CN112691642B - 一种柴油吸附剂及其制备方法 - Google Patents

一种柴油吸附剂及其制备方法 Download PDF

Info

Publication number
CN112691642B
CN112691642B CN202011479378.6A CN202011479378A CN112691642B CN 112691642 B CN112691642 B CN 112691642B CN 202011479378 A CN202011479378 A CN 202011479378A CN 112691642 B CN112691642 B CN 112691642B
Authority
CN
China
Prior art keywords
diesel
adsorbent
crab shell
sodium hydroxide
soaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011479378.6A
Other languages
English (en)
Other versions
CN112691642A (zh
Inventor
纪丽丽
韩笑
郭健
王亚宁
蔡璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Ocean University ZJOU
Original Assignee
Zhejiang Ocean University ZJOU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Ocean University ZJOU filed Critical Zhejiang Ocean University ZJOU
Priority to CN202011479378.6A priority Critical patent/CN112691642B/zh
Publication of CN112691642A publication Critical patent/CN112691642A/zh
Application granted granted Critical
Publication of CN112691642B publication Critical patent/CN112691642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
    • B01J2220/4881Residues from shells, e.g. eggshells, mollusk shells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种柴油吸附剂及其制备方法,以及其吸附柴油的方法,本发明柴油吸附剂是以蟹壳为原料,采用水热碳化技术制备而成,该柴油吸附剂外观呈黑色粉末状,孔径为3‑20nm,孔体积0.0763cm3/g,比表面积17.01m2/g,X射线衍色光谱仪分析其具有23°和39°的衍射峰,以及位于19°的甲壳峰有明显的增强,红外光谱显示其在3259.6cm‑1,2358.9cm‑1,1668.4cm‑1,1377.1cm‑1,1072.4cm‑1,893.04cm‑1有吸收峰。本发明柴油吸附剂具有丰富的孔隙和含氧官能团,可高效吸附柴油,最大去除率达80.1%;同时安全无毒,使用方便,不造成二次污染。

Description

一种柴油吸附剂及其制备方法
技术领域
本发明属于吸附剂技术领域,特别涉及一种柴油吸附剂及其制备方法。
背景技术
柴油是各种各样的复杂烃类混合而形成的,是一种轻质石油产品。柴油在车辆、船舶的柴油发动机方面的用处是最广泛最大的。随着科技日新月异的进步,世界之间的联系必然越来越密切,因此交通运输的需求量也会随之迅猛增长,所以柴油的需求量也会随之而不断增大。然而,在石油的提炼和运送等多个不同的步骤中,会造成庞大的水体污染,污染来源以途中不小心泄露的石油及其衍生物为主,这种废水称为含油废水。含油废水有着巨大的危害,对于人类、动物包括微生物在内、还有其他生物以及整个生态圈都会造成十分不好的负面影响。
到目前为止,溢油清理策略主要有三种:物理法(吸附剂、动臂、撇渣器等)、化学法(原位燃烧固化剂等)和生物修复。然而,化学方法很容易造成二次污染,而生物方法修复率低,这使得它们在清理溢油方面受到很大限制。相比之下,吸附剂在物理方法上对油污的物理回收有显著影响,是一种非常理想的方法。吸附剂将液体油浓缩,转化为半固态或固态,然后将其从污染区域去除,既避免了对环境的危害,又使吸附后的油可回收利用,因此具有高吸附能力、高去除率、结构稳定的柴油吸附剂一直是研究的热点。
发明内容
本发明柴油吸附剂是以蟹壳为原料,采用水热碳化技术制备而成,外观呈黑色粉末状,孔径为3-20nm,主要集中于3-5nm,孔体积0.0763cm3/g,比表面积17.01m2/g,X射线衍色光谱仪分析其具有23°和39°的衍射峰以及位于19°的甲壳峰有明显的增强,红外光谱显示其在3259.6cm-1,2358.9cm-1,1668.4cm-1,1377.1cm-1,1072.4cm-1,893.04cm-1有吸收峰。
本发明采用比表面积以及孔径分析仪测定柴油吸附剂的N2吸附等温线,相关测定结果表明根据IUPAC分类,CSB的N2吸附等温线为Ⅳ型,其分叉不可逆。柴油吸附剂的吸附等温线在P/P0>0.4时出现滞后曲线,表明柴油吸附及形成了介孔结构。
进一步地,本发明采用BET法分析其孔径和比表面积,柴油吸附剂的孔径分布主要在3-20nm范围内,由微孔和中孔组成,是一种多孔级生物炭;柴油吸附剂的比表面积为17.01m2/g,孔体积为0.0763cm3/g;本发明柴油吸附剂比表面积大,孔隙率高且均匀,有助于提高对柴油的吸附能力。
本发明利用X射线衍射光谱仪分析柴油吸附剂的晶体结构和相结构,柴油吸附剂具有23°和39°的两个衍射峰,说明本发明的柴油吸附剂存在CaCO3(012)和(202)晶面的特征,在19°处具有较强的甲壳素衍射峰,表明该柴油吸附剂中有甲壳素(21-1)晶面存在,甲壳素中含有丰富的羟基,可以为柴油吸附剂吸附柴油提供丰富的结合位点增强其吸附效率。
本发明采用傅里叶变换红外光谱测定表面化学官能团,柴油吸附剂的红外光谱显示其在约3259.6cm-1,2358.9cm-1,1668.4cm-1,1377.1cm-1,1072.4cm-1,893.04cm-1处有吸收峰。柴油吸附剂的红外光谱显示出其具有甲壳素的特征峰,这与XRD图谱一致;此外,还观察到的-OH,C=O等含氧官能团和羰基官能团的光谱作为潜在的吸附位点,使其对柴油的吸附性能更加优越。
本发明利用扫描电子显微镜对柴油吸附剂进行表面形貌观察,发现柴油吸附剂的显示出蓬松的不规则层状结构,存在大量的气孔和沟槽;呈现丰富的多孔结构。
一种柴油吸附剂的制备方法,其以蟹壳为原料,盐酸浸泡,洗至中性,氢氧化钠浸煮两次,洗至中性,粉碎后进行水热碳化,过滤洗至中性,烘干粉碎即得到。
进一步地,一种柴油吸附剂的制备方法,其包括以下步骤:
(1)蟹壳预处理
将蟹壳刷洗干净,烘干粉碎过筛,浸泡在盐酸溶液中,洗至中性,氢氧化钠溶液中浸煮两次,洗至中性,烘干得预处理后的蟹壳粉末;
(2)热解生物炭制备
取预处理后的蟹壳粉末加水、乙酸置于反应釜内,压实盖紧后置于烘箱热解,得热解后的生物炭;
(3)柴油吸附剂制备
将步骤2)制备得到的热解后的生物炭离心过滤洗至中性,烘干粉碎过筛即为柴油吸附剂。
优选地,所述步骤1)及步骤3)中的烘干粉碎过筛的粒径为100目。
优选地,所述步骤1)中盐酸溶液的浓度为6%,所述盐酸溶液中浸泡的温度为30℃,所述盐酸溶液中浸泡的时间为4小时。
优选地,所述步骤1)中第一次浸煮氢氧化钠溶液的浓度为6%,第一次浸煮氢氧化钠溶液的温度为90℃,第一次浸煮氢氧化钠溶液的时间为2小时;所述步骤1)中第二次浸煮氢氧化钠溶液的浓度为50%,第二次浸煮氢氧化钠溶液的温度为90℃,第二次浸煮氢氧化钠溶液的时间为9小时。
优选地,所述步骤2)中预处理后的蟹壳粉末:水:乙酸的重量比为1:5:5。
优选地,所述步骤2)中的热解温度为180℃,热解时间为10小时。
优选地,所述步骤3)中得热解后的生物炭离心条件为5000r/min,离心时间为10min。
一种柴油吸附剂吸附柴油的方法,其包括以下步骤:
1)将柴油吸附剂加入到柴油废水中,所述柴油吸附剂与柴油废水溶液的重量体积比(g/L)为1:10;得混合溶液;
2)通过添加0.1mol/L盐酸或0.1mol/L氢氧化钠,将混合溶液的pH值调整为7,在室温下进行吸附,得吸附后的混合溶液;
