CN112682105B - 带有异形微群气膜冷却孔的涡轮叶片结构及制备方法和燃气轮机 - Google Patents

带有异形微群气膜冷却孔的涡轮叶片结构及制备方法和燃气轮机 Download PDF

Info

Publication number
CN112682105B
CN112682105B CN202011513089.3A CN202011513089A CN112682105B CN 112682105 B CN112682105 B CN 112682105B CN 202011513089 A CN202011513089 A CN 202011513089A CN 112682105 B CN112682105 B CN 112682105B
Authority
CN
China
Prior art keywords
film cooling
special
air film
section
turbine blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011513089.3A
Other languages
English (en)
Other versions
CN112682105A (zh
Inventor
黄维娜
郭文
娄德仓
李海旺
由儒全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Sichuan Gas Turbine Research Institute
Original Assignee
AECC Sichuan Gas Turbine Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Sichuan Gas Turbine Research Institute filed Critical AECC Sichuan Gas Turbine Research Institute
Priority to CN202011513089.3A priority Critical patent/CN112682105B/zh
Publication of CN112682105A publication Critical patent/CN112682105A/zh
Application granted granted Critical
Publication of CN112682105B publication Critical patent/CN112682105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

带有异形微群气膜冷却孔的涡轮叶片结构及制备方法和燃气轮机,所述异形微群气膜冷却孔位于涡轮叶片端壁的近压力面区域,所述异形微群气膜冷却孔是由多排异形的微气膜冷却孔组成,每排异形的微气膜冷却孔包括多个异形的微气膜冷却孔。采用本发明的异形微群气膜冷却孔的涡轮叶片结构可以实现更佳更为均匀的冷却效率。除此之外,由于气膜冷却孔结构较为平滑与简单,异形微群气膜冷却孔的涡轮叶片结构具有冷却效果好,加工简单等优点。

Description

带有异形微群气膜冷却孔的涡轮叶片结构及制备方法和燃气 轮机
技术领域
本发明涉及燃气轮机涡轮叶片冷却技术,具体涉及带有异形微群气膜冷却孔的涡轮叶片结构及制备方法和燃气轮机。
背景技术
涡轮进口燃气温度的提高对航空发动机性能的提升、发动机推重比的提高起到了关键的作用。目前,先进的军用、民用航空发动机的涡轮前进口燃气温度均已超过1850K,随着航空发动机的进一步发展,涡轮前进口温度会进一步提高,但国内外对航空发动机安全可靠性、服役寿命的要求却不断提高。可见,为了对高温涡轮叶片进行有效的保护,除了耐高温材料的发展以外,必须对其采取高效的冷却措施。气膜冷却一方面可以对涡轮叶片壁面进行冷却,另一方面可以隔绝高温燃气,在众多的冷却技术当中,气膜冷却占有极其重要的地位。气膜冷却技术虽然已经快速发展了几十年,但是随着涡轮前燃气温度的快速提高以及研究手段不断发展,气膜冷却技术的相关研究仍处于蓬勃发展的阶段。
传统圆柱形气膜冷却孔是气膜冷却的基础孔型,相对于没有气膜冷却的情况,传统圆柱形气膜冷却孔的应用显著提高了涡轮叶片的冷却效果。但是在大吹风比工况下,圆柱形气膜冷却孔产生的射流的法向动量比较集中,易于穿透主流使得气膜脱离壁面;虽然在小吹风比下这个问题有所改善,但由于圆柱孔射流的展向覆盖范围有限,冷气的有效利用率仍然较低。近些年来,研究学者们大多是通过改进孔型结构来提高气膜在壁面的覆盖效果。但是复杂的异形气膜孔从加工难度、应用成熟度、叶片结构强度等因素却大多不如圆柱形气膜冷却孔,如分叉孔、姊妹孔、交叉双孔、簸箕形孔等在一定程度上减弱了涡轮叶片强度,收缩缝形孔、腰形缝孔、月牙形孔的加工难度很大,从加工工艺的成熟度上考虑是无法实际应用的。
发明内容
本发明提供了一种带有异形微群气膜冷却孔的涡轮叶片结构,解决了现有技术中异形气膜冷却孔在涡轮叶片冷却结构的应用设计阶段中存在叶片结构强度的考虑不足以及加工工艺困难等问题,而且相比于圆柱形气膜冷却孔可显著提升综合冷却效果。
实现本发明上述目的所采用的技术方案为:一种带有异形微群气膜冷却孔的涡轮叶片结构,其特征为:所述异形微群气膜冷却孔,包含涡轮叶片前缘上的异形微群气膜冷却孔3,涡轮叶片压力面上的异形微群气膜冷却孔4和涡轮叶片吸力面上的异形微群气膜冷却孔5,所述异形微群气膜冷却孔是由多排异形的微气膜冷却孔组成,每排异形的微气膜冷却孔包括多个异形的微气膜冷却孔。
优选为:所述异形微气膜冷却孔是由微孔圆柱段和微孔扩张段组成。
优选为:所述异形微气膜孔的流向沿轴线z轴方向,与气膜孔流向垂直的气膜孔截面为x-y平面。
优选为:所述微孔圆柱段具有流向(z方向)长度L1,所述微孔圆柱段的x-y截面的为直径d1的圆形截面,所述微孔扩张段具有流向(z方向)长度L2,所述微孔扩张段由x-y截面直径为d1的圆形截面入口扩张为x-y截面直径为d2的圆形截面出口,在出口直径为d2的圆形截面上,经过x=-d1的平面,沿流向(z方向)切除扩张段,形成微孔扩张段的D形截面出口。
优选为:所述微孔扩张段的入口通过直径为d1的圆形截面与微孔圆柱段相连接,所述微孔扩张段的扩张方向为D形截面的圆弧方向,其扩张方向与主流流动流向一致。
优选为:所述异形微气膜冷却孔开设于涡轮叶片端壁上,所述异形微气膜冷却孔流向(z方向)与涡轮叶片端壁平面有一流向倾角为α,所述流向倾角α=90,所述气膜孔流向(z方向)总长度L等于涡轮叶片端壁壁面厚度。
优选为:所述异形微群气膜冷却孔是由多排异形的微气膜冷却孔组成,每排异形的微气膜冷却孔包括多个异形的微气膜冷却孔。
优选为:所述多排异形的微气膜冷却孔之间交叉排列或是顺排排列,沿展向(叶高方向)相邻两个微气膜冷却孔的孔间距为S,沿流向(主流流动方向)相邻两排微气膜冷却孔的孔间距为P,沿展向(叶高方向)相邻两排微气膜冷却孔的孔间距为S1。
有益效果
本发明提出了一种带有异形微群气膜冷却孔的涡轮叶片结构,异形的微气膜冷却孔是在圆柱形气膜冷却孔的基础上进行流向与展向的平滑扩张而成,采用微气膜冷却孔一方面可以避免常规大尺寸气膜冷却孔对涡轮叶片强度的削弱,另一方面可以通过多排异形的微气膜冷却孔带来更加均匀的气膜覆盖效果,避免常规的大尺寸气膜冷却孔的小范围气膜覆盖效果。采用本发明的异形微群气膜冷却孔的涡轮叶片结构可以实现更佳更为均匀的冷却效率。除此之外,由于气膜冷却孔结构较为平滑与简单,异形微群气膜冷却孔的涡轮叶片结构具有冷却效果好,加工简单等优点。
附图说明
图1:本发明提出的异形的微气膜冷却孔的轴测图;
图2:本发明提出的异形的微气膜冷却孔的主视图(y-z截面);
图3:本发明提出的异形的微气膜冷却孔的俯视图(x-y截面);
图4:本发明提出的异形的微气膜冷却孔在涡轮叶片上结构位置示意图;
图5:多排异形的微气膜冷却孔的位置布局。
图6:给出了一个叶片模型上的气膜孔冷却效果对比实例,以展示本发明带有异形微群气膜冷却孔的高效冷却效果。
图中:1.微孔圆柱段,2.微孔扩张段,3.涡轮叶片前缘上的异形微群气膜冷却孔,4. 涡轮叶片压力面上的异形微群气膜冷却孔,5. 涡轮叶片吸力面上的异形微群气膜冷却孔,6.内冷通道。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
参阅图1-5,对异形微群气膜冷却孔结构及其在涡轮叶片上应用布置位置进行详细介绍。
一种带有异形微群气膜冷却孔的涡轮叶片结构,其特征为:所述异形微群气膜冷却孔,包含涡轮叶片前缘上的异形微群气膜冷却孔3,涡轮叶片压力面上的异形微群气膜冷却孔4和涡轮叶片吸力面上的异形微群气膜冷却孔5,所述异形微群气膜冷却孔是由多排异形的微气膜冷却孔组成,每排异形的微气膜冷却孔包括多个异形的微气膜冷却孔。所述异形微气膜冷却孔是由微孔圆柱段和微孔扩张段组成。所述异形微气膜孔的流向沿轴线z轴方向,与气膜孔流向垂直的气膜孔截面为x-y平面。所述微孔圆柱段具有流向(z方向)长度L1,所述微孔圆柱段的x-y截面的为直径d1的圆形截面,所述微孔扩张段具有流向(z方向)长度L2,所述微孔扩张段由x-y截面直径为d1的圆形截面入口扩张为x-y截面直径为d2的圆形截面出口,在出口直径为d2的圆形截面上,经过x=-d1的平面,沿流向(z方向)切除扩张段,形成微孔扩张段的D形截面出口。所述微孔扩张段的入口通过直径为d1的圆形截面与微孔圆柱段相连接,所述微孔扩张段的扩张方向为D形截面的圆弧方向,其扩张方向与主流流动流向一致。所述异形微气膜冷却孔开设于涡轮叶片端壁上,所述异形微气膜冷却孔流向(z方向)与涡轮叶片端壁平面有一流向倾角为α,所述流向倾角α=90,所述气膜孔流向(z方向)总长度L等于涡轮叶片端壁壁面厚度。所述异形微群气膜冷却孔是由多排异形的微气膜冷却孔组成,每排异形的微气膜冷却孔包括多个异形的微气膜冷却孔。所述多排异形的微气膜冷却孔之间交叉排列或是顺排排列,沿展向(叶高方向)相邻两个微气膜冷却孔的孔间距为S,沿流向(主流流动方向)相邻两排微气膜冷却孔的孔间距为P,沿展向(叶高方向)相邻两排微气膜冷却孔的孔间距为S1。
实施例一:
本实施例是某型涡轮工作叶片上的异形微群气膜冷却孔结构,包含涡轮叶片前缘上的异形微群气膜冷却孔3,涡轮叶片压力面上的异形微群气膜冷却孔4和涡轮叶片吸力面上的异形微群气膜冷却孔5,由内冷通道6供气,其特征在于:异形的微气膜冷却孔是由微孔圆柱段1和微孔扩张段2组成,气膜孔流向(z方向)总长度L=1mm与涡轮叶片壁面厚度相同,其中微孔圆柱段的具有流向(z方向)倾角α=90°,流向(z方向)长度L 1 =0.6mm,微孔圆柱段的x-y截面的圆形直径为d 1 =0.1mm,微孔扩张段由入口x-y截面圆形直径为d 1 =0.1mm扩张为入口x-y截面圆形直径为d 2 =0.17mm经X=-0.1mm的平面切除而成,微孔扩张段的入口通过直径为d 1 =0.1mm的圆形截面与微孔圆柱段相连接,微孔扩张段的流向(z方向)长度L 2 =0.4mm,微孔扩张段的出口为“D”形截面,其扩张方向与主流流动流向一致。异形的微气膜冷却孔是在圆柱形气膜冷却孔的基础上进行流向与展向的平滑扩张而成,由于气膜冷却孔结构较为平滑与简单,异形微群气膜冷却孔的涡轮叶片结构具有冷却效果好,加工简单等优点。
沿展向(叶高方向)相邻两个微气膜冷却孔的孔间距S=0.4mm,沿流向(主流流动方向)相邻两排微气膜冷却孔的孔间距P=0.8mm,沿展向(叶高方向)相邻两排微气膜冷却孔的孔间距S1=0,即该实施例中的多排异形的微气膜冷却孔之间为顺排排列。采用微气膜冷却孔一方面可以避免常规大尺寸气膜冷却孔对涡轮叶片强度的削弱,另一方面可以通过多排异形的微气膜冷却孔带来更加均匀的气膜覆盖效果,避免常规的大尺寸气膜冷却孔的小范围气膜覆盖效果。采用本发明的异形微群气膜冷却孔的涡轮叶片结构可以实现更佳更为均匀的冷却效率。
实施例二:
本实施例是某型涡轮工作叶片上的异形微群气膜冷却孔结构,包含涡轮叶片前缘上的异形微群气膜冷却孔3,涡轮叶片压力面上的异形微群气膜冷却孔4和涡轮叶片吸力面上的异形微群气膜冷却孔5,由内冷通道6供气,其特征在于:异形的微气膜冷却孔是由微孔圆柱段1和微孔扩张段2组成,气膜孔流向(z方向)总长度L=1.2mm与涡轮叶片壁面厚度相同,其中微孔圆柱段的具有流向(z方向)倾角α=90°,流向(z方向)长度L 1 =0.6mm,微孔圆柱段的x-y截面的圆形直径为d 1 =0.08mm,微孔扩张段由入口x-y截面圆形直径为d 1 =0.08mm扩张为入口x-y截面圆形直径为d 2 =0.15mm经X=-0.08mm的平面切除而成,微孔扩张段的入口通过直径为d 1 =0.08mm的圆形截面与微孔圆柱段相连接,微孔扩张段的流向(z方向)长度L 2 =0.6mm,微孔扩张段的出口为“D”形截面,其扩张方向与主流流动流向一致。异形的微气膜冷却孔是在圆柱形气膜冷却孔的基础上进行流向与展向的平滑扩张而成,由于气膜冷却孔结构较为平滑与简单,异形微群气膜冷却孔的涡轮叶片结构具有冷却效果好,加工简单等优点。
沿展向(叶高方向)相邻两个微气膜冷却孔的孔间距S=0.4mm,沿流向(主流流动方向)相邻两排微气膜冷却孔的孔间距P=0.8mm,沿展向(叶高方向)相邻两排微气膜冷却孔的孔间距S1=0.2 mm,即该实施例中的多排异形的微气膜冷却孔之间为交叉排列。采用微气膜冷却孔一方面可以避免常规大尺寸气膜冷却孔对涡轮叶片强度的削弱,另一方面可以通过多排异形的微气膜冷却孔带来更加均匀的气膜覆盖效果,避免常规的大尺寸气膜冷却孔的小范围气膜覆盖效果。采用本发明的异形微群气膜冷却孔的涡轮叶片结构可以实现更佳更为均匀的冷却效率。
总结
参见附图6所示。该图给出了一个叶片模型上的叶片表面气膜孔冷却效果对比实例,以展示本发明带有异形微群气膜冷却孔的高效冷却效果。对比的三种孔型分别为实施例一和二,常规圆柱孔型。所用的叶片模型沿展向(叶高方向)相邻两个微气膜冷却孔的孔间距S=0.4mm,吹风比均为M=1.5,主流速度为30m/s,冷气与主流的密度比为1.6,其中基础圆柱孔直径为0.1mm,从图中结果不难看出,两种孔径不同的异形微群气膜冷却孔的平均冷却效果相差不多,而它们的冷却效果都显著高于孔径为0.1mm的基础圆柱孔,说明本发明气膜冷却孔在叶片表面具有非常好的冷却性能。
此外,本发明带有异形微群气膜冷却孔的涡轮叶片结构技术方案相对:带有D形微群气膜冷却孔的涡轮叶片端壁结构技术方案的区别虽然仅仅在于微群气膜冷却孔设置角度不同,但是本发明设置角度为90度垂直,并且二者倾角的概念不一样,另一篇文献的倾角是在xoz平面中,倾角为30°和60°,这样的好处是能够让气膜孔出口的气流更贴合壁面,冷却效果更好;而带有异形微群气膜冷却孔的涡轮叶片端壁结构中的倾角是在yoz平面,这样的好处是使得气膜孔厚度变小,长径比减小,会使得冷却效果更好。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。

Claims (2)

1.一种带有异形微群气膜冷却孔的涡轮叶片结构,其特征为:所述异形微群气膜冷却孔位于涡轮叶片端壁的近压力面区域,所述异形微群气膜冷却孔是由多排异形的微气膜冷却孔组成,每排异形的微气膜冷却孔包括多个异形的微气膜冷却孔;所述异形微气膜冷却孔是由微孔圆柱段和微孔扩张段组成;所述异形微气膜孔的流向沿轴线z轴方向,与气膜孔流向垂直的气膜孔截面为x-y平面;所述微孔圆柱段具有流向,即z轴方向长度L1,所述微孔圆柱段的x-y截面的为直径d1的圆形截面,所述微孔扩张段具有流向,即z轴方向长度L2,所述微孔扩张段由x-y截面直径为d1的圆形截面入口扩张为x-y截面直径为d2的圆形截面出口,在出口直径为d2的圆形截面上,从同心圆直径d1的边缘,沿流向,即z轴方向向下切除扩张段,形成微孔扩张段的D形截面出口;所述微孔扩张段的入口通过直径为d1的圆形截面与微孔圆柱段相连接,所述微孔扩张段的扩张方向为D形截面的圆弧方向,其扩张方向与主流流动流向一致;所述异形微气膜冷却孔开设于涡轮叶片端壁上,所述异形微气膜冷却孔流向,即z轴方向与涡轮叶片端壁平面有一流向倾角为α,其中异形截面的圆弧段靠近涡轮叶片端壁平面,其中异形截面的平面段远离涡轮叶片端壁平面,气膜孔流向,即z轴方向总长度L等于涡轮叶片端壁壁面厚度除以sinα;所述异形微群气膜冷却孔是由多排异形的微气膜冷却孔组成,每排异形的微气膜冷却孔包括多个异形的微气膜冷却孔;所述多排异形的微气膜冷却孔之间交叉排列或是顺排排列,沿展向,即叶片栅距方向相邻两个微气膜冷却孔的孔间距为S,沿流向,即主流流动方向相邻两排微气膜冷却孔的孔间距为P,沿展向,即叶片栅距方向相邻两排微气膜冷却孔的孔间距为S1。
2.燃气涡轮,包括涡轮叶片结构,其特征为:所述涡轮叶片结构包括权利要求1所述的带有异形微群气膜冷却孔的涡轮叶片结构。
CN202011513089.3A 2020-12-20 2020-12-20 带有异形微群气膜冷却孔的涡轮叶片结构及制备方法和燃气轮机 Active CN112682105B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011513089.3A CN112682105B (zh) 2020-12-20 2020-12-20 带有异形微群气膜冷却孔的涡轮叶片结构及制备方法和燃气轮机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011513089.3A CN112682105B (zh) 2020-12-20 2020-12-20 带有异形微群气膜冷却孔的涡轮叶片结构及制备方法和燃气轮机

Publications (2)

Publication Number Publication Date
CN112682105A CN112682105A (zh) 2021-04-20
CN112682105B true CN112682105B (zh) 2022-11-11

Family

ID=75450503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011513089.3A Active CN112682105B (zh) 2020-12-20 2020-12-20 带有异形微群气膜冷却孔的涡轮叶片结构及制备方法和燃气轮机

Country Status (1)

Country Link
CN (1) CN112682105B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115898554B (zh) * 2023-03-09 2023-06-30 中国航发四川燃气涡轮研究院 涡轮叶片的气膜孔结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2230383A1 (en) * 2009-03-18 2010-09-22 Alstom Technology Ltd Blade for a gas turbine with cooled tip cap
US9279330B2 (en) * 2012-02-15 2016-03-08 United Technologies Corporation Gas turbine engine component with converging/diverging cooling passage
CN104747242A (zh) * 2015-03-12 2015-07-01 中国科学院工程热物理研究所 一种离散气膜冷却孔
US9909436B2 (en) * 2015-07-16 2018-03-06 General Electric Company Cooling structure for stationary blade
WO2018004583A1 (en) * 2016-06-30 2018-01-04 Siemens Aktiengesellschaft Stator vane assembly having mate face seal with cooling holes
CN106246238A (zh) * 2016-07-25 2016-12-21 西北工业大学 一种台阶型收缩气膜孔结构
CN106437866B (zh) * 2016-10-31 2018-11-27 中国科学院工程热物理研究所 一种离散气膜冷却孔结构
US20200024951A1 (en) * 2018-07-17 2020-01-23 General Electric Company Component for a turbine engine with a cooling hole
CN112049690B (zh) * 2020-09-04 2021-05-18 西北工业大学 一种用于涡轮端壁的槽缝射流气膜冷却结构

Also Published As

Publication number Publication date
CN112682105A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN112682108B (zh) 带有d形微群气膜冷却孔的涡轮叶片端壁结构及其方法和燃气涡轮
CN100385091C (zh) 具有网眼和凹陷冷却的热气通道部件
JP5730649B2 (ja) 羽根車及びそれを有するターボ機械
JP2006242187A (ja) タービンのエーロフォイル
CN112682105B (zh) 带有异形微群气膜冷却孔的涡轮叶片结构及制备方法和燃气轮机
JP2005155364A (ja) ガスタービンエンジンのタービン冷却翼
CN106640216B (zh) 一种气膜冷却孔型结构
EP2787173B1 (en) Turbine blade
CN111578310A (zh) 一种用于涡轴发动机的气膜冷却孔结构
CN110185500A (zh) 涡轮叶片的v型气膜孔和涡轮叶片
CN112112687A (zh) 一种用于改善气膜冷却效果的涡流发生器
CN114109514B (zh) 一种涡轮叶片压力面冷却结构
CN112682106B (zh) 带有异形微群气膜冷却孔的涡轮叶片端壁结构及方法和燃气涡轮
CN112722249B (zh) 气动式涡流发生器和等离子体合成射流组合控制的飞行器
CN112483469A (zh) 一种整流支板防冰结构及航空燃气涡轮发动机
CN216642214U (zh) 涡轮叶片中弦区用高堵塞比肋片层板冷却结构
JP4898731B2 (ja) ガスタービン冷却構造およびこれを備えたガスタービン
CN114382553A (zh) 涡轮叶片中弦区用高堵塞比肋片层板冷却结构及冷却方法
CN112780355B (zh) 一种超音速涡轮叶片的发散冷却气膜孔分布结构
CN113107604A (zh) 一种带有凹槽喷淋前缘冷却的高压涡轮导叶结构
CN112324708B (zh) 一种带树状抽吸结构的航空发动机压气机叶片
CN115419613B (zh) 异形组合叶片低噪高效风扇
US20230010937A1 (en) Structure for improving aerodynamic efficiency of low-pressure turbine blade and working method thereof
CN212508843U (zh) 压缩机用消音器及具有其的压缩机
CN110873074B (zh) 一种导风圈和风机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant