280562.8A 2020-11-16 2020-11-16 一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法 Pending CN112699433A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011280562.8A CN112699433A (zh) 2020-11-16 2020-11-16 一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011280562.8A CN112699433A (zh) 2020-11-16 2020-11-16 一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法

Publications (1)

Publication Number Publication Date
CN112699433A true CN112699433A (zh) 2021-04-23

Family

ID=75505898

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011280562.8A Pending CN112699433A (zh) 2020-11-16 2020-11-16 一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法

Country Status (1)

Country Link
CN (1) CN112699433A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227891A (ja) * 2002-02-01 2003-08-15 Global Nuclear Fuel-Japan Co Ltd 沸騰水型原子炉用燃料集合体及び原子炉
CN1906703A (zh) * 2003-12-22 2007-01-31 阿海珐核能公司 限制施加在核反应堆燃料组件上的支承载荷的方法及燃料组件
CN101905340A (zh) * 2010-07-23 2010-12-08 西安交通大学 一种高速铣削稳定性快速判定方法
CN104636556A (zh) * 2015-02-09 2015-05-20 武汉理工大学 成任意角度连接的有限尺寸板结构振动响应计算方法
CN106951622A (zh) * 2017-03-14 2017-07-14 北京科瑞华安科技有限公司 一种乏核燃料贮存格架地震安全的有限元分析方法
CN107044895A (zh) * 2017-02-22 2017-08-15 中国水利水电科学研究院 乏燃料格架与组件地震试验时碰撞力测试方法
CN108899098A (zh) * 2018-07-20 2018-11-27 中广核研究院有限公司 一种适用于压水堆的堆内构件结构
CN109378096A (zh) * 2018-11-12 2019-02-22 中国原子能科学研究院 一种深水池式低温供热堆的堆芯换料方法
CN110598324A (zh) * 2019-09-12 2019-12-20 西安交通大学 一种核反应堆弥散型板型燃料元件堆芯流固耦合计算方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227891A (ja) * 2002-02-01 2003-08-15 Global Nuclear Fuel-Japan Co Ltd 沸騰水型原子炉用燃料集合体及び原子炉
CN1906703A (zh) * 2003-12-22 2007-01-31 阿海珐核能公司 限制施加在核反应堆燃料组件上的支承载荷的方法及燃料组件
CN101905340A (zh) * 2010-07-23 2010-12-08 西安交通大学 一种高速铣削稳定性快速判定方法
CN104636556A (zh) * 2015-02-09 2015-05-20 武汉理工大学 成任意角度连接的有限尺寸板结构振动响应计算方法
CN107044895A (zh) * 2017-02-22 2017-08-15 中国水利水电科学研究院 乏燃料格架与组件地震试验时碰撞力测试方法
CN106951622A (zh) * 2017-03-14 2017-07-14 北京科瑞华安科技有限公司 一种乏核燃料贮存格架地震安全的有限元分析方法
CN108899098A (zh) * 2018-07-20 2018-11-27 中广核研究院有限公司 一种适用于压水堆的堆内构件结构
CN109378096A (zh) * 2018-11-12 2019-02-22 中国原子能科学研究院 一种深水池式低温供热堆的堆芯换料方法
CN110598324A (zh) * 2019-09-12 2019-12-20 西安交通大学 一种核反应堆弥散型板型燃料元件堆芯流固耦合计算方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
乔磊: "基于结构化网格的5×5燃料组件流场CFD研究", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》 *
伍时建 等: "基于超单元技术的乏燃料贮存格架多自由度非线性抗震分析", 《核动力工程》 *
齐欢欢 等: "基于ANSYS的燃料组件事故动力分析程序", 《核动力工程》 *
齐欢欢 等: "燃料组件导向管事故工况应力计算方法研究", 《应用数学和力学》 *

Similar Documents

Publication Publication Date Title
CN111291494B (zh) 用于核反应堆triso燃料颗粒的多尺度多物理场耦合模拟方法
Lin et al. A high efficient assembly technique for large PEMFC stacks: Part I. Theory
CN110619145A (zh) 一种柔性支承齿轮传动装置自适应建模方法
CN112380719B (zh) 一种快堆边界下的裂变气体释放的数值确定方法
CN112668072A (zh) 用于核反应堆燃料组件抗震分析的建模方法
CN108038262B (zh) 一种考虑sssi效应的楼层反应谱简化计算方法
CN110362912A (zh) 介观结构优化方法
CN112699433A (zh) 一种用于核反应堆燃料组件抗震分析建模子结构类型进行分类的方法
Aubert et al. Status on DEMO Helium Cooled Lithium Lead breeding blanket thermo-mechanical analyses
CN112836269A (zh) 一种用于核反应堆燃料组件抗震分析建模子结构类型进行拼接的方法
Lee et al. Design improvement of an OPT-H type nuclear fuel rod support grid by using an axiomatic design and an optimization
Kępisty et al. SFR mechanical scenarios and neutron transport transients with CAST3M code
Sabharwall et al. Integrated Modeling and Simulation Capability for Full Scale Multi-Physics Simulation and Visualization of MicroReactor Concept
Yu Verification and validation of numerical models for seismic fluid-structure-interaction analysis of liquid metal reactors
Zheng et al. Dimensional reduction analyzing the thermoelastic behavior of wind turbine blades based on the variational asymptotic multiscale method
Wozniak et al. Review of Tools for Modeling Core Radial Expansion in Liquid Metal-Cooled Fast Reactors
Stimpson et al. Demonstration of Coupled Tiamat Single Assembly Calculations
CN115620843B (zh) 用于反应堆棒状燃料非线性力学性能分析的计算方法
Hussain et al. CNPP fuel rod vibration analysis using finite element method
Stimpson et al. Demonstration of Coupled Fuel Performance Calculations in VERA on Watts Bar Unit 1, Cycle 1
XiCheng et al. A Finite Element Model For NHR200-? 9x9 Fuel Assembly In Dynamic Analysis
Zhao et al. A detailed model to predict mechanical characteristics of fuel assembly
Choia et al. Modeling and Simulation Needs and Capabilities for Artificial Intelligence Based Plant Reload Optimization Platform
Junyi et al. A seismic free field input model for FE-SBFE coupling in time domain
Broc et al. Fluid structure interaction for tubes bundles: presentation of a linear equivalent model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210423

WD01 Invention patent application deemed withdrawn after publication