CN112683945A - 一种新型高金属含量结构材料燃烧热的测试方法 - Google Patents

一种新型高金属含量结构材料燃烧热的测试方法 Download PDF

Info

Publication number
CN112683945A
CN112683945A CN202011531312.7A CN202011531312A CN112683945A CN 112683945 A CN112683945 A CN 112683945A CN 202011531312 A CN202011531312 A CN 202011531312A CN 112683945 A CN112683945 A CN 112683945A
Authority
CN
China
Prior art keywords
bomb
ignition
combustion
ignition wire
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011531312.7A
Other languages
English (en)
Inventor
郑晓林
朱宏春
左国平
王吉强
苗建波
边利峰
李阳
于科青
勒亮
李大鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inner Mongolia Synthetic Chemical Research Institute
Original Assignee
Inner Mongolia Synthetic Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inner Mongolia Synthetic Chemical Research Institute filed Critical Inner Mongolia Synthetic Chemical Research Institute
Priority to CN202011531312.7A priority Critical patent/CN112683945A/zh
Publication of CN112683945A publication Critical patent/CN112683945A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明涉及一种新型高金属含量结构材料燃烧热的测试方法,包括如下步骤:将高金属含量结构材料制备成粉末试样;在已知质量的坩埚底部铺设纤维布,将称量的粉末试样放入坩埚内,将点火丝绑在点火电极上,点火丝另一端与粉末试样接触;用移液管向弹体内注入去离子水,将坩埚和点火丝放入弹体内,拧紧弹体盖子,向弹体内充入氧气充压至2Mpa,将弹体放到内筒中,加入去离子水,接好点火电极,进行点火试验;试验结束后,取出氧弹和内筒,打开氧弹放气阀缓慢放出气体;取燃烧后剩余的点火丝,用电子天平称量其质量,即燃尽的点火丝质量,燃尽的点火丝的热量计算;根据以上试验结果得出含能材料的燃烧热。本发明解决含能材料难燃、燃温高等问题。

Description

一种新型高金属含量结构材料燃烧热的测试方法
技术领域
本发明涉及材料燃烧热测试领域,具体涉及一种新型高金属含量结构材料燃烧热的测试方法。
背景技术
新型高金属含量结构材料是一种兼具高强度、高密度、钝感、高热量等特点的复合材料。根据报道显示,新型含能材料燃烧热仅有理论计算结果,没有实验测试结果,因此,需要进行定量表征。目前,测试推进剂的热值采用GJB770B-2005方法701.2《爆热和燃烧热测定恒温法》。GJB770B-2005是适用于火药、火工药剂燃烧热测定的军用标准。该测试所用仪器是氧弹式热量计,其测试原理为:待测样品完全燃烧所释放的能量使得氧弹本身及其周围介质(水)和热量计有关的附件温度升高,测出仪器系统在燃烧前后温度的变化,算出该样品的恒容燃烧热。
与常规测试的推进剂不同,一方面新型含能材料具有钝感的独特性能,在燃烧热测试实验时,不能被快速点燃。另一方面新型含能材料具有高能量的特点,在燃烧热测试时,材料被点燃瞬间释放出大量的热,点燃时火焰温度高达上千度乃至几千度以上。盛装试样的容器、点火电极等部件为不锈钢坩埚,尽管不锈钢的耐热温度可达900~1150℃,但仍然无法承接材料被点燃时的瞬时高温和热量,致使坩埚在高温下变形甚至烧穿,无法被再次使用。如果燃烧现象更剧烈时,不锈钢坩埚会被完全烧毁,坩埚支架的圆环也会被烧掉一部分,不锈钢坩埚及坩埚支架的一部分在高温下熔化掉在氧弹底部的结果,影响下一次燃烧热的正常测试。由于系统内部释放了大量热,致使系统内温突然升高,氧弹本身及其周围介质(水)和热量计有关的附件的温度升高,仪器系统测定在燃烧前后温度发生了变化,造成含能材料的实测热值与理论热值差别较大,无法得到其燃烧热的真值。
综上所述,新型高金属含量结构材料燃烧热测试必须解决两个主要问题:①含能材料燃点火困难,存在难燃、不燃的现象。②含能材料燃温高,易造成氧弹部件的烧蚀。含能材料燃烧热性能检测技术上的突破,必须解决材料燃烧放出大量热、惰性等关键问题。该问题的核心瓶颈是新型高金属含量结构材料能量性能分析及表征的关键性技术,一旦取得突破性进展,有力促进该分析手段在新型含能材料、推进剂能量性能表征的拓展应用。
发明内容
本发明提供一种新型高金属含量结构材料燃烧热的测试方法,解决含能材料难燃、燃温高等问题。
为了解决上述技术问题,本发明提供一种新型高金属含量结构材料燃烧热的测试方法,包括如下步骤:
S1:将高金属含量结构材料制备成粉末试样,准确称量粉末试样0.1000g-1.000g;
S2:在已知质量为M1的坩埚底部铺设纤维布,将S1中称量的粉末试样放入坩埚内,将已知质量M2的点火丝绑在点火电极上,点火丝另一端与粉末试样接触;
S3:用移液管向弹体内注入10mL去离子水,将S2中的坩埚和点火丝放入弹体内,拧紧弹体盖子,将弹体和氧气瓶连接,并将弹体内的氧气充压至2Mpa,将弹体放到内筒中,加入2L去离子水,接好点火电极,进行点火试验;
S4:试验结束后,取出氧弹和内筒,打开氧弹放气阀缓慢放出气体;
S5:取燃烧后剩余的点火丝,用电子天平称量其质量M3,即燃尽的点火丝质量M4,燃尽的点火丝的热量计算公式如下:
Q c=M4×5880 (1)
式中:5880—点火丝单位质量的燃烧热,J·g-1
S6:根据以上试验结果得出含能材料的燃烧热,如下式(2)所示,
cU真实=Q T —(Q c/ms) (2)
式中:
cU真实—单位质量的样品在氧弹实际燃烧过程的恒容燃烧热,J·g-1
ms—样品的质量,g;
Q T —样品在氧弹测试过程的恒容燃烧热,J·g-1
本发明所提供的高金属含量结构材料燃烧热的测试方法,具有操作方便、结构简单、重现性好等技术优点。本发明为含能材料的配方研究提供技术支撑,可在高金属含量推进剂等领域推广应用。
附图说明
图1.氧弹燃烧室;
图2.铺设隔热膜的坩埚;
其中,8-样品,9-点火丝,10-坩埚,11-样品支架,12-弹桶,13-隔热膜。
具体实施方式
下面结合具体实施例对本发明做进一步说明:
一种新型高金属含量结构材料燃烧热的测试方法,包括如下步骤:
S1:将高金属含量结构材料制备成粉末试样,准确称量粉末试样0.4061g;
S2:在已知质量为M1的坩埚底部铺设纤维布,将S1中称量的粉末试样放入坩埚内,将已知质量M2的点火丝绑在点火电极上,点火丝另一端与粉末试样接触;
S3:用移液管向弹体内注入10mL去离子水,将S2中的坩埚和点火丝放入弹体内,拧紧弹体盖子,将弹体和氧气瓶连接,并将弹体内的氧气充压至2Mpa,将弹体放到内筒中,加入2L去离子水,接好点火电极,进行点火试验;
S4:试验结束后,取出氧弹和内筒,打开氧弹放气阀缓慢放出气体;
S5:取燃烧后剩余的点火丝,用电子天平称量其质量0.0034g,即燃尽的点火丝质量0.0163g,燃尽的点火丝的热量计算公式如下:
Q c=M4×5880 (1)
式中:5880—点火丝单位质量的燃烧热,J·g-1
测定得到含能材料的恒容燃烧热为:Q T =30850 J·g-1
S6:根据以上试验结果得出含能材料的燃烧热,如下式(2)所示,
cU真实=Q T —(Q c/ms) (2)
式中:
cU真实—单位质量的样品在氧弹实际燃烧过程的恒容燃烧热,J·g-1
ms—样品的质量,g;
Q T —样品在氧弹测试过程的恒容燃烧热,J·g-1
根据公式(2),计算得到含能材料的真实燃烧热为:
Figure 291038DEST_PATH_IMAGE001
=30614J·g-1

Claims (1)

1.一种新型高金属含量结构材料燃烧热的测试方法,其特征在于,包括如下步骤:
S1:将高金属含量结构材料制备成粉末试样,准确称量粉末试样0.1000g-1.000g;
S2:在已知质量为M1的坩埚底部铺设纤维布,将S1中称量的粉末试样放入坩埚内,将已知质量M2的点火丝绑在点火电极上,点火丝另一端与粉末试样接触;
S3:用移液管向弹体内注入10mL去离子水,将S2中的坩埚和点火丝放入弹体内,拧紧弹体盖子,将弹体和氧气瓶连接,并将弹体内的氧气充压至2Mpa,将弹体放到内筒中,加入2L去离子水,接好点火电极,进行点火试验;
S4:试验结束后,取出氧弹和内筒,打开氧弹放气阀缓慢放出气体;
S5:取燃烧后剩余的点火丝,用电子天平称量其质量M3,即燃尽的点火丝质量M4,燃尽的点火丝的热量计算公式如下:
Q c=M4×5880 (1)
式中:5880—点火丝单位质量的燃烧热,J·g-1
S6:根据以上试验结果得出含能材料的燃烧热,如下式(2)所示,
cU真实=Q T —(Q c/ms) (2)
式中:
cU真实—单位质量的样品在氧弹实际燃烧过程的恒容燃烧热,J·g-1
ms—样品的质量,g;
Q T —样品在氧弹测试过程的恒容燃烧热,J·g-1
CN202011531312.7A 2020-12-22 2020-12-22 一种新型高金属含量结构材料燃烧热的测试方法 Pending CN112683945A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011531312.7A CN112683945A (zh) 2020-12-22 2020-12-22 一种新型高金属含量结构材料燃烧热的测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011531312.7A CN112683945A (zh) 2020-12-22 2020-12-22 一种新型高金属含量结构材料燃烧热的测试方法

Publications (1)

Publication Number Publication Date
CN112683945A true CN112683945A (zh) 2021-04-20

Family

ID=75450731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011531312.7A Pending CN112683945A (zh) 2020-12-22 2020-12-22 一种新型高金属含量结构材料燃烧热的测试方法

Country Status (1)

Country Link
CN (1) CN112683945A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900706A (zh) * 2006-06-07 2007-01-24 西北工业大学 含硼贫氧推进剂热值测试装置
CN108061739A (zh) * 2017-12-10 2018-05-22 内蒙合成化工研究所 一种含能粘合剂标准摩尔生成焓的测试方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1900706A (zh) * 2006-06-07 2007-01-24 西北工业大学 含硼贫氧推进剂热值测试装置
CN108061739A (zh) * 2017-12-10 2018-05-22 内蒙合成化工研究所 一种含能粘合剂标准摩尔生成焓的测试方法

Similar Documents

Publication Publication Date Title
Kadiresh et al. Experimental study on ballistic behaviour of an aluminised AP/HTPB propellant during accelerated aging
Zhang et al. A device for testing thermal impact sensitivity of high explosives
Lan et al. Preparation and performances characterization of HNIW/NTO-based high-energetic low vulnerable polymer-bonded explosive
Feng et al. Experimental Study on the Reaction Zone Distribution of Impact‐Induced Reactive Materials
Arkhipov et al. Laboratory method for measurement of the specific impulse of solid propellants
Kim et al. Slow and rapid thermal decomposition characteristics of enhanced blast explosives for burning in fuel-rich, oxygen-rich conditions
Zou et al. Preparation, thermal investigation and detonation properties of ε-CL-20-based polymer-bonded explosives with high energy and reduced sensitivity
Wang et al. Detonation characteristics of emulsion explosives sensitized by hydrogen‐storage glass microballoons
CN112683945A (zh) 一种新型高金属含量结构材料燃烧热的测试方法
Qin et al. Experimental and Simulation Study on the Ignition Criterion of JHL‐3 under Non‐Shock Loading
Lan et al. Investigation into the Temperature Adaptability of HNIW‐based PBXs
Ma et al. Theoretical and experimental studies on thermostatic explosion behavior of typical melting and casting explosive 2, 4-dinitroanisole (DNAN)
Arnold et al. DRAGON–The German Thermo‐Chemical Code Based on the Becker‐Kistiakowsky‐Wilson Equation of State
Zhou et al. The Role of Al Reaction Rate in the Damage Effect and Energy Output of RDX‐Based Aluminized Explosives in Concrete
Zhang et al. Study on dynamic burning rate equation of propellant
Dai et al. Projectile Impact Ignition and Reaction Violent Mechanism for HMX‐Based Polymer Bonded Explosives at High Temperature
Prianto et al. Analysis of composite propellant energy and correlation with specific impulse at vacuum level
Hsu et al. Thermal safety characterization and explosion violence of energetic materials
Yan et al. Effects of polymeric binders on the rdx-based explosive response character under slow cook-off conditions
Szala et al. Preliminary study of new propellants containing guanidinium or triaminoguanidinium azotetrazolate
CN114034731A (zh) 含能材料爆热、爆压的双功能测定装置和方法
CN118583916A (zh) 一种新型高氮含能材料燃烧热的测试方法
Xu et al. Experimental performance assessment of layered thermobaric explosive in an explosion chamber
Du et al. Shock initiation investigation of a pressed Trinitrotoluene explosive
Nassim et al. Thermal stability of explosive mixture with additives at different ambient temperatures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210420