CN112697435B - 一种基于改进seld-tcn网络的滚动轴承故障诊断方法 - Google Patents
一种基于改进seld-tcn网络的滚动轴承故障诊断方法 Download PDFInfo
- Publication number
- CN112697435B CN112697435B CN202110104796.5A CN202110104796A CN112697435B CN 112697435 B CN112697435 B CN 112697435B CN 202110104796 A CN202110104796 A CN 202110104796A CN 112697435 B CN112697435 B CN 112697435B
- Authority
- CN
- China
- Prior art keywords
- data
- model
- network
- convolution
- training
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000005096 rolling process Methods 0.000 title claims abstract description 14
- 238000003745 diagnosis Methods 0.000 title claims abstract description 10
- 238000012549 training Methods 0.000 claims abstract description 45
- 230000000694 effects Effects 0.000 claims abstract description 15
- 238000010276 construction Methods 0.000 claims abstract description 11
- 238000011156 evaluation Methods 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 11
- 238000013528 artificial neural network Methods 0.000 claims abstract description 8
- 230000006870 function Effects 0.000 claims description 22
- 238000012360 testing method Methods 0.000 claims description 11
- 230000004913 activation Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000010606 normalization Methods 0.000 claims description 4
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims description 3
- 230000002238 attenuated effect Effects 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 230000007547 defect Effects 0.000 description 3
- 230000003416 augmentation Effects 0.000 description 2
- 238000013434 data augmentation Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/04—Bearings
- G01M13/045—Acoustic or vibration analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Mathematical Physics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Acoustics & Sound (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110104796.5A CN112697435B (zh) | 2021-01-26 | 2021-01-26 | 一种基于改进seld-tcn网络的滚动轴承故障诊断方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110104796.5A CN112697435B (zh) | 2021-01-26 | 2021-01-26 | 一种基于改进seld-tcn网络的滚动轴承故障诊断方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112697435A CN112697435A (zh) | 2021-04-23 |
CN112697435B true CN112697435B (zh) | 2022-09-09 |
Family
ID=75516209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110104796.5A Active CN112697435B (zh) | 2021-01-26 | 2021-01-26 | 一种基于改进seld-tcn网络的滚动轴承故障诊断方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112697435B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113033786B (zh) * | 2021-05-21 | 2021-08-13 | 北京航空航天大学 | 基于时间卷积网络的故障诊断模型构建方法及装置 |
CN114638256B (zh) * | 2022-02-22 | 2024-05-31 | 合肥华威自动化有限公司 | 基于声波信号及注意力网络的变压器故障检测方法及其系统 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109858345A (zh) * | 2018-12-25 | 2019-06-07 | 华中科技大学 | 一种适用于胀管设备的智能故障诊断方法 |
WO2020244134A1 (zh) * | 2019-06-05 | 2020-12-10 | 华南理工大学 | 一种基于多任务特征共享神经网络的智能故障诊断方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107526853B (zh) * | 2016-06-22 | 2018-09-21 | 北京航空航天大学 | 基于层叠卷积网络的滚动轴承故障模式识别方法及装置 |
CN108344564B (zh) * | 2017-12-25 | 2019-10-18 | 北京信息科技大学 | 一种基于深度学习的主轴特性试验台状态识别及预测方法 |
US11521044B2 (en) * | 2018-05-17 | 2022-12-06 | International Business Machines Corporation | Action detection by exploiting motion in receptive fields |
US10859657B2 (en) * | 2018-05-31 | 2020-12-08 | The Board Of Trustees Of The Leland Stanford Junior University | MRI reconstruction using deep learning, generative adversarial network and acquisition signal model |
CN109029993A (zh) * | 2018-06-20 | 2018-12-18 | 中国计量大学 | 结合遗传算法优化参数和机器视觉的轴承故障检测算法 |
WO2020095321A2 (en) * | 2018-11-06 | 2020-05-14 | Vishwajeet Singh Thakur | Dynamic structure neural machine for solving prediction problems with uses in machine learning |
CN111553178A (zh) * | 2019-02-12 | 2020-08-18 | 斯凯孚公司 | 转动机械振动特性的智能识别方法 |
CN110031227A (zh) * | 2019-05-23 | 2019-07-19 | 桂林电子科技大学 | 一种基于双通道卷积神经网络的滚动轴承状态诊断方法 |
US11486925B2 (en) * | 2020-05-09 | 2022-11-01 | Hefei University Of Technology | Method for diagnosing analog circuit fault based on vector-valued regularized kernel function approximation |
CN111985533B (zh) * | 2020-07-14 | 2023-02-03 | 中国电子科技集团公司第三十六研究所 | 一种基于多尺度信息融合的增量式水声信号识别方法 |
CN112254964A (zh) * | 2020-09-03 | 2021-01-22 | 太原理工大学 | 一种基于快速多尺度卷积神经网络的滚动轴承故障诊断方法 |
US12062369B2 (en) * | 2020-09-25 | 2024-08-13 | Intel Corporation | Real-time dynamic noise reduction using convolutional networks |
-
2021
- 2021-01-26 CN CN202110104796.5A patent/CN112697435B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109858345A (zh) * | 2018-12-25 | 2019-06-07 | 华中科技大学 | 一种适用于胀管设备的智能故障诊断方法 |
WO2020244134A1 (zh) * | 2019-06-05 | 2020-12-10 | 华南理工大学 | 一种基于多任务特征共享神经网络的智能故障诊断方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112697435A (zh) | 2021-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021135630A1 (zh) | 基于grcmse与流形学习的滚动轴承故障诊断方法 | |
CN106895975B (zh) | 基于Stacked SAE深度神经网络的轴承故障诊断方法 | |
CN110210381B (zh) | 一种域分离自适应一维卷积神经网络智能故障诊断方法 | |
CN112697435B (zh) | 一种基于改进seld-tcn网络的滚动轴承故障诊断方法 | |
CN113375941B (zh) | 高速动车组轴承的开集故障诊断方法 | |
CN111562108A (zh) | 一种基于cnn和fcmc的滚动轴承智能故障诊断方法 | |
CN112304614B (zh) | 采用多注意力机制的端到端滚动轴承智能故障诊断方法 | |
CN113392881A (zh) | 一种基于迁移学习的旋转机械故障诊断方法 | |
CN112378660A (zh) | 一种基于数据驱动的航空发动机轴承智能故障诊断方法 | |
CN112364706A (zh) | 一种基于类不平衡的小样本轴承故障诊断方法 | |
CN112329520B (zh) | 基于生成对抗学习的货车轴承故障识别方法 | |
CN114861719A (zh) | 基于集成学习的高速列车轴承故障诊断方法 | |
CN112766200A (zh) | 基于一维卷积神经网络的行星齿轮箱小样本故障诊断方法 | |
CN114169377A (zh) | 基于g-mscnn的有噪环境中滚动轴承故障诊断方法 | |
CN111076934A (zh) | 一种基于s变换诊断轴承潜在故障的方法 | |
CN116702076A (zh) | 一种基于cnn特征融合的小样本迁移学习故障诊断方法、系统、计算机及存储介质 | |
CN113916535B (zh) | 基于时频和cnn的轴承诊断方法、系统、设备及介质 | |
Yeh et al. | Using convolutional neural network for vibration fault diagnosis monitoring in machinery | |
CN115147439A (zh) | 基于深度学习与注意力机制的混凝土裂缝分割方法及系统 | |
CN117668689A (zh) | 基于元学习算法的轨道交通列车轴承故障诊断方法及装置 | |
CN117516939A (zh) | 基于改进EfficientNetV2的轴承跨工况故障检测方法及系统 | |
CN116952586A (zh) | 基于1d-dcnn的车轴疲劳裂纹识别方法 | |
CN117191396A (zh) | 一种基于两阶段迁移的齿轮箱故障诊断方法 | |
Lin et al. | Novel aeroengine fault diagnosis method based on feature amplification | |
CN116227172A (zh) | 一种基于卷积神经网络的滚动轴承性能退化评估方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231204 Address after: 045000 Xueyuan Road Development Zone, Yangquan, Shanxi Patentee after: SHANXI INSTITUTE OF TECHNOLOGY Address before: 030000, 160 meters southeast of Huajian Building, No. 9 Xieyuan Road, Jinyuan District, Taiyuan City, Shanxi Province Patentee before: Shanxi Chuangxin Artificial Intelligence Industry Technology Research Institute Effective date of registration: 20231204 Address after: 030000, 160 meters southeast of Huajian Building, No. 9 Xieyuan Road, Jinyuan District, Taiyuan City, Shanxi Province Patentee after: Shanxi Chuangxin Artificial Intelligence Industry Technology Research Institute Address before: 030006 room a118, No.15, Keji street, high tech Zone, Taiyuan City, Shanxi Province Patentee before: Shanxi Sanyouhuo Intelligence Information Technology Co.,Ltd. |