3)将吸附后的混合溶液在5000r/min下离心10min,取上清液测其OD值,通过公式(1)(2)计算柴油的吸附量和吸附效率。
作为优选,所述步骤1)中柴油废水的浓度为6g/L。
作为优选,所述步骤2)中吸附时间为180min。
本发明采用水热碳化-醋酸活化法在低温下将废弃的蟹壳制备成了一种新型生物炭吸附剂,该吸附剂表面呈现出蓬松的不规则层状结构,具有丰富的孔隙和含氧官能团,可高效吸附柴油,最大去除率达80.1%;同时安全无毒,使用方便,不造成二次污染;本发明制备工艺简单、设计合理、生产安全性高,无有害化学添加剂,对节约资源,实现循环农业,保护生态环境具有重要意义;本发明充分利用海洋自然资源,实现原料高值化利用,同时改善柴油污染海水水质,降低近海生物的影响,提高蟹壳的高附加值。
附图说明
图1为实施例1中柴油吸附剂与对比例1原始蟹壳粉的SEM图。
其中,图1中的a,b为原始蟹壳粉的SEM图,c,d为柴油吸附剂的SEM图。
图2为实施例1中柴油吸附剂(CSB)与对比例1原始蟹壳粉(CS)N2吸附-解吸等温线及孔径分布图。
其中,图2中的CSB为柴油吸附剂的N2吸附-解吸等温线及孔径分布图,CS为原始蟹壳粉的N2吸附-解吸等温线及孔径分布图。
图3为实施例1柴油吸附剂(CSB)与对比例1原始蟹壳粉(CS)的FTIR光谱图。
其中,图3中的CSB为柴油吸附剂生物FTIR图谱,CS为原始蟹壳粉的FTIR图谱。
图4为实施例1柴油吸附剂(CSB)与对比例1原始蟹壳粉(CS)的XRD图。
其中,图4中的CSB为柴油吸附剂生物XRD图谱,CS为原始蟹壳粉的XRD图谱。
图5为实施例2中不同吸附时间对柴油吸附剂吸附效果图。
图6为实施例3中不同投放量对柴油吸附剂吸附效果图。
图7为实施例4中不同pH对柴油吸附剂吸附效果图。
具体实施方式
下列实施例用于进一步解释说明本发明,但是,它们并不构成对本发明范围的限制或限定。
蟹壳来源:舟山市水产市场
烘箱:HH.S11-6天津泰斯特有限公司
本发明所使用的溶剂没有特别的限制,可采用商购的常规溶剂,例如所述盐酸为分析纯,购买于上海国药化学试剂有限公司。
本发明所涉及的X-射线粉末衍射仪器及测试条件为,采用日本岛津的D/max2500X射线衍射仪测定样品X衍射强度随2θ变化情况,以得到样品的结晶度。
本发明所采用的红外光谱仪及测试条件为,利用美国Nicolet Nexus 6700FTIR傅立叶变换红外光谱仪对样品的化学结构和官能团进行检测分析。在扫描范围500cm-1-4000cm-1的条件下,得到的红外光谱图可以作为判断样品组成的依据。
本发明所采用的电子显微镜及测试条件为,利用日本Quanta 200F来分析样品,取10mg样品均匀覆盖于测试板上,之后用扫描电镜在不同倍数下观察样品的形貌以及具体结构。
本发明所采用的比表面积以及孔径分析测定仪测试条件为,利用BK122T-B型比表面积和孔隙度分析仪,称取30-40mg样品,加热体系至300℃,冷却至液氮上升后测定Q值,直到两次结果小于0.001h,加液氮用多点BET法在测定条件:液氮温度(77k)条件下检测生物炭的比表面积,利用DFT法对孔径的分布进行测定。
本发明关于柴油吸附剂对柴油废水吸附的吸附率的计算:
Figure BDA0002836649300000041
Figure BDA0002836649300000042
其中,R(%)是吸附剂吸附柴油的量,qt(g/g)是吸附剂吸附柴油的量,C0(g/L)和Ct(g/L)为初始浓度和在一定反应时间点的浓度,V是溶液的体积(L),m(g)是吸附剂的重量。
对比例1原始蟹壳粉的制备
将50g蟹壳刷洗干净,烘干粉碎过100目筛,得到原始蟹壳粉45g。
实施例1柴油吸附剂的制备
(1)蟹壳预处理
将50g蟹壳刷洗干净,烘干研磨粉碎过100目筛,在500ml 6%的盐酸溶液30℃浸泡4小时,洗至中性后在500ml 6%的氢氧化钠溶液90℃浸煮2小时,再在500ml 50%的氢氧化钠溶液90℃浸煮9小时,洗至中性,烘干得预处理后的蟹壳粉末16g;
(2)热解生物炭制备
将步骤(1)中烘干粉碎的蟹壳粉末16g,加水、乙酸,按照蟹壳粉末:水:乙酸=1:5:5的重量比置于反应釜内,压实盖紧后置于烘箱180℃热解10小时;得热解后的生物炭2.8g;
(3)柴油吸附剂制备
将步骤2)制备得到的热解后的生物炭2.8g在5000r/min离心10min,过滤洗至中性,烘干粉碎过100目筛即得柴油吸附剂2.6g。
分别取10mg实施例1中的柴油吸附剂及对比例1中的原始蟹壳粉均匀覆盖于测试板上,之后用扫描电镜在不同倍数下观察柴油吸附剂及原始蟹壳粉的形貌以及具体结构,其结果如图1所示。
该柴油吸附剂外观呈黑色粉末状,经测定其比表面积为17.01m 2/g,孔径为3-20nm,主要集中于3-5nm,孔体积为0.0763cm3/g,其比表面积和孔径图如图2所示;红外光谱显示其在3259.6cm-1,2358.9cm-1,1668.4cm-1,1377.1cm-1,1072.4cm-1,893.04cm-1有吸收峰,红外光谱图如图3所示;X射线衍射光谱仪分析其具有23°、39°和19°的衍射峰,XRD图如图4所示;
实施例2柴油吸附剂对柴油的吸附(不同吸附时间)
1)取实施例1中的柴油吸附剂0.01g与100mL浓度为6g/L的柴油废水溶液混合;
2)通过添加0.1mol/L盐酸或0.1mol/L氢氧化钠,将混合溶液的pH值调整到7,在室温下吸附不同的时间;得吸附后的混合溶液;
3)将吸附后的混合溶液在5000r/min下离心10min,取上清液测量其OD值,通过公式(1)(2)计算柴油的吸附量及吸附率,其结果如表1及图5所示。
从表1可以看出来柴油吸附率先迅速增加,在180min时达到吸附平衡,最大吸附率为80.1%。
表1
吸附时间(min) 柴油吸附量(g/g) 柴油吸附率(%)
5 9.9 16.5
10 12.2 20.3
20 15.4 25.6
30 21.1 35.2
60 24.4 40.7
90 31.9 53.1
120 36.3 60.5
180 48.1 80.1
240 48 80
360 47.9 79.8
实施例3柴油吸附剂对柴油的吸附(不同吸附剂投放量)
1)取实施例1中的柴油吸附剂0.005g、0.01g、0.015g、0.02g、0.025g分别与100mL浓度为6g/L的柴油废水溶液混合;
2)通过添加0.1mol/L盐酸或0.1mol/L氢氧化钠,将混合溶液的pH值调整到7,在室温下吸附180min;
3)将吸附后的混合溶液在5000r/min下离心10min,取上清液测量其OD值,通过公式(1)(2)计算柴油的吸附量及吸附率,其结果如表2及图6所示。
从表2可以看出在0.005~0.025g范围内,随着柴油吸附剂用量的增加,柴油吸附剂对柴油的吸附容量急剧增加,然后逐渐趋于平缓。
表2
吸附剂投放量(g) 柴油吸附量(g/g) 柴油吸附率(%)
0.005 40.6 67.7
0.01 48.1 80.1
0.015 47.9 79.9
0.02 47.7 79.56
0.025 47.8 79.66
实施例4柴油吸附剂对柴油的吸附(不同吸附pH)
1)取实施例1中的柴油吸附剂0.01g与100mL浓度为6g/L的柴油废水溶液混合;
2)通过添加0.1mol/L盐酸或0.1mol/L氢氧化钠,将混合溶液的pH值分别调整到5、6、7、8、9,在室温下吸附180min。
3)混合溶液在5000r/min下离心10min,取上清液测量其OD值,通过公式(1)(2)计算柴油的吸附量及吸附率,其结果如表3及图7所示。
从表3可以看出在pH5-9的范围内,CSB对柴油的吸附性能在pH=7时较好,最大吸附率为80.1%。
表3
pH值 柴油吸附量(g/g) 柴油吸附率(%)
5 45.1 75.2
6 45.5 75.9
7 48.1 80.1
8 46.9 78.2
9 44.9 74.9
实施例5发明人检索了目前技术中的柴油吸附剂,同时列举相应的吸附效果,其结果见表4所示。
表4
吸附剂 柴油吸附量(g/g) 参考文献
磁性碳纳米管 6.6 Spaulding MLet al.
高吸油树脂 10.1 胡静璇等.
磁性超疏水纳米纤维 12.2 Xiaobiao Zhuet al.
石墨烯气凝胶 21.5 Huang Jet al.
乙酰化麦秸 24.5 Lv Eet al.
纤维素酶改性玉米秸秆 25 彭丹等
本发明中柴油吸附剂 48.1 本发明
其中Spaulding MLet al.是指Spaulding ML(2017)State of the art reviewand future directions in oil spill modeling.Mar Pollut Bull 115(1–2):7–19.
其中胡静璇等指胡静璇,杜姗姗,任秀梅,等.橡胶基丙烯酸酯系高吸油树脂的制备及性能[J].高分子材料科学与工程,2016,32(10):149-153.
其中Xiaobiao Zhuet al.是指Xiaobiao Zhu,Ye Tian,Feifei Li,Yapeng Liu,Xiaohui Wang,Xiang Hu.(2018)Preparation and application of magneticsuperhydrophobic polydivinylbenzene nanofibers for oil adsorption inwastewater.EnvironSci PollutRes.25:22911-22919.
其中Huang Jet al是指Huang J,Yan Z.(2018)Adsorption mechanism of oilby resilient graphene aerogels from oil-water emulsion.Langmuir.34(5):1890–8.
其中Lv Eet al.是指Lv E,Xia W,Tang M,Pu Y.Preparation of an efficientoil-spill adsorbent based on wheat straw.BioResources 2017;12(1):296–315.
其中彭丹等是指彭丹,党志,郑柳春.生物改性玉米秸秆处理油污染水体的研究[J].农业环境科学学报,2018,2:309-315.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (2)

1.一种柴油吸附剂,其特征在于:是以蟹壳为原料,采用水热碳化技术制备而成,该柴油吸附剂外观呈黑色粉末状,孔径为3-20nm,孔体积0.0763cm3/g,比表面积17.01m2/g,X射线衍色光谱仪分析其具有23°和39°的衍射峰,以及位于19°的甲壳峰有明显的增强,红外光谱显示其在3259.6cm-1,2358.9cm-1,1668.4cm-1,1377.1cm-1,1072.4cm-1,893.04cm-1有吸收峰;所述柴油吸附剂通过以下方法制备得到:其以蟹壳为原料,盐酸浸泡,洗至中性,氢氧化钠浸煮两次,洗至中性,粉碎后进行水热碳化,过滤洗至中性,烘干粉碎即得到;具体包括以下步骤:
(1)蟹壳预处理
将蟹壳刷洗干净,烘干粉碎过筛,浸泡在盐酸溶液中,洗至中性,氢氧化钠溶液中浸煮两次,洗至中性,烘干得预处理后的蟹壳粉末;
(2)热解生物炭制备
取预处理后的蟹壳粉末加水、乙酸置于反应釜内,压实盖紧后置于烘箱热解,得热解后的生物炭;
(3)柴油吸附剂制备
将步骤(2)制备得到的热解后的生物炭离心过滤洗至中性,烘干粉碎过筛即为柴油吸附剂,
其中,所述步骤(1)及步骤(3)中的烘干粉碎的粒径为100目;所述步骤(1)中盐酸溶液的浓度为6%,所述盐酸溶液中浸泡的温度为30℃,所述盐酸溶液中浸泡的时间为4小时;所述步骤(1)中第一次浸泡氢氧化钠溶液的浓度为6%,第一次浸泡氢氧化钠溶液的温度为90℃,第一次浸泡氢氧化钠溶液的时间为2小时;所述步骤(1)中第二次浸泡氢氧化钠溶液的浓度为50%,第二次浸泡氢氧化钠溶液的温度为90℃,第二次浸泡氢氧化钠溶液的时间为9小时;步骤(2)中预处理后的蟹壳粉末:水:乙酸的重量比为1:5:5;步骤(2)中的热解温度为180℃,热解时间为10小时;所述步骤(3)中得热解后的生物炭离心条件为5000r/min,离心时间为10min。
2.如权利要求1所述柴油吸附剂吸附柴油的方法,其包括以下步骤:
1)将柴油吸附剂加入到柴油废水中,所述柴油吸附剂与柴油废水溶液的重量体积比g/L为1:10;得混合溶液;
2)通过添加0.1mol/L盐酸或0.1mol/L氢氧化钠,将混合溶液的pH值调整为7,在室温下进行吸附,得吸附后的混合溶液;
3)将吸附后的混合溶液在5000r/min下离心10min;
其中,所述步骤1)中柴油废水的浓度为6g/L;所述步骤2)中吸附时间为180min。
CN202011479378.6A 2020-12-15 2020-12-15 一种柴油吸附剂及其制备方法 Active CN112691642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011479378.6A CN112691642B (zh) 2020-12-15 2020-12-15 一种柴油吸附剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011479378.6A CN112691642B (zh) 2020-12-15 2020-12-15 一种柴油吸附剂及其制备方法

Publications (2)

Publication Number Publication Date
CN112691642A CN112691642A (zh) 2021-04-23
CN112691642B true CN112691642B (zh) 2022-08-02

Family

ID=75508188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011479378.6A Active CN112691642B (zh) 2020-12-15 2020-12-15 一种柴油吸附剂及其制备方法

Country Status (1)

Country Link
CN (1) CN112691642B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749178B (zh) * 2022-05-13 2023-11-24 集美大学 一种利用蟹壳制备餐饮油烟净化处理催化剂的方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109046241A (zh) * 2018-08-15 2018-12-21 浙江海洋大学 一种基于蟹壳生物质炭油污吸附剂的制备方法
CN110961087A (zh) * 2019-11-26 2020-04-07 浙江海洋大学 一种px吸附剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109046241A (zh) * 2018-08-15 2018-12-21 浙江海洋大学 一种基于蟹壳生物质炭油污吸附剂的制备方法
CN110961087A (zh) * 2019-11-26 2020-04-07 浙江海洋大学 一种px吸附剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蟹壳生物炭材料的制备及对柴油吸附性能的研究;张小蝶;《中国优秀硕士学位论文全文数据库 工程科技II辑》;20180815(第8期);正文第12页 *

Also Published As

Publication number Publication date
CN112691642A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
Mu et al. NaOH-modified mesoporous biochar derived from tea residue for methylene Blue and Orange II removal
Wang et al. Removal of organic solvents/oils using carbon aerogels derived from waste durian shell
Ma et al. Adsorption of congo red on mesoporous activated carbon prepared by CO2 physical activation
Hazzaa et al. Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones
Weng et al. Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder
Awe et al. Preparation and characterisation of activated carbon from Vitis vinifera leaf litter and its adsorption performance for aqueous phenanthrene
Asadu et al. Development of an adsorbent for the remediation of crude oil polluted water using stearic acid grafted coconut husk (Cocos nucifera) composite
Mu et al. Functionalized mesoporous magnetic biochar for methylene blue removal: Performance assessment and mechanism exploration
Salman et al. Determination the optimal conditions of methylene blue adsorption by the chicken egg shell membrane
Tang et al. Wheat straw modified with palmitic acid as an efficient oil spill adsorbent
Zhu et al. Adsorption of Ponceau 4R from aqueous solutions using alkali boiled Tilapia fish scales
Du et al. pH fractionated lignin for the preparation of lignin-based magnetic nanoparticles for the removal of methylene blue dye
Faraji et al. Kinetics and equilibrium studies of the removal of blue basic 41 and methylene blue from aqueous solution using rice stems
Ogbodo et al. Preparation and Characterization of activated carbon from agricultural waste (Musa-paradisiaca peels) for the remediation of crude oil contaminated water
CN112691642B (zh) 一种柴油吸附剂及其制备方法
Asadu et al. Treatment of crude oil polluted water using stearic acid grafted mango seed shell (Mangifera indica) composite
Bojić et al. Comparison of new biosorbents based on chemically modified Lagenaria vulgaris shell
Rajendran et al. Characterization studies of activated carbon from low cost agricultural waste: Leucaena leucocephala seed shell
Brahma et al. Coconut husk ash fabricated coAl-layered double hydroxide composite for the enhanced sorption of malachite green dye: Isotherm, kinetics and thermodynamic studies
Asadpour et al. Further study of adsorption of crude oils onto acetylated corn silk and its kinetics and equilibrium isotherm
Mohadi et al. Unique adsorption properties of cationic dyes malachite green and rhodamine-B on longan (Dimocarpus longan) peel
Sashikesh et al. A comparison study of the efficacy of different activated charcoals derived from Palmyra kernel shell in removing phenolic compounds
Nirmaladevi et al. Adsorptive behavior of biochar and zinc chloride activated hydrochar prepared from Acacia leucophloea wood sawdust: kinetic equilibrium and thermodynamic studies
Zhang et al. A new type of calcium-rich biochars derived from spent mushroom substrates and their efficient adsorption properties for cationic dyes
Xia et al. Fungal mycelium modified hierarchical porous carbon with enhanced performance and its application for removal of organic pollutants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant