CN112697125A - 一种光纤陀螺本征频率的在线跟踪方法及系统 - Google Patents

一种光纤陀螺本征频率的在线跟踪方法及系统 Download PDF

Info

Publication number
CN112697125A
CN112697125A CN202110107350.8A CN202110107350A CN112697125A CN 112697125 A CN112697125 A CN 112697125A CN 202110107350 A CN202110107350 A CN 202110107350A CN 112697125 A CN112697125 A CN 112697125A
Authority
CN
China
Prior art keywords
fiber
dem
optic gyroscope
eigenfrequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110107350.8A
Other languages
English (en)
Other versions
CN112697125B (zh
Inventor
张庆伟
陈地
邓卫林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Sanjiang Aerospace Hongfeng Control Co Ltd
Original Assignee
Hubei Sanjiang Aerospace Hongfeng Control Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Sanjiang Aerospace Hongfeng Control Co Ltd filed Critical Hubei Sanjiang Aerospace Hongfeng Control Co Ltd
Priority to CN202110107350.8A priority Critical patent/CN112697125B/zh
Publication of CN112697125A publication Critical patent/CN112697125A/zh
Application granted granted Critical
Publication of CN112697125B publication Critical patent/CN112697125B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

本发明公开了一种光纤陀螺本征频率的在线跟踪方法及系统,光纤陀螺包括依次连接的ASE光源、光纤耦合器、集成光学相位调制器和光线敏感环,光纤耦合器的反馈端依次通过光电探测器、前置放大器和模数转换器后输入至逻辑处理器的信号接收端,集成光学相位调制器的控制端依次通过缓冲放大器和数模转换器后连接至逻辑处理器的信号发送端,通过构造四态方波和锯齿波叠加得到的调制信号,通过经光纤陀螺的闭环控制回路传输后得到的待解调信号,通过对光纤陀螺调制频率和实际频率的误差解调,并对光纤陀螺调制频率源时钟进行动态调整,从而实现对光纤陀螺本征频率的自动跟踪,不影响角速度闭环回路和半波电压闭环回路,对光纤陀螺角速度通道精度无影响。

Description

一种光纤陀螺本征频率的在线跟踪方法及系统
技术领域
本发明属于光纤陀螺技术领域,更具体地,涉及一种光纤陀螺本征频率的在线跟踪方法及系统。
背景技术
光纤陀螺是一种基于Sagnac效应的角速率传感器,由于其成本低、工艺简单、可靠性高、抗冲击振动能力强,其应用前景备受重视,已经成为主流的传感器之一。高精度光纤陀螺一般采用四态方波过调制技术对光纤陀螺进行偏置调制,要求四态方波调制频率与光纤陀螺实际本征频率一致。但在现有的光纤陀螺中,调制频率根据常温下测得的本征频率进行设定。
在陀螺进行变温过程中,由于光纤敏感环的物理长度及快轴的有效折射率均随温度发生变化,所以光纤陀螺的实际本征频率随周围环境温度的变化而变化,导致光纤环长度及光纤环平均直径的相同温变趋势之间相互叠加,使光纤陀螺标度因数全温稳定性变差。四态方波调制频率与光纤陀螺实际本征频率产生的偏差还会导致探测器信号中的“尖峰脉冲”信号展宽,陀螺解调信号中包含的“尖峰脉冲”高频成分发生变化,使光纤陀螺产生零偏漂移,从而对高精度光纤陀螺的全温精度产生不利影响,因此传统的四态方波调制方法不能跟踪光纤陀螺实际本征频率。
发明内容
针对现有技术的至少一个缺陷或改进需求,本发明提供了一种光纤陀螺本征频率的在线跟踪方法及系统,旨在解决传统的四态方波调制方法不能跟踪光纤陀螺实际本征频率的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种光纤陀螺本征频率的在线跟踪方法,该方法包括:
获取的光纤陀螺本征频率τ和频率生成器的赋值,输入频率生成器的赋值以输出对应的闭环控制回路时钟,将闭环控制回路时钟发送至逻辑处理器;
逻辑处理器基于闭环控制回路时钟并依据光纤陀螺本征频率τ生成对应的不对称四态方波信号和锯齿波信号,将两个信号叠加得到调制信号,其中,不对称四态方波信号的周期为2τ,每个周期中相位浮动为±φ的持续时间为
Figure BDA0002918036470000021
相位浮动为2π±φ的持续时间为
Figure BDA0002918036470000022
锯齿波信号的周期为τ,每个周期中幅值从0上升到最大幅值的总时间为
Figure BDA0002918036470000023
保持幅值为0的时间为
Figure BDA0002918036470000024
调制信号经过光纤陀螺的闭环控制回路传输后,被逻辑处理器接收得到待解调信号,解调待解调信号获取本征频率误差值,解调过程包括:同一个周期内的第一个
Figure BDA0002918036470000025
周期和第四个
Figure BDA0002918036470000026
周期的信号相减解调得到本征频率误差值和角速度误差值的叠加值,同一个周期内的第二个
Figure BDA0002918036470000027
周期和第五个
Figure BDA0002918036470000028
周期的信号相减解调得到相同调制相位下的角速度误差值,该叠加值减去相同调制相位下的角速度误差值得到本征频率误差值;
利用本征频率误差值更新频率生成器的赋值和获取的光纤陀螺本征频率,重复迭代上述步骤直至达到迭代终止条件,输出迭代终止时获取的光纤陀螺本征频率。
作为本发明的进一步改进,光纤陀螺包括依次连接的ASE光源、光纤耦合器、集成光学相位调制器和光线敏感环,其中,光纤耦合器的反馈端依次通过光电探测器、前置放大器和模数转换器后输入至逻辑处理器的信号接收端,集成光学相位调制器的控制端依次通过缓冲放大器和数模转换器后连接至逻辑处理器的信号发送端。
作为本发明的进一步改进,光纤陀螺本征频率和频率生成器的赋值的初始值获取过程包括:获取光纤陀螺的初始渡越时间作为光纤陀螺本征频率τ的初始值,并依据初始渡越时间获取频率生成器的赋值的初始值。
作为本发明的进一步改进,光纤陀螺的初始渡越时间获取方式为:
离线状态下由逻辑处理器生成一定频率和幅值的斜波施加到集成光学相位调制器上,通过示波器测量相邻下脉冲尖峰时间获得初始渡越时间τ0
依据初始渡越时间获取频率生成器的赋值的初始值包括:
根据初始渡越时间τ0和逻辑处理器中每个τ0内的模数转换器采样点数n,可得模数转换器的初始时钟频率
Figure BDA0002918036470000031
根据初始时钟频率和闭环控制回路的晶振频率计算频率生成器的初始赋值。
作为本发明的进一步改进,调制信号在光纤陀螺的闭环控制回路传输过程包括:
调制信号经过数模转换和缓冲放大后施加到集成光学相位调制器,以实现对光纤敏感环的输入光信号进行相位调制,相位调制后的光信号经过光纤敏感环产生干涉光信号,干涉光信号被光电探测器接收后,再经过前置放大器放大和模数转换器采集后被逻辑处理器接收。
作为本发明的进一步改进,该方法还包括:
对于以2τ为一个周期的待解调信号,每
Figure BDA0002918036470000032
周期内采样得到待解调信号保持高电平期间的采样累加值分别为Dem_data1、Dem_data2、Dem_data3、Dem_data4、Dem_data5、Dem_data6,其中,
解调出的一个周期内角速度误差量Dω
Dω=Dem_data2-Dem_data3-Dem_data5+Dem_data6;
解调出的一个周期内半波电压误差量D
D=Dem_data2-Dem_data3+Dem_data5-Dem_data6;
解调出的一个周期内本征频率误差量Df
Df=Dem_data1-Dem_data2-Dem_data4+Dem_data5。
为实现上述目的,按照本发明的另一个方面,提供了一种光纤陀螺本征频率的在线跟踪系统,该系统包括光纤陀螺、数模转换器、缓冲放大器、前置放大器放大、模数转换器和逻辑处理器,光纤陀螺包括依次连接的ASE光源、光纤耦合器、集成光学相位调制器和光线敏感环,光纤耦合器的反馈端依次通过光电探测器、前置放大器和模数转换器后输入至逻辑处理器的信号接收端,集成光学相位调制器的控制端依次通过缓冲放大器和数模转换器后连接至逻辑处理器的信号发送端,其中,
逻辑处理器用于获取的光纤陀螺本征频率τ和频率生成器的赋值,输入频率生成器的赋值以输出对应的闭环控制回路时钟,将闭环控制回路时钟发送至逻辑处理器;基于闭环控制回路时钟并依据光纤陀螺本征频率τ生成对应的不对称四态方波信号和锯齿波信号,将两个信号叠加得到调制信号,其中,不对称四态方波信号的周期为2τ,每个周期中相位浮动为±φ的持续时间为
Figure BDA0002918036470000041
相位浮动为2π±φ的持续时间为
Figure BDA0002918036470000042
锯齿波信号的周期为τ,每个周期中幅值从0上升到最大幅值的总时间为
Figure BDA0002918036470000043
保持幅值为0的时间为
Figure BDA0002918036470000044
接收调制信号经过光纤陀螺的闭环控制回路传输后得到的待解调信号,解调待解调信号获取本征频率误差值,解调过程包括:同一个周期内的第一个
Figure BDA0002918036470000045
周期和第四个
Figure BDA0002918036470000046
周期的信号相减解调得到本征频率误差值和角速度误差值的叠加值,同一个周期内的第二个
Figure BDA0002918036470000047
周期和第五个
Figure BDA0002918036470000048
周期的信号相减解调得到相同调制相位下的角速度误差值,该叠加值减去相同调制相位下的角速度误差值得到本征频率误差值;利用本征频率误差值更新频率生成器的赋值和获取的光纤陀螺本征频率,重复迭代上述过程直至达到迭代终止条件,输出迭代终止时获取的光纤陀螺本征频率。
作为本发明的进一步改进,光纤陀螺本征频率和频率生成器的赋值的初始值获取过程包括:获取光纤陀螺的初始渡越时间作为光纤陀螺本征频率τ的初始值,并依据初始渡越时间获取频率生成器的赋值的初始值。
作为本发明的进一步改进,光纤陀螺的初始渡越时间获取方式为:
离线状态下由逻辑处理器生成一定频率和幅值的斜波施加到集成光学相位调制器上,通过示波器测量相邻下脉冲尖峰时间获得初始渡越时间τ0
依据初始渡越时间获取频率生成器的赋值的初始值包括:
根据初始渡越时间τ0和逻辑处理器中每个τ0内的模数转换器采样点数n,可得模数转换器的初始时钟频率
Figure BDA0002918036470000051
根据初始时钟频率和闭环控制回路的晶振频率计算频率生成器的初始赋值。
作为本发明的进一步改进,逻辑处理器还用于:
对于以2τ为一个周期的待解调信号,每
Figure BDA0002918036470000052
周期内采样得到待解调信号保持高电平期间的采样累加值分别为Dem_data1、Dem_data2、Dem_data3、Dem_data4、Dem_data5、Dem_data6,
解调出的一个周期内角速度误差量Dω
Dω=Dem_data2-Dem_data3-Dem_data5+Dem_data6;
解调出的一个周期内半波电压误差量D
D=Dem_data2-Dem_data3+Dem_data5-Dem_data6;
解调出的一个周期内本征频率误差量Df
Df=Dem_data1-Dem_data2-Dem_data4+Dem_data5。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
本发明提供的一种光纤陀螺本征频率的在线跟踪方法及系统,其通过构造四态方波和锯齿波叠加得到的调制信号,通过经光纤陀螺的闭环控制回路传输后得到的待解调信号,通过对光纤陀螺调制频率和实际频率的误差解调,并对光纤陀螺调制频率源时钟进行动态调整,从而实现对光纤陀螺本征频率的自动跟踪,不影响角速度闭环回路和半波电压闭环回路,对光纤陀螺角速度通道精度无影响。
本发明提供的一种光纤陀螺本征频率的在线跟踪方法及系统,通过增加DDS/DAC频率生成器,能够提供更高精度的跟踪,并且通过控制DDS/DAC频率生成器的频率更新时刻能够消除切换过程中带来的时钟抖动和闭环异常,减少了对逻辑处理器内部时钟资源的占用,解决高频率时钟更新产生的逻辑处理器温度上升和功耗增大问题,从而提高了光纤陀螺工作可靠性。
附图说明
图1是本发明实施例提供的光纤陀螺与逻辑处理器连接关系的示意图;
图2是本发明实施例提供的不对称四态方波信号的示意图;
图3是本发明实施例提供的锯齿波信号的示意图;
图4是本发明实施例提供的叠加后的调制信号的示意图;
图5是本发明实施例提供的本征频率误差值解调的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
下面结合实施例和附图对本发明提供的城市轨道交通自愈供电方法及系统的工作原理进行详细说明。
一种光纤陀螺本征频率的在线跟踪方法,该方法包括:
获取的光纤陀螺本征频率和频率生成器的赋值,输入频率生成器的赋值以输出对应的闭环控制回路时钟,将闭环控制回路时钟发送至逻辑处理器,作为一个优选的方案,光纤陀螺本征频率和频率生成器的赋值的初始值获取过程包括:获取光纤陀螺的初始渡越时间作为光纤陀螺本征频率τ的初始值,并依据初始渡越时间获取频率生成器的赋值的初始值。例如,可以在离线状态下测量光纤陀螺初始渡越时间τ0,如由逻辑处理器生成一定频率和幅值的斜波施加到光学相位调制器上,通过示波器测量相邻下脉冲尖峰时间获得初始渡越时间τ0,根据初始渡越时间τ0计算理论闭环控制回路的初始时钟即输出时钟的初始值,首先根据初始渡越时间τ0和逻辑处理器中每个τ0内的模数转换器采样点数n,可得模数转换器初始时钟,其时钟频率
Figure BDA0002918036470000071
而闭环控制回路时钟采用模数转换器初始时钟,即闭环控制回路初始时钟频率等于fClk_ad_t;根据闭环控制回路初始时钟频率和晶振频率计算DDS/DAC频率生成器的初始赋值,例如参数按照频率生成器的说明文件计算得到。
图1是本发明实施例提供的光纤陀螺与逻辑处理器连接关系的示意图。如图1所示,作为一个示例,光纤陀螺包括依次连接的ASE光源、光纤耦合器、集成光学相位调制器和光线敏感环,其中,光纤耦合器的反馈端依次通过光电探测器、前置放大器和模数转换器后输入至逻辑处理器的信号接收端,集成光学相位调制器的控制端依次通过缓冲放大器和数模转换器后连接至逻辑处理器的信号发送端。
逻辑处理器基于闭环控制回路时钟并依据光纤陀螺本征频率τ生成对应的不对称四态方波信号和锯齿波信号,将不对称四态方波信号和锯齿波信号叠加得到对应的调制信号,其中,不对称四态方波信号的周期为2τ,每个周期中相位浮动±φ的持续时间为
Figure BDA0002918036470000072
相位浮动2π±φ的持续时间为
Figure BDA0002918036470000073
锯齿波信号的周期为τ,每个周期幅值上升到最大幅值的总时间为
Figure BDA0002918036470000074
保持幅值为0的时间为
Figure BDA0002918036470000075
具体地,初次迭代时,逻辑处理器对DDS/DAC频率生成器进行初始化时,发送频率生成器的初始赋值至DDS/DAC频率生成器生成初始输出时钟,逻辑处理器在更新频率生成赋值时,该时钟通过逻辑处理器第三输入端口引入逻辑处理器作为闭环控制回路时钟。在此基础上,逻辑处理器依据光纤陀螺本征频率τ生成上述的不对称四态方波信号和锯齿波信号。
图2、图3和图4分别为本发明实施例提供的不对称四态方波信号、锯齿波信号和叠加后的调制信号的示意图。如图2-4所示,以初次迭代为示例,根据光纤陀螺初始渡越时间τ0及闭环控制回路时钟产生一个周期为2τ0,调制相位为±φ、2π±φ的不对称四态方波调制信号,每个周期中±φ的持续时间分别为
Figure BDA0002918036470000076
2π±φ的持续时间分别为
Figure BDA0002918036470000081
相应的每周期不对称四态方波调制值分别为π、2π-φ、π-φ、0,持续时间分别为
Figure BDA0002918036470000082
其中φ为调制相位,范围
Figure BDA0002918036470000083
根据光纤陀螺初始本征频率τ0及闭环控制回路时钟Clk_loop产生一个周期为τ0,幅值为k·φ的锯齿波调制信号,锯齿波从0上升到最大幅值的时间为
Figure BDA0002918036470000084
此后保持幅值为0的时间为
Figure BDA0002918036470000085
k取值范围优选为0.01~0.1,锯齿波的台阶宽度为
Figure BDA0002918036470000086
对应的调制信号经过光纤陀螺的闭环控制回路传输后,被逻辑处理器接收得到对应的待解调信号;作为一个示例,调制信号在光纤陀螺的闭环控制回路传输过程包括:调制信号经过数模转换和缓冲放大后施加到光学相位调制器上,以实现对光纤敏感环(Sagnac萨格纳克干涉仪)中光信号进行相位调制,相位调制后的光信号经过光纤敏感环产生干涉光信号,干涉光信号经过光电探测器接收,经过前置放大器放大和模数转换器采集后被逻辑处理器接收。
通过解调待解调信号获取本征频率误差值,解调过程包括:同一个周期内的第一个
Figure BDA0002918036470000087
周期和第四个
Figure BDA0002918036470000088
周期的信号相减解调得到本征频率误差值和角速度误差值的叠加值,同一个周期内的第二个
Figure BDA0002918036470000089
周期和第五个
Figure BDA00029180364700000810
周期的信号相减解调得到相同调制相位下的角速度误差值,该叠加值减去相同调制相位下的角速度误差值得到本征频率误差值。
图5为本发明实施例提供的本征频率误差值解调的示意图。如图5所示,作为一个示例,以2τ为一个周期的待解调信号为示例,每
Figure BDA00029180364700000811
周期内采样信号Samp_flag保持高电平期间(假设高电平有效)的采样累加值分别为Dem_data1、Dem_data2、Dem_data3、Dem_data4、Dem_data5、Dem_data6。在逻辑处理器内进行解调,以2τ为解调周期,分别解调出一个周期内的角速度误差量Dω、半波电压误差量D、本征频率误差量Df,每
Figure BDA0002918036470000091
内有效采样信号保持时间相等,
其中,解调出的一个周期内角速度误差量:
Dω=Dem_data2-Dem_data3-Dem_data5+Dem_data6;
解调出的一个周期内半波电压误差量:
D=Dem_data2-Dem_data3+Dem_data5-Dem_data6;
解调出的一个周期内本征频率误差量:
Df=Dem_data1-Dem_data2-Dem_data4+Dem_data5。
在高精度光纤陀螺中四态方波调制已经进行了广泛的应用,能够进行角速度误差和半波电压误差的实时解算。但是仅采用四态方波调制并不能产生本征频率误差信息,无法对本征频率进行解调。采用锯齿波调制时,光波在进入光纤陀螺的光纤环和从光纤陀螺的光纤环出来两时刻调制相差τ时刻,若锯齿波周期等于τ,则两时刻光波调制相位相同,干涉光波产生的相位差为0;否则两时刻光波调制相位不同,干涉光波产生的相位差不为0,因此该干涉光波包含了本征频率误差,能够通过解调算法进行解算。所以,若要进行角速度、半波电压、本征频率这三种误差的解算,需要将四态调制和锯齿波调制相结合。为了避免叠加的锯齿波调制(相位较小)和四态调制(相位较大)出现较大的调制相位差别从而对采样信号造成干扰,采用了2:1不对称四态方波调制,并在前
Figure BDA0002918036470000092
时间内叠加锯齿波的方式,该合成信号可以达到三种误差都有比较好的解调效果。
光纤陀螺的闭环控制回路组成为:光纤环组件→光源组件→光电探测器→前置放大器→模数转换器(ADC)→逻辑处理器→数模转换器(DAC)→缓冲放大器→光纤环组件。作为一个优选的实施例,通过控制上述闭环控制回路的解调信号以分别解调得到角速度误差值、半波电压误差值和本征频率误差值,第一闭环回路,也称角速度闭环,逻辑处理器将每个周期内的角速度误差量Dω进行积分等处理得到角速度数据,角速度数据再进行积分后通过模数转换器、缓冲放大器输出至集成光学相位调制器实现反馈闭环。第二闭环回路,也称半波电压闭环,逻辑处理器将每个周期内的角速度误差量D进行积分等处理得到半波电压误差数据,半波电压误差数据和半波电压初值相加后通过模数转换器、缓冲放大器输出至集成光学相位调制器实现反馈闭环。第三闭环回路,也称本征频率闭环,即本发明的本征频率自动跟踪方法,该闭环通过对2τ周期内第一个
Figure BDA0002918036470000101
周期和第四个
Figure BDA0002918036470000102
周期的信号相减解调,获得本征频率误差和角速度误差的叠加值。再通过对2τ周期内第2个
Figure BDA0002918036470000103
周期和第五个
Figure BDA0002918036470000104
周期的信号相减解调,获得相同调制相位下的角速度误差,最后将本征频率误差值和角速度误差的叠加值减去相同调制相位下的角速度误差获得只含有本征频率误差值。将该误差解调值进行比例、积分、微分处理后得到第三闭环回路闭环反馈值Dem_f由于第一闭环和第二闭环采用的均为四态调制的四个相位,根据上述解调方法,第一闭环采用的四个解调值和第二闭环采用的四个解调值解算后分别只包含了各自的角速度误差信息和半波电压误差信息,因此第一闭环和第二闭环调制和解调是相互独立进行的。第三闭环的调制方式采用了方波叠加锯齿波的方法,按上述方式进行解调解算时剔除了角速度信息,仅包含了本征频率误差,因此三个闭环回路相互独立的调制和解调,第三闭环不会给第一闭环和第二闭环带来影响。
利用本征频率误差值解调值更新频率生成器的赋值和获取的光纤陀螺本征频率,重复迭代上述步骤直至达到迭代终止条件,输出迭代终止时获取的光纤陀螺本征频率。优选的,迭代终止条件为达到预设的迭代次数或者当前本征频率误差值小于预设阈值,当然,以上迭代终止条件仅为一个示例,可以依据解调需求设置对应的迭代终止条件。
一种光纤陀螺本征频率的在线跟踪系统,系统包括光纤陀螺、数模转换器、缓冲放大器、前置放大器放大、模数转换器和逻辑处理器,光纤陀螺包括依次连接的ASE光源、光纤耦合器、集成光学相位调制器和光线敏感环,光纤耦合器的反馈端依次通过光电探测器、前置放大器和模数转换器后输入至逻辑处理器的信号接收端,集成光学相位调制器的控制端依次通过缓冲放大器和数模转换器后连接至逻辑处理器的信号发送端,其中,
逻辑处理器用于获取的光纤陀螺本征频率τ和频率生成器的赋值,输入频率生成器的赋值以输出对应的闭环控制回路时钟,将闭环控制回路时钟发送至逻辑处理器;基于闭环控制回路时钟并依据光纤陀螺本征频率τ生成对应的不对称四态方波信号和锯齿波信号,将两个信号叠加得到调制信号,其中,不对称四态方波信号的周期为2τ,每个周期中相位浮动±φ的持续时间为
Figure BDA0002918036470000111
相位浮动2π±φ的持续时间为
Figure BDA0002918036470000112
锯齿波信号的周期为τ,每个周期中幅值上升到最大幅值的总时间为
Figure BDA0002918036470000113
保持幅值为0的时间为
Figure BDA0002918036470000114
接收调制信号经过光纤陀螺的闭环控制回路传输后得到的待解调信号,解调待解调信号获取本征频率误差值,解调过程包括:同一个周期内的第一个
Figure BDA0002918036470000115
周期和第四个
Figure BDA0002918036470000116
周期的信号相减解调得到本征频率误差值和角速度误差值的叠加值,同一个周期内的第二个
Figure BDA0002918036470000117
周期和第五个
Figure BDA0002918036470000118
周期的信号相减解调得到相同调制相位下的角速度误差值,该叠加值减去相同调制相位下的角速度误差值得到本征频率误差值;利用本征频率误差值解调值更新频率生成器的赋值和获取的光纤陀螺本征频率,重复迭代上述过程直至达到迭代终止条件,输出迭代终止时获取的光纤陀螺本征频率。该系统的实现原理、技术效果与上述方法类似,在此不做累述。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种光纤陀螺本征频率的在线跟踪方法,其特征在于,所述方法包括:
获取的光纤陀螺本征频率τ和频率生成器的赋值,输入频率生成器的赋值以输出对应的闭环控制回路时钟,将闭环控制回路时钟发送至逻辑处理器;
逻辑处理器基于闭环控制回路时钟并依据光纤陀螺本征频率τ生成对应的不对称四态方波信号和锯齿波信号,将两个信号叠加得到调制信号,其中,不对称四态方波信号的周期为2τ,每个周期中相位浮动为±φ的持续时间为
Figure FDA0002918036460000011
相位浮动为2π±φ的持续时间为
Figure FDA0002918036460000012
锯齿波信号的周期为τ,每个周期中幅值从0上升到最大幅值的总时间为
Figure FDA0002918036460000013
保持幅值为0的时间为
Figure FDA0002918036460000014
调制信号经过光纤陀螺的闭环控制回路传输后,被逻辑处理器接收得到待解调信号,解调待解调信号获取本征频率误差值,解调过程包括:同一个周期内的第一个
Figure FDA0002918036460000015
周期和第四个
Figure FDA0002918036460000016
周期的信号相减解调得到本征频率误差值和角速度误差值的叠加值,同一个周期内的第二个
Figure FDA0002918036460000017
周期和第五个
Figure FDA0002918036460000018
周期的信号相减解调得到相同调制相位下的角速度误差值,所述叠加值减去相同调制相位下的角速度误差值得到本征频率误差值;
利用本征频率误差值更新频率生成器的赋值和获取的光纤陀螺本征频率,重复迭代上述步骤直至达到迭代终止条件,输出迭代终止时获取的光纤陀螺本征频率。
2.如权利要求1所述的一种光纤陀螺本征频率的在线跟踪方法,其中,所述光纤陀螺包括依次连接的ASE光源、光纤耦合器、集成光学相位调制器和光线敏感环,其中,光纤耦合器的反馈端依次通过光电探测器、前置放大器和模数转换器后输入至逻辑处理器的信号接收端,集成光学相位调制器的控制端依次通过缓冲放大器和数模转换器后连接至逻辑处理器的信号发送端。
3.如权利要求2所述的一种光纤陀螺本征频率的在线跟踪方法,其中,光纤陀螺本征频率和频率生成器的赋值的初始值获取过程包括:获取光纤陀螺的初始渡越时间作为光纤陀螺本征频率τ的初始值,并依据所述初始渡越时间获取频率生成器的赋值的初始值。
4.如权利要求3所述的一种光纤陀螺本征频率的在线跟踪方法,其中,光纤陀螺的初始渡越时间获取方式为:
离线状态下由逻辑处理器生成一定频率和幅值的斜波施加到集成光学相位调制器上,通过示波器测量相邻下脉冲尖峰时间获得初始渡越时间τ0
依据所述初始渡越时间获取频率生成器的赋值的初始值包括:
根据初始渡越时间τ0和逻辑处理器中每个τ0内的模数转换器采样点数n,可得模数转换器的初始时钟频率
Figure FDA0002918036460000021
根据初始时钟频率和闭环控制回路的晶振频率计算频率生成器的初始赋值。
5.如权利要求1或2所述的一种光纤陀螺本征频率的在线跟踪方法,其中,调制信号在光纤陀螺的闭环控制回路传输过程包括:
调制信号经过数模转换和缓冲放大后施加到集成光学相位调制器,以实现对光纤敏感环的输入光信号进行相位调制,相位调制后的光信号经过光纤敏感环产生干涉光信号,干涉光信号被光电探测器接收后,再经过前置放大器放大和模数转换器采集后被逻辑处理器接收。
6.如权利要求1或2所述的一种光纤陀螺本征频率的在线跟踪方法,其中,该方法还包括:
对于以2τ为一个周期的待解调信号,每
Figure FDA0002918036460000022
周期内采样得到待解调信号保持高电平期间的采样累加值分别为Dem_data1、Dem_data2、Dem_data3、Dem_data4、Dem_data5、Dem_data6,其中,
解调出的一个周期内角速度误差量Dω
Dω=Dem_data2-Dem_data3-Dem_data5+Dem_data6;
解调出的一个周期内半波电压误差量D
D=Dem_data2-Dem_data3+Dem_data5-Dem_data6;
解调出的一个周期内本征频率误差量Df
Df=Dem_data1-Dem_data2-Dem_data4+Dem_data5。
7.一种光纤陀螺本征频率的在线跟踪系统,其特征在于,所述系统包括光纤陀螺、数模转换器、缓冲放大器、前置放大器放大、模数转换器和逻辑处理器,所述光纤陀螺包括依次连接的ASE光源、光纤耦合器、集成光学相位调制器和光线敏感环,所述光纤耦合器的反馈端依次通过光电探测器、前置放大器和模数转换器后输入至逻辑处理器的信号接收端,集成光学相位调制器的控制端依次通过缓冲放大器和数模转换器后连接至逻辑处理器的信号发送端,其中,
所述逻辑处理器用于获取的光纤陀螺本征频率τ和频率生成器的赋值,输入频率生成器的赋值以输出对应的闭环控制回路时钟,将闭环控制回路时钟发送至逻辑处理器;基于闭环控制回路时钟并依据光纤陀螺本征频率τ生成对应的不对称四态方波信号和锯齿波信号,将两个信号叠加得到调制信号,其中,不对称四态方波信号的周期为2τ,每个周期中相位浮动为±φ的持续时间为
Figure FDA0002918036460000031
相位浮动为2π±φ的持续时间为
Figure FDA0002918036460000032
锯齿波信号的周期为τ,每个周期中幅值从0上升到最大幅值的总时间为
Figure FDA0002918036460000033
保持幅值为0的时间为
Figure FDA0002918036460000034
接收调制信号经过光纤陀螺的闭环控制回路传输后得到的待解调信号,解调待解调信号获取本征频率误差值,解调过程包括:同一个周期内的第一个
Figure FDA0002918036460000041
周期和第四个
Figure FDA0002918036460000042
周期的信号相减解调得到本征频率误差值和角速度误差值的叠加值,同一个周期内的第二个
Figure FDA0002918036460000043
周期和第五个
Figure FDA0002918036460000044
周期的信号相减解调得到相同调制相位下的角速度误差值,所述叠加值减去相同调制相位下的角速度误差值得到本征频率误差值;利用本征频率误差值更新频率生成器的赋值和获取的光纤陀螺本征频率,重复迭代上述过程直至达到迭代终止条件,输出迭代终止时获取的光纤陀螺本征频率。
8.如权利要求7所述的一种光纤陀螺本征频率的在线跟踪系统,其中,光纤陀螺本征频率和频率生成器的赋值的初始值获取过程包括:获取光纤陀螺的初始渡越时间作为光纤陀螺本征频率τ的初始值,并依据所述初始渡越时间获取频率生成器的赋值的初始值。
9.如权利要求8所述的一种光纤陀螺本征频率的在线跟踪系统,其中,光纤陀螺的初始渡越时间获取方式为:
离线状态下由逻辑处理器生成一定频率和幅值的斜波施加到集成光学相位调制器上,通过示波器测量相邻下脉冲尖峰时间获得初始渡越时间τ0
依据所述初始渡越时间获取频率生成器的赋值的初始值包括:
根据初始渡越时间τ0和逻辑处理器中每个τ0内的模数转换器采样点数n,可得模数转换器的初始时钟频率
Figure FDA0002918036460000045
根据初始时钟频率和闭环控制回路的晶振频率计算频率生成器的初始赋值。
10.如权利要求7所述的一种光纤陀螺本征频率的在线跟踪系统,其中,所述逻辑处理器还用于:
对于以2τ为一个周期的待解调信号,每
Figure FDA0002918036460000046
周期内采样得到待解调信号保持高电平期间的采样累加值分别为Dem_data1、Dem_data2、Dem_data3、Dem_data4、Dem_data5、Dem_data6,
解调出的一个周期内角速度误差量Dω
Dω=Dem_data2-Dem_data3-Dem_data5+Dem_data6;
解调出的一个周期内半波电压误差量D
D=Dem_data2-Dem_data3+Dem_data5-Dem_data6;
解调出的一个周期内本征频率误差量Df
Df=Dem_data1-Dem_data2-Dem_data4+Dem_data5。
CN202110107350.8A 2021-01-27 2021-01-27 一种光纤陀螺本征频率的在线跟踪方法及系统 Active CN112697125B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110107350.8A CN112697125B (zh) 2021-01-27 2021-01-27 一种光纤陀螺本征频率的在线跟踪方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110107350.8A CN112697125B (zh) 2021-01-27 2021-01-27 一种光纤陀螺本征频率的在线跟踪方法及系统

Publications (2)

Publication Number Publication Date
CN112697125A true CN112697125A (zh) 2021-04-23
CN112697125B CN112697125B (zh) 2022-02-18

Family

ID=75516190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110107350.8A Active CN112697125B (zh) 2021-01-27 2021-01-27 一种光纤陀螺本征频率的在线跟踪方法及系统

Country Status (1)

Country Link
CN (1) CN112697125B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113790716A (zh) * 2021-08-27 2021-12-14 北京航空航天大学 一种光纤陀螺本征频率在线自动跟踪的方法
CN114264318A (zh) * 2021-12-06 2022-04-01 河北汉光重工有限责任公司 一种闭环光纤陀螺固有频率测试方法和装置
CN115077510A (zh) * 2022-06-27 2022-09-20 北京航空航天大学 一种基于交替振幅方波的干涉式光纤陀螺调制方法
CN115143949A (zh) * 2022-09-05 2022-10-04 中国船舶重工集团公司第七0七研究所 超高精度光纤陀螺仪本征频率补偿及故障诊断处理方法
CN116045948A (zh) * 2023-03-31 2023-05-02 中国船舶集团有限公司第七〇七研究所 实现光纤陀螺频率跟踪的调制解调方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040233456A1 (en) * 2003-05-23 2004-11-25 Standjord Lee K. Eigen frequency detector for Sagnac interferometers
CN101408425A (zh) * 2008-11-21 2009-04-15 中国航天时代电子公司 一种光纤陀螺本征频率的跟踪方法
CN106403994A (zh) * 2016-08-23 2017-02-15 中国航空工业集团公司西安飞行自动控制研究所 一种闭环光纤陀螺参数的自动调试装置及方法
CN107356266A (zh) * 2017-07-25 2017-11-17 北京航空航天大学 基于偶倍本征频率锯齿波调制的光纤陀螺本征频率测量方法
CN107389097A (zh) * 2017-07-25 2017-11-24 北京航空航天大学 光纤陀螺Sagnac光纤环本征频率跟踪测量方法
CN109724582A (zh) * 2018-12-28 2019-05-07 北京航空航天大学 一种光纤陀螺本征频率在线自动跟踪的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040233456A1 (en) * 2003-05-23 2004-11-25 Standjord Lee K. Eigen frequency detector for Sagnac interferometers
CN101408425A (zh) * 2008-11-21 2009-04-15 中国航天时代电子公司 一种光纤陀螺本征频率的跟踪方法
CN106403994A (zh) * 2016-08-23 2017-02-15 中国航空工业集团公司西安飞行自动控制研究所 一种闭环光纤陀螺参数的自动调试装置及方法
CN107356266A (zh) * 2017-07-25 2017-11-17 北京航空航天大学 基于偶倍本征频率锯齿波调制的光纤陀螺本征频率测量方法
CN107389097A (zh) * 2017-07-25 2017-11-24 北京航空航天大学 光纤陀螺Sagnac光纤环本征频率跟踪测量方法
CN109724582A (zh) * 2018-12-28 2019-05-07 北京航空航天大学 一种光纤陀螺本征频率在线自动跟踪的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANG XIAXIAO,ET.AL: "Eigenfrequency detecting method with sawtooth wave modulation theory for navigation grade fiber optic gyroscopes", 《OPTICAL ENGINEERING》 *
代琪等: "光纤陀螺本征频率高精度在线自动跟踪技术研究", 《激光杂志》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113790716A (zh) * 2021-08-27 2021-12-14 北京航空航天大学 一种光纤陀螺本征频率在线自动跟踪的方法
CN114264318A (zh) * 2021-12-06 2022-04-01 河北汉光重工有限责任公司 一种闭环光纤陀螺固有频率测试方法和装置
CN114264318B (zh) * 2021-12-06 2024-06-11 河北汉光重工有限责任公司 一种闭环光纤陀螺固有频率测试方法和装置
CN115077510A (zh) * 2022-06-27 2022-09-20 北京航空航天大学 一种基于交替振幅方波的干涉式光纤陀螺调制方法
CN115077510B (zh) * 2022-06-27 2024-04-26 北京航空航天大学 一种基于交替振幅方波的干涉式光纤陀螺调制方法
CN115143949A (zh) * 2022-09-05 2022-10-04 中国船舶重工集团公司第七0七研究所 超高精度光纤陀螺仪本征频率补偿及故障诊断处理方法
CN116045948A (zh) * 2023-03-31 2023-05-02 中国船舶集团有限公司第七〇七研究所 实现光纤陀螺频率跟踪的调制解调方法及系统

Also Published As

Publication number Publication date
CN112697125B (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN112697125B (zh) 一种光纤陀螺本征频率的在线跟踪方法及系统
WO2021135171A1 (zh) 一种多相调制解调的光纤陀螺多闭环方法
CN110375727B (zh) 一种闭环光纤陀螺信号调制方法
CN108519079B (zh) 一种双闭环光纤陀螺六态调制降低串扰的方法
CN102650526B (zh) 一种基于相位比较调频连续波光纤陀螺的开环检测电路
CN109990773B (zh) 一种干涉型光纤陀螺环路增益的检测与闭环控制系统及控制方法
JP5362180B2 (ja) 光ファイバ・ジャイロスコープの非同期復調
CN106482723B (zh) 一种半球谐振陀螺仪的力反馈控制系统及控制方法
CN107356266B (zh) 基于偶倍本征频率锯齿波调制的光纤陀螺本征频率测量方法
CN113790716B (zh) 一种光纤陀螺本征频率在线自动跟踪的方法
CN109724582A (zh) 一种光纤陀螺本征频率在线自动跟踪的方法
CN102435186B (zh) 一种光纤陀螺的数字信号处理方法、装置及光纤陀螺仪
CN111220142B (zh) 一种新型超高精度光纤陀螺仪的信号处理方法及装置
CN100541127C (zh) 采用不对称方波调制方法测量干涉式光纤陀螺本征频率的方法
CN115077567B (zh) 一种基于波导复位误差的标度因数补偿系统及方法
CN106871931B (zh) 一种闭环光纤陀螺温度补偿方法
WO2012122713A1 (zh) 一种光纤陀螺仪的萨格奈克相移跟踪方法
CN102901495B (zh) 一种角位移光纤陀螺仪
CN112697124B (zh) 闭环谐振式光学陀螺的方波正交解调实现方法及装置
CN101975584B (zh) 一种适用于干涉式光纤陀螺的检测电路系统误差的开环测试方法
CN113310483B (zh) 一种数字闭环光纤陀螺本征频率实时跟踪装置及方法
CN113720321A (zh) 一种光纤陀螺温度补偿系统
CN101101213B (zh) 一种补偿数字闭环光纤陀螺标度因数非线性度的方法
CN105674976A (zh) 光纤陀螺调制解调方法、提高标度因数稳定性方法及装置
CN109696180A (zh) 基于双电极y波导的超高精度光纤陀螺量化误差抑制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant