CN112673290B - 光学膜 - Google Patents

光学膜 Download PDF

Info

Publication number
CN112673290B
CN112673290B CN201980059127.1A CN201980059127A CN112673290B CN 112673290 B CN112673290 B CN 112673290B CN 201980059127 A CN201980059127 A CN 201980059127A CN 112673290 B CN112673290 B CN 112673290B
Authority
CN
China
Prior art keywords
optical
wavelength
wavelength range
film
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980059127.1A
Other languages
English (en)
Other versions
CN112673290A (zh
Inventor
瑞安·T·法比克
马修·E·苏泽
威廉·B·布莱克
爱德华·J·基维尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of CN112673290A publication Critical patent/CN112673290A/zh
Application granted granted Critical
Publication of CN112673290B publication Critical patent/CN112673290B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/287Interference filters comprising deposited thin solid films comprising at least one layer of organic material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133521Interference filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明描述了一种光学膜,该光学膜包括设置在表层上的多个交替的第一层和第二层。表层具有大于约2微米的平均厚度。该膜对于基本上垂直入射的光而言的透射率包括将第一波长范围和第二波长范围分开的带边缘,其中每个范围为至少250nm宽。对于该第一波长范围内的每个波长,该膜的反射率大于约95%;在该第二波长范围内,该膜的平均透射率大于约80%;并且该膜在该第二波长范围内的光学透射率的最大值和最小值之间的差值小于约30%。该带边缘可具有大于约2%/nm的斜率。该透射率可随着波长的增大而至少从约10%单调地增加到约70%。

Description

光学膜
背景技术
光学膜用于多种显示器应用。例如,镜膜可用于液晶显示器面板的背光单元中以进行光再循环。
发明内容
在本说明书的一些方面,提供了一种光学膜,该光学膜包括设置在表层上的多个交替的聚合物的第一层和第二层。第一层和第二层中的每一者具有小于约250nm的平均厚度。表层具有大于约2微米的平均厚度。第一层、第二层以及表层彼此形成为一体。光学膜对于基本上垂直入射的光而言的光学透射率具有将第一波长范围和第二波长范围分开的带边缘,其中第一波长范围至少从约400nm延伸至约700nm,并且第二波长范围至少从约950nm延伸至约1300nm。对于空气中基本上垂直入射的光:对于第一波长范围内的每个波长,光学膜的光学反射率大于约95%;在第二波长范围内,光学膜的平均光学透射率大于约80%;并且光学膜在第二波长范围内的光学透射率的最大值和最小值之间的差值小于约25%。至少跨越光学透射率从约10%增加到约70%的波长范围,使光学透射率与波长相关联的对带边缘的最佳线性拟合具有大于约2%/nm的斜率。
在本说明书的一些方面,提供了一种光学膜,该光学膜包括数量在50和800之间的多个交替的聚合物的第一层和第二层。第一层和第二层每者具有小于约500nm的平均厚度。光学膜对于基本上垂直入射的光而言的透射率包括将第一波长范围和第二波长范围分开的带边缘区域,其中每个范围为至少250nm宽。光学膜在每个波长范围内的光学透射率的最大值和最小值之间的差值小于约30%。在第一层和第二层的平面中,第一层和第二层具有各自的折射率:沿第一偏振态的n1x和n2x、沿与第一偏振态正交的第二偏振态的n1y和n2y以及沿与第一偏振态和第二偏振态正交的z轴的n1z和n2z。对于第一波长范围和第二波长范围中的至少一者内的至少一个波长:n1x和n1y中的每一者比n1z大至少0.2;n1x和n1y之间的差值小于约0.04;n2x、n2y和n2z之间的最大差值小于约0.01;并且n1x和n2x之间的差值大于约0.2。光学膜对于带边缘区域内的基本上垂直入射的光而言的光学透射率随着波长的增大而至少从约10%单调地增加到约70%。
在本说明书的一些方面,提供了一种显示器,该显示器包括:显示器面板,该显示器面板用于在至少从约400nm延伸至约700nm的第一波长范围内向观察者显示可见图像;红外光源,该红外光源用于通过显示器面板朝向观察者发射比第一波长范围更长的红外波长的光;以及镜膜,该镜膜设置在显示器面板和红外光源之间。对于基本上垂直入射的光并且对于正交的第一偏振态和第二偏振态中的每一者:对于第一波长范围内的每个波长,镜膜反射至少90%的光;在红外波长下,镜膜透射至少70%的光;并且在设置在第一波长范围和红外波长之间的第一波长下,镜膜透射介于40%和60%之间的光。第一波长在红外波长的约50nm内。
附图说明
图1为光学膜的示意性剖视图;
图2为光学膜的光学透射率对波长的示意性曲线图;
图3为光学膜的光学厚度分布的示意图;
图4为包括光学膜的显示器的示意性剖视图;
图5为红外光源的发射光谱的示意图;
图6为通过原子力显微镜确定的厚度分布曲线图;并且
图7至图9为光学膜的透射光谱。
具体实施方式
在以下说明中参考附图,该附图形成本发明的一部分并且其中以举例说明的方式示出各种实施方案。附图未必按比例绘制。应当理解,在不脱离本说明书的范围或实质的情况下,可设想并进行其他实施方案。因此,以下具体实施方式不应被视为具有限制意义。
在一些显示器中,镜膜(诸如增强型镜面反射器(ESR)膜(购自圣保罗明尼苏达州的3M公司(3M Company,St.Paul,MN)))放置在再循环背光单元中的液晶显示器(LCD)面板下方(与光输出侧相反)。在一些应用中,显示器包括一个或多个传感器。例如,智能电话可包括接近传感器、环境光传感器或指纹传感器中的一者或多者。此类传感器传统上位于显示器的有效区域之外。为了减少显示器周围的边框,可能期望包括位于显示器的有效区域中的一个或多个传感器。然后优选地将传感器设置在镜膜下方。在一些情况下,期望在镜膜下方包括红外(IR)光源。例如,指纹传感器可包括通过显示器面板发射红外光的红外光源,并且可包括用于在红外光已从例如手指通过显示器面板反射回之后接收红外光的传感器。为了使光源和/或传感器根据需要工作,镜膜对于光源和/或传感器适于工作的波长的光而言优选地具有基本透射率(例如,至少70%)。通常对于IR光源和传感器,该波长为850nm或940nm。目前,智能电话和其他消费电子显示器中所用的镜膜不透射这些波长的光。
在本说明书的一些实施方案中,提供了一种光学膜或镜膜,该光学膜或镜膜在高达近红外中的带边缘为反射的并且在较长波长下为透射的。带边缘可具有大(例如,大于约2%/nm)斜率。这可能是期望的,使得即使对于斜入射的光(至少高达某个期望的入射角),光学膜也在整个可见光范围内提供再循环,并且在接近光源/传感器操作的带边缘的红外波长下为透射的。该红外波长可在例如带边缘的约50nm内。本说明书的光学膜还可用于汽车显示器应用,其中IR光源在显示器中包括在显示器的镜膜后面以向例如汽车的车厢提供IR照明。
在例如美国专利6,157,490(Wheatley等人)中描述了具有反射带和锐带边缘的多层光学膜。在一些情况下,该参考文献中所描述的带锐化技术产生如在10%的透射率和50%的透射率之间测量的锐带边缘斜率,但如在10%的透射率和70%的透射率之间测量的带边缘斜率可由于透射光谱中的振荡而基本上较小,该振荡对于近红外中的带边缘而言在低于70%的透射率时存在,并且可导致透射率在10%和70%之间的非单调增加,从而导致带边缘斜率减小。这种振荡可至少部分地由由于菲涅耳反射而在表层的最外主表面处反射的光的干涉引起。还可期望在红外透射区域中提供减少的透射率的振荡。已发现,根据一些实施方案,透射率的振荡可在红外透射区域中减少,并且通过适当地选择表层(例如,根据一些实施方案,使用具有大于约2微米的厚度的表层)的厚度在带边缘区域中可在透射率从约10%变化至约70%或更高的至少一个范围内减少或消除。本文所述的用于增加10%和70%或更高透射率之间的带边缘斜率和/或减少不期望的振荡的其他技术包括增加光学膜中具有在带边缘附近的波长处提供反射的厚度的层数。例如,光学膜的交替的第一层和第二层中的层对(光学重复单元)可具有最大光学厚度,并且交替的第一层和第二层可包括至少20、或至少25、或至少30个分离层对,这些层对的光学厚度在最大光学厚度的约30nm内、或约25nm内、或约20nm内、或约15nm内、或约12nm内、或约10nm内、或约8nm内、或约7nm内、或约6nm内。使用合适的表皮厚度和合适的层厚度分布可导致透射率至少从约10%单调增加至约70%(例如,从约5%至约80%或更高)并且可导致至少跨越光学透射率从约10%增加到约70%的波长范围,使光学透射率与波长相关联的对带边缘的最佳线性拟合具有大于例如约2%/nm的斜率。
图1是包括多个交替的聚合物的第一层101和第二层102的光学膜100的示意图。在所示的实施方案中,多个交替的第一层101和第二层102设置在表层110上。第二表层可设置在多个交替的第一层101和第二层102的相对侧上。多个交替的第一层101和第二层102主要通过光学干涉来反射和透射光,并且可以被称为光学层或干涉层。当干涉层的反射率和透射率可以通过光学干涉合理地描述或由光学干涉而合理地精确地建模时,干涉层可以被描述为主要通过光学干涉来反射和透射光。当具有不同折射率的干涉层的相邻对具有为光波长的1/2的组合光学厚度(折射率乘以物理厚度)时,该干涉层对通过光学干涉反射光。用于确定光学厚度的折射率可以是固定的参考波长(例如532nm或633nm)。干涉层通常具有小于约500纳米或小于约250nm的物理厚度。表层通常具有太大的光学厚度而不能主要通过光学干涉反射和透射光,并且可以被称为非干涉层或非光学层或光学厚层。然而,如本文中其他地方进一步所述,来自表层的主表面(例如,最外主表面)的菲涅耳反射会影响光学膜的透射光谱。
可以选择交替的第一层和第二层的厚度以给出期望的反射带,并且可以选择厚度分布以包括大量的层对,这些层对的光学厚度与带边缘相对应,如本文中其他地方进一步所述。可以通过光学建模确定表层的适当厚度,例如,其中可以针对一定范围的表皮厚度确定透射光谱。已发现,可以选择导致减少的光学振荡的表皮厚度。
指明了第i层的平均厚度ti。在一些实施方案中,第一层和第二层中的每一个层的平均厚度小于约500nm,或小于约250nm,或小于约200nm,或小于约180nm,或小于约200nm,或在20nm至250nm的范围内,或在25nm至200nm的范围内,或在约30nm至约180nm的范围内。平均厚度是指光学膜100的整个区域上的厚度的未加权平均值。层的厚度可以是基本恒定的(例如,变化不超过10%,或者不超过5%,或者不超过3%),使得平均厚度是该层的基本恒定的厚度。在一些实施方案中,表层110的平均厚度大于约2微米,或大于约3微米,或大于约4微米,或大于约5微米,或大于约6微米,或大于约7微米。在一些实施方案中,表层110的厚度不超过约30微米,或不超过约20微米,或不超过约15微米,或不超过约10微米。在一些实施方案中,表层110的平均厚度例如在约2微米至约15微米的范围内或在约3微米至约10微米的范围内。在一些实施方案中,任选的第二表层被包括并且其平均厚度在表层110的平均厚度的约20%内,或在约15%内,或在约10%内。
如本文所用,与第二元件“形成为一体”的第一元件意指第一元件和第二元件一起制造而不是单独制造并且然后再接合。形成为一体包括制造第一元件,之后在第一元件上制造第二元件。如果将各层一起制造(例如,组合为熔融流,并且然后浇铸到冷却辊上以形成具有这些层中的每一个的流延膜,并且然后对流延膜进行取向)而不是单独地制造并且然后随之接合,则包括多个层的光学膜一体的形成。在一些实施方案中,第一层101和第二层102以及表层110彼此形成为一体。在一些实施方案中,第一层101和第二层102、第一表层110和相反的第二表层彼此形成为一体。
在一些实施方案中,光学膜100包括多个交替的聚合物的第一层101和第二层102,其数量在50至800之间,或在400至800之间,或在500至800之间,包括端点。在一些实施方案中,厚度小于约500nm或小于约250nm的光学膜中仅有的层是第一层101和第二层102,并且交替的聚合物的第一层101和第二层102的总数在50到800的范围内,或在400到800的范围内,或在500到800的范围内。
可以使用任何合适的透光材料来制造本说明书的光学膜,但是在许多情况下,使用低吸收性聚合物材料是有益的。使用此类材料,微层叠堆在可见波长和红外波长上的吸收就可变小或忽略不计,使得在任何给定波长下以及对于任意指定的入射角和偏振态,叠堆(或它所属的光学膜)的反射率和透射率的和大约为100%,即,R+T≈100%或R≈100%–T。
用于交替的第一层101和第二层102以及用于表层110的合适材料包括例如聚萘二甲酸乙二醇酯(PEN)、包含PEN和聚酯(例如,聚对苯二甲酸乙二醇酯(PET)或二苯甲酸)的共聚物、乙二醇改性的聚对苯二甲酸乙二醇酯、聚碳酸酯(PC)、聚(甲基丙烯酸甲酯)(PMMA)或这些类别材料的共混物。在一些实施方案中,第一层101包括PEN,而第二层102包括PMMA。
示例性光学膜由聚合物材料构成,并且可使用共挤出、浇铸和取向工艺来制备。制备此类膜的方法在以下中有所描述:美国专利5,882,774(Jonza等人)“光学膜(OpticalFilm)”、美国专利6,179,948(Merrill等人)“光学膜及其制备方法(Optical Film andProcess for Manufacture Thereof)”、美国专利6,783,349(Neavin等人)“用于制作多层光学膜的设备(Apparatus for Making Multilayer Optical Films)”,以及专利申请公布US 2011/0272849(Neavin等人)“用于制造多层聚合物薄膜的进料区块(Feedblock forManufacturing Multilayer Polymeric Films)”。多层光学膜可以通过上述参考文献的任何一篇中所述的聚合物的共挤出法来形成。可以选择各种层的聚合物使之具有相似的流变性(如熔体粘度),使得它们可进行共挤出而没有显著的流体扰动。选择挤出条件以便以连续稳定的方式将相应聚合物充分地给料、熔融、混合并作为进料流或熔融流泵送。用于形成和保持每一熔融流的温度可以选定为在下述范围内,所述范围能避免在该温度范围的低端处出现冻结、结晶、或不当的高压下降、并且能避免在该范围的高端处出现材料降解。
在一些实施方案中,光学膜100在第一波长范围(例如,至少从约430nm延伸至约680nm或至少从约400nm延伸至约700nm)内是反射的(例如,大于约90%或大于约95%的光学反射率)。此类光学膜可被描述为镜膜或可见光镜膜。在一些实施方案中,光学膜100或镜膜在第二波长范围(例如,至少从约1000nm延伸至约1250nm或至少从约950nm延伸至约1300nm)内是透射的(例如,大于约75%或大于约80%的平均光学透射率)。
在一些实施方案中,主反射带提供第一波长范围内的反射。主反射带或一阶谐波反射带是反射带,其中反射带中的波长被光学厚度为波长的一半的层对或光学重复单元反射。层对或光学重复单元还可在为该主波长的整数倍的倒数的波长下反射高阶谐波。
在一些实施方案中,在第一层101和第二层102的平面中(平行于x-y平面,参见所示的x-y-z坐标系),第一层101和第二层102具有各自的折射率:沿第一偏振态(电场平行于x轴的偏振态)的n1x和n2x、沿与第一偏振态正交的第二偏振态(电场平行于y轴的偏振态)的n1y和n2y以及沿与第一偏振态和第二偏振态正交的z轴的n1z和n2z,使得对于第一波长范围和第二波长范围中的至少一者内的至少一个波长(例如,532nm或633nm):n1x和n1y中的每一者比n1z大至少0.2;n1x和n1y之间的差值小于约0.04;n2x、n2y和n2z之间的最大差值小于约0.01;并且n1x和n2x之间的差值大于约0.2。例如,在一些实施方案中,在633nm的波长下,n1x为约1.737,n1y为约1.763,n1z为约1.496,并且n2x、n2y和n2z各自为约1.495。
图2是光学膜对于基本上垂直入射的光而言的光学透射率的示意性曲线图。光学膜的光学透射率包括将第一波长范围122和第二波长范围126分开的带边缘120。带边缘区域124至少包括其中光学透射率随着波长增大而从约10%增加到约70%的波长范围。在一些实施方案中,光学膜对带边缘区域124内的基本上法向入射的光的光学透射率随着波长的增大而至少从约10%单调地增加至约70%,或至少从约10%增加至约75%,或至少从约10%增加至约80%,或至少从约5%增加至约80%。在一些实施方案中,第一波长范围122至少从约400nm延伸至约700nm。在一些实施方案中,第二波长范围126至少从约950nm延伸至约1300nm。在一些实施方案中,第一波长范围和第二波长范围中的每一者至少为250nm宽,或者至少为300nm宽。在一些实施方案中,带边缘区域124不大于30nm宽,或者不大于20nm宽,或者不大于15nm宽。
基本上法向入射的光是足够接近法向入射在光学膜上的光,使得基本上法向入射的光的透射和反射与通常入射在光学膜上的光的透射和反射的差别忽略不计。在一些实施方案中,基本上法向入射的光可以在法向入射的20度之内,或者在法向入射的10度之内,或者在法向入射的5度之内,或者可以是法向入射或名义上法向入射的。
光学元件(例如,光学膜或镜膜)的透射率一般是指透射光强度除以入射光强度(对于具有给定波长、入射方向等的光而言),但可用术语“外部透射率”或“内部透射率”来表示。光学元件的外部透射率为光学元件当浸没在空气中时的透射率,并且无需对元件前方的空气/元件界面处的菲涅尔反射、或者元件后方的元件/空气界面处的菲涅耳反射进行任何修正。光学元件的内部透射率为当将该光学元件的前表面和后表面处的菲涅耳反射去除时的元件的透射率。去除前表面和后表面处的菲涅耳反射可通过计算完成(例如,从外部透射光谱减去适当函数),或通过实验完成。对于许多类型的聚合物和玻璃材料,在两个外表面中的每个外表面处,菲涅耳反射为约4%至6%(对于垂直入射角或近垂直入射角),这导致外部透射率相对于内部透射率下移约10%。如果本文提及透射率没有指明是内部透射率或外部透射率,那么,除非另外指定或上下文另外指明,否则可假设此透射率是指外部透射率。
在一些实施方案中,对于空气中基本上垂直入射的光:对于第一波长范围122内的每个波长,光学膜的光学反射率大于约95%(例如,大于93%,或大于94%,或大于95%,或大于96%);在第二波长范围126内,光学膜的平均光学透射率大于约80%;并且光学膜在第二波长范围126中的光学透射率的最大值132和最小值134之间的差值小于约30%,或小于约25%(例如,第二波长范围126中的光学透射率的最大值132可为约95%,而最小值134可为约75%,使得差值为约20%)。第二波长范围126中的平均光学透射率为第二波长范围126中的波长和偏振态的未加权平均值。
在一些实施方案中,显示器包括光学膜和适于发射红外波长127的光的红外光源。在某些情况下,期望光学膜对红外波长127是透射的,并且对于接近红外波长127(例如,比红外波长127小约50nm)的波长而言是反射性的。在一些实施方案中,在红外波长127下,光学膜透射至少70%的基本法向入射的光,并且在设置在第一波长范围122和红外波长127之间的第一波长123下,光学膜透射在40%和60%之间的基本法向入射的光。在一些实施方案中,第一波长123在红外波长127的约60nm或约50nm或约40nm或约30nm或约20nm内。
在一些实施方案中,使光学透射率与下述波长相关联的对带边缘的最佳线性拟合的斜率大于约2%/nm,或大于约3%/nm,或大于约4%/nm,或大于约5%/nm,该波长至少跨越光学透射率从约10%增加到约70%的波长范围(例如,带边缘区域124)。最佳线性拟合136在图2中示意性地示出。最佳线性拟合136可以被确定为作为对下述波长的函数的透射率的线性最小二乘拟合,该波长至少跨越透射率从约10%增加到约70%的波长范围(例如,跨越透射率从约10%增加到约70%,或从约10%增加到约75%,或从约10%增加到约80%的波长范围)。在一些实施方案中,使光学透射率与波长相关联的对带边缘的最佳线性拟合至少在其中光透射率从约10%增加到约75%,或从约10%增加到约80%的波长范围上。在一些实施方案中,使光学透射率与下述波长相关联的对带边缘的最佳线性拟合的斜率大于约2%/nm,大于约3%/nm,或大于约4%/nm,或大于约5%/nm,该波长至少跨越光学透射率从约10%增加到约75%的波长范围。在一些实施方案中,至少跨越光学透射率从约10%增加到约80%的波长范围,使光学透射率与波长相关联的对带边缘的最佳线性拟合的斜率大于约2%/nm,大于约3%/nm,或大于约4%/nm,或大于约5%/nm。
图3为根据一些实施方案的光学膜的相邻层对光学厚度的光学厚度分布的示意图。光学厚度分布根据层对数由多个交替的聚合物的第一层101和第二层102中相邻的第一层101和第二层102的分离对(光学重复单元)的光学厚度限定为每个层对的平均光学厚度,其中层对数是指包括在膜中的交替的第一层和第二层的对的顺序编号。不同的层对是分离的(即,不同层对不包括公共层)。每个层对包括一个第一层和一个第二层,其中在一个第一层和一个第二层之间没有附加的第一层或第二层(例如,一个第一层和一个第二层可紧邻)。每个层的光学厚度是该层的平均厚度乘以该层的平面内折射率。在所示的实施方案中,光学膜包括第一分组141和第二分组143,其中每个分组具有基本上连续变化的层对光学厚度。光学厚度(例如,至少2微米的光学厚度)的保护性边界层可任选地设置在第一分组141和第二分组143之间。光学膜具有最大光学厚度为Tm的层对140(多个交替的第一层101和第二层102中的其他层对不具有更大的光学厚度)。在一些实施方案中,光学厚度分布从多个交替的聚合物的第一层101和第二层102中的最外层对142增大至具有最大光学厚度Tm的层对140,并且沿背离最外层对142的方向从具有最大光学厚度Tm的层对140减小。在一些实施方案中,最大光学厚度Tm比最外层对142的光学厚度大至少15nm。在一些实施方案中,最大光学厚度Tm在约330nm至约480nm的范围内,或在约360nm至约460nm的范围内。
在一些实施方案中,光学膜包括大量光学厚度接近最大光学厚度Tm的连续的层对144。在一些实施方案中,多个交替的聚合物的第一层101和第二层102包括至少20个分离层对(例如,层对144),这些分离层对的光学厚度在最大光学厚度Tm的约20nm内,或约15nm内,或约12nm内,或约10nm内,或约8nm内,或约7nm内,或约6nm内。在一些实施方案中,多个交替的第一层101和第二层102包括至少25个分离层对,这些分离层对的光学厚度在最大光学厚度Tm的约25nm内,或约20nm内,或约15nm内,或约12nm内,或约10nm内,或约8nm内,或约7nm内,或约6nm内。在一些实施方案中,多个交替的第一层101和第二层102包括至少30个分离层对,这些分离层对的光学厚度在最大光学厚度Tm的约30nm内,或约25nm内,或约20nm内,或约15nm内,或约12nm内,或约10nm内,或约8nm内,或约7nm内,或约6nm内。
在一些实施方案中,多个交替的聚合物的第一层和第二层中的一对相邻第一层和第二层具有最大光学厚度(例如,层对140),并且多个交替的聚合物的第一层和第二层包括至少20个分离层对(例如,层对144),这些分离层对的光学厚度在最大光学厚度的约20nm内,或约15nm内,或约12nm内,或约10nm内,或约8nm内,或约7nm内,或约6nm内。在一些实施方案中,多个交替的聚合物的第一层和第二层中的一对相邻第一层和第二层具有最大光学厚度(例如,层对140),并且多个交替的聚合物的第一层和第二层包括至少25个分离层对(例如,层对144),这些分离层对的光学厚度在最大光学厚度的约25nm内,或约20nm内,或约15nm内,或约12nm内,或约10nm内,或约8nm内,或约7nm内,或约6nm内。在一些实施方案中,多个交替的聚合物的第一层和第二层中的一对相邻第一层和第二层具有最大光学厚度(例如,层对140),并且多个交替的聚合物的第一层和第二层包括至少30个分离层对(例如,层对144),这些分离层对的光学厚度在最大光学厚度的约30nm内,或约25nm内,或约20nm内,或约15nm内,或约12nm内,或约10nm内,或约8nm内,或约7nm内,或约6nm内。在一些实施方案中,光学厚度分布可不同于图3所示的光学厚度分布。例如,光学厚度可从具有最大光学厚度的层对140非单调地减小到最外层对142,或者从层对140到最外层对142可具有几乎恒定的光学厚度。在一些实施方案中,多个层对可具有相同的最大光学厚度。在这种情况下,这些层对中的任一者可被视为具有最大光学厚度的层对140(例如,这些对中距最外层对142最远的层对)。
在一些实施方案中,提供了包括本文别处所述的任何光学膜的显示器。图4为包括以下的显示器401的示意图:光学膜400;显示器面板450,该显示器面板用于在第一波长范围(例如,波长范围122)中向观察者460显示可见图像455;以及红外传感器454或红外光源452中的至少一者,其邻近光学膜400与显示器面板450相对设置。显示器面板450设置在光学膜400和观察者460之间。在所示的实施方案中,包括红外传感器454和红外光源452。在其他实施方案中,可省略红外传感器454和红外光源452中的一者。光学膜400可以是镜膜。
在一些实施方案中,显示器401包括:显示器面板450,该显示器面板用于在至少从约400nm延伸至约700nm的第一波长范围内向观察者460显示可见图像455;红外光源452,该红外光源用于通过显示器面板450朝向观察者460发射比第一波长范围更长的红外波长(例如,图2所描绘的红外波长127)的光;以及镜膜400,该镜膜设置在显示器面板450和红外光源452之间,使得对于基本上垂直入射的光并且对于正交的第一偏振态和第二偏振态中的每一者:对于第一波长范围内的每个波长,镜膜400反射至少90%的光;在红外波长下,镜膜透射至少70%的光;并且在设置在第一波长范围和红外波长之间的第一波长(例如,图2所描绘的波长123)下,镜膜透射介于40%和60%之间的光,或介于40%和50%之间的光。在一些实施方案中,第一波长在红外波长的约60nm,或约50nm,或约40nm,或约30nm,或约20nm内。
在一些实施方案中,红外光源452是或包括激光二极管或发光二极管(LED)。在一些实施方案中,红外光源452具有发射光谱,该发射光谱在红外波长处具有峰值并且其半极大处全宽度不超过约50nm,或不超过约40nm,或不超过约30nm,或不超过约20nm,或不超过约10nm。图5为红外光源452的发射光谱的示意图,该红外光源在对应于红外波长的波长λI处具有峰值并且在459处具有半极大处全宽度。在一些实施方案中,红外波长λI为约850nm或约940nm。
镜膜400可以是本文别处描述的光学膜中的任一者。在一些实施方案中,镜膜对于基本上垂直入射的光而言的光学透射率包括将第一波长范围和第二波长范围分开的带边缘,其中第二波长范围至少从约950nm延伸至约1300nm,使得对于空气中基本上垂直入射的光:对于第一波长范围内的每个波长,镜膜的光学反射率大于约95%;在第二波长范围内,镜膜的平均光学透射率大于约80%;并且镜膜在第二波长范围内的光学透射率的最大值和最小值之间的差值小于约25%。在一些实施方案中,至少跨越光学透射率从约10%增加到约70%、或约75%、约80%的波长范围,使光学透射率与波长相关联的对带边缘的最佳线性拟合的斜率大于约2%/nm,大于约3%/nm,或大于约4%/nm,或大于约5%/nm。在一些实施方案中,镜膜400包括将第一波长范围和第二波长范围分开的带边缘区域,其中第二波长范围为至少250nm宽,并且光学膜在第一波长范围和第二波长范围中的每一者内的光学透射率的最大值和最小值之间的差值小于约30%。在一些实施方案中,镜膜400对于带边缘区域内的基本上垂直入射的光而言的光学透射率随着波长的增大而至少从约10%单调地增加到约70%,或至少从约10%单调地增加到约75%,或至少从约10%单调地增加到约80%。
实施例
透射/反射光谱测试方法
利用PerkinElmer LAMBDA 950(可购自马萨诸塞州沃尔瑟姆的珀金埃尔默公司(PerkinElmer,Waltham,Mass.))测量350nm至1500nm波长范围内的全部光谱透射和反射特性。
比较例C1(ESR-80v2)
可见光镜膜以商品名ESR-80v2得自3M公司(圣保罗,明尼苏达州)(3M Company(St.Paul,MN))。该膜包括交替的第一光学层和第二光学层,其中第一层为聚萘二甲酸乙二醇酯(PEN)均聚物(100摩尔%的萘二甲酸与100摩尔%的乙二醇),并且第二层为聚(甲基丙烯酸甲酯)或PMMA。该膜包括位于交替的第一层和第二层的外表面上的表层。用于表层的聚合物由第一层中所使用的相同材料形成。包括表层,光学膜具有656个层。交替的第一光学层和第二光学层的折射率与实施例1报道的那些大致相同。交替的第一层和第二层的厚度分布通过原子力显微镜(AFM)来确定并在图6中示出。紧邻的第一层和第二层的分离对中的第一光学层和第二光学层的平均物理厚度在图6中示出。表皮厚度通过AFM确定为6.1微米和5微米。确定透射光谱并在图7中示出。带边缘斜率根据跨越光学透射率从约10%增加到约70%的波长范围,使光学透射率与波长相关联的对带边缘的最佳线性拟合确定为1.11%/nm。如通过AFM所测量,该膜具有大约84微米的物理厚度。
比较例C2(ESR2)
通过如美国专利公布US2001/0013668(Neavin等人)中所述的共挤出和双轴取向来制备包括交替的第一光学层和第二光学层的可见光镜膜,不同之处如下。第一光学层为具有121-123摄氏度的Tg的萘二甲酸乙二醇酯(PEN)均聚物(100摩尔%的萘二甲酸与100摩尔%的乙二醇)。第二光学层为聚(甲基丙烯酸甲酯)或PMMA。PMMA的示例可购自美国得克萨斯州帕萨迪纳市的阿科玛公司(Arkema,Pasadena,TX,USA),并且具有100摄氏度的Tg。表层形成在交替的第一层和第二层的外表面上。用于表层的聚合物由第一光学层中所使用的相同材料形成。表皮厚度通过AFM确定为3.1微米和3.6微米。如通过AFM所测量,该膜具有大约32微米的物理厚度。交替的第一光学层和第二光学层的折射率与实施例1报道的那些大致相同。
将材料从单独的挤出机进料到多层共挤出进料区块,在该进料区块中,材料被组装成交替的光学层。表层被添加到特定于该用途的歧管构造,从而生成具有269个层的最终构造。然后,以用于聚酯膜的传统方式将多层熔体通过膜模头浇铸到冷却辊上,在该冷却辊上对其进行淬火。然后将浇铸幅材在工业规模的双轴拉幅机中在类似于美国专利公布US2001/001366所述的温度和拉延分布下拉伸。
确定透射光谱并在图8中示出。带边缘斜率根据跨越光学透射率从约10%增加到约70%的波长范围,使光学透射率与波长相关联的对带边缘的最佳线性拟合确定为1.02%/nm。
实施例1
如通常针对比较例2所述来制备包括交替的第一光学层和第二光学层并且包括表层的光学膜(可见光镜膜),不同的是改变厚度分布和表层厚度。交替的第一层和第二层的厚度分布通过AFM来确定并在图6中示出。在膜的加工期间面向冷却辊的表层的厚度经测量为7.13微米,并且相反的表层具有7.20微米的测量厚度。确定透射光谱并在图7中示出。带边缘斜率根据跨越光学透射率从约10%增加到约70%的波长范围,使光学透射率与波长相关联的对带边缘的最佳线性拟合确定为5.17%/nm。
第一层的折射率通过测量表层的折射率来确定,因为表层由与第一层相同的材料形成并且在与第一层相同的条件下取向。使用633nm波长的Metricon 2010/M棱镜耦合器来确定折射率,这些折射率被发现为n1x=1.737、n1y=1.763和n1z=1.496。第二层的折射率被确定为用于第二层中的各向同性PMMA材料在633nm处的折射率。结果为n2x≈n2y≈n2z≈1.495。
由电容式测厚仪测量的该膜的物理厚度为大约77微米,如使用Ono-Sokki DG-925千分尺测量的那样。
实施例2
如通常针对实施例1所述来制备包括交替的第一层和第二层并且包括表层的光学膜,不同的是改变表层厚度,并且改变层厚度分布以使带边缘偏移至更短波长。表皮厚度通过AFM确定为5.1微米和6.7微米。如通过AFM所测量,该膜具有大约69微米的物理厚度。确定透射光谱并在图8中示出。带边缘斜率根据跨越光学透射率从约10%增加到约70%的波长范围,使光学透射率与波长相关联的对带边缘的最佳线性拟合确定为6.25%/nm。交替的第一层和第二层的折射率与实施例1报道的那些大致相同。
实施例3
如通常针对实施例1所述来制备包括交替的第一层和第二层并且包括表层的光学膜,不同的是改变交替的第一层和第二层的数量、厚度分布和表层厚度。包括表层,光学膜具有536个层。在膜的加工期间面向冷却辊的表层的厚度经测量为3.73微米,并且相反的表层具有4.43微米的测量厚度。如通过AFM所测量,该膜具有大约59微米的物理厚度。选择层厚度分布以产生图9所示的透射光谱。带边缘斜率根据跨越光学透射率从8.7%增加到71.9%的波长范围,使光学透射率与波长相关联的对带边缘的最佳线性拟合确定为6.30%/nm,以及根据跨越光学透射率从8.7%增加到75.1%的波长范围,使光学透射率与波长相关联的对带边缘的最佳线性拟合确定为5.84%/nm。交替的第一光学层和第二光学层的折射率与实施例1报道的那些大致相同。
实施例4
如通常针对实施例4所述来制备包括交替的第一层和第二层并且包括表层的光学膜,不同的是改变表层厚度。在膜的加工期间面向冷却辊的表层的厚度经测量为5.11微米,并且相反的表层具有5.62微米的测量厚度。如通过AFM所测量,该膜具有大约61微米的物理厚度。确定透射光谱并在图9中示出。带边缘斜率根据跨越光学透射率从9.8%增加到71.2%的波长范围,使光学透射率与波长相关联的对带边缘的最佳线性拟合确定为3.71%/nm,以及根据跨越光学透射率从9.8%增加到81.5%的波长范围,使光学透射率与波长相关联的对带边缘的最佳线性拟合确定为3.62%/nm。交替的第一光学层和第二光学层的折射率与实施例1报道的那些大致相同。
诸如“约”的术语将在本领域普通技术人员在本说明书中使用和描述的上下文中理解。如果本领域普通技术人员在本说明书中使用和描述的上下文中对“约”应用于表达特征大小、数量和物理性质的量的使用不清楚,则“约”将被理解为意指与指定量相差10%以内,但还包括精确的指定量。例如,如果本领域普通技术人员在本说明书中使用和描述的上下文中对其不清楚,则具有约1的值的量是指该量具有介于0.9和1.1之间的值,并且还包括精确地为1的值。
上述所有引用的参考文献、专利和专利申请以一致的方式全文据此以引用方式并入本文。在并入的参考文献部分与本申请之间存在不一致或矛盾的情况下,应以前述说明中的信息为准。
除非另外指明,否则针对附图中元件的描述应被理解为同样应用于其他附图中的对应的元件。虽然本文已经例示并描述了具体实施方案,但本领域的普通技术人员将会知道,在不脱离本公开范围的情况下,可用多种另选的和/或等同形式的具体实施来代替所示出和所描述的具体实施方案。本申请旨在涵盖本文所讨论的具体实施方案的任何改型或变型。因此,本公开旨在仅受权利要求及其等同形式的限制。

Claims (11)

1.一种光学膜,所述光学膜包括设置在表层上的多个交替的聚合物的第一层和第二层,所述第一层和所述第二层中的每一者具有小于250nm的平均厚度,所述表层具有大于2微米的平均厚度,所述光学膜对于垂直入射的光而言的光学透射率包括将第一波长范围和第二波长范围分开的带边缘,所述第一波长范围至少从400nm延伸至700nm,所述第二波长范围至少从950nm延伸至1300nm,使得对于空气中垂直入射的光:
对于所述第一波长范围内的每个波长,所述光学膜的光学反射率大于95%;
在所述第二波长范围内,所述光学膜的平均光学透射率大于80%;并且
所述光学膜在所述第二波长范围内的光学透射率的最大值和最小值之间的差值小于25%;并且
至少跨越光学透射率从10%增加到70%的波长范围,使光学透射率与波长相关联的对所述带边缘的最佳线性拟合具有大于2%/nm的斜率,其中所述第一层、所述第二层以及所述表层彼此形成为一体,其中所述光学膜的光学厚度分布从多个交替的聚合物的所述第一层和第二层中的最外层对增大至具有最大光学厚度的层对,并且沿背离所述最外层对的方向从具有所述最大光学厚度的所述层对减小,并且
多个交替的聚合物的所述第一层和所述第二层包括光学厚度在所述最大光学厚度的20nm内的至少20个连续层对。
2.根据权利要求1所述的光学膜,其中所述光学膜对于垂直入射的光而言的光学透射率随着波长的增大而至少从10%单调地增加到70%。
3.根据权利要求1所述的光学膜,其中所述最佳线性拟合的斜率大于3%/nm。
4.根据权利要求1至3中任一项所述的光学膜,其中在所述第一层和所述第二层的平面中,所述第一层和所述第二层具有各自的折射率:沿第一偏振态的n1x和n2x、沿与所述第一偏振态正交的第二偏振态的n1y和n2y以及沿与所述第一偏振态和所述第二偏振态正交的z轴的n1z和n2z,使得对于所述第一波长范围和所述第二波长范围中的至少一者内的至少一个波长:
n1x和n1y中的每一者比n1z大至少0.2;
n1x和n1y之间的差值小于0.04;
n2x、n2y和n2z之间的最大差值小于0.01;并且
n1x和n2x之间的差值大于0.2。
5.一种光学膜,所述光学膜包括数量在50和800之间的多个交替的聚合物的第一层和第二层,第一层和第二层每者具有小于500nm的平均厚度,所述光学膜对于垂直入射的光而言的光学透射率包括将第一波长范围和第二波长范围分开的带边缘区域,每个范围至少250nm宽,所述光学膜在每个波长范围内的光学透射率的最大值和最小值之间的差值小于30%,在所述第一层和所述第二层的平面中,所述第一层和所述第二层具有各自的折射率:沿第一偏振态的n1x和n2x、沿与所述第一偏振态正交的第二偏振态的n1y和n2y以及沿与所述第一偏振态和所述第二偏振态正交的z轴的n1z和n2z,使得对于所述第一波长范围和所述第二波长范围中的至少一者内的至少一个波长:
n1x和n1y中的每一者比n1z大至少0.2;
n1x和n1y之间的差值小于0.04;
n2x、n2y和n2z之间的最大差值小于0.01;并且
n1x和n2x之间的差值大于0.2,
其中所述光学膜对于所述带边缘区域内的垂直入射的光而言的光学透射率随着波长的增大而至少从10%单调地增加到70%,并且
其中至少跨越光学透射率从10%增加到70%的波长范围,使光学透射率与波长相关联的对所述带边缘的最佳线性拟合具有大于2%/nm的斜率,
其中所述光学膜的光学厚度分布从多个交替的聚合物的所述第一层和第二层中的最外层对增大至具有最大光学厚度的层对,并且沿背离所述最外层对的方向从具有所述最大光学厚度的所述层对减小,并且
多个交替的聚合物的所述第一层和所述第二层包括光学厚度在所述最大光学厚度的20nm内的至少20个连续层对。
6.根据权利要求5所述的光学膜,其中所述第一波长范围至少从400nm延伸至700nm,并且所述第二波长范围至少从950nm延伸至1300nm。
7.根据权利要求5所述的光学膜,其中所述光学膜在每个波长范围内的光学透射率的最大值和最小值之间的差值小于25%。
8.根据权利要求5所述的光学膜,其中第一层和第二层每者具有小于250nm的平均厚度。
9.一种显示器,包括:
显示器面板,所述显示器面板用于在至少从400nm延伸至700nm的第一波长范围内向观察者显示可见图像;
红外光源,所述红外光源用于通过所述显示器面板朝向所述观察者发射比所述第一波长范围更长的红外波长的光;以及
镜膜,所述镜膜设置在所述显示器面板和所述红外光源之间,使得对于垂直入射的光以及对于正交的第一偏振态和第二偏振态中的每一者:
对于所述第一波长范围内的每个波长,所述镜膜反射至少90%的光;
在所述红外波长下,所述镜膜透射至少70%的光;并且
在设置在所述第一波长范围和所述红外波长之间的第一波长下,所述镜膜透射介于40%和60%之间的光,所述第一波长在所述红外波长的50nm内,
其中所述镜膜对于垂直入射的光而言的光学透射率包括将所述第一波长范围和第二波长范围分开的带边缘,所述第二波长范围至少从950nm延伸至1300nm,使得对于空气中垂直入射的光:
对于所述第一波长范围内的每个波长,所述镜膜的光学反射率大于95%;
在所述第二波长范围内,所述镜膜的平均光学透射率大于80%;并且
所述镜膜在所述第二波长范围内的光学透射率的最大值和最小值之间的差值小于25%;并且
至少跨越光学透射率从10%增加到70%的波长范围,使光学透射率与波长相关联的对所述带边缘的最佳线性拟合具有大于2%/nm的斜率,
其中所述镜膜包括设置在表层上的多个交替的聚合物的第一层和第二层,所述镜膜的光学厚度分布从多个交替的聚合物的所述第一层和第二层中的最外层对增大至具有最大光学厚度的层对,并且沿背离所述最外层对的方向从具有所述最大光学厚度的所述层对减小,并且
多个交替的聚合物的所述第一层和所述第二层包括光学厚度在所述最大光学厚度的20nm内的至少20个连续层对。
10.根据权利要求9所述的显示器,其中所述第一波长在所述红外波长的40nm内。
11.根据权利要求9或10所述的显示器,其中所述镜膜的光学透射率包括将所述第一波长范围和第二波长范围分开的带边缘区域,所述第二波长范围至少250nm宽,所述镜膜在所述第一波长范围和所述第二波长范围中的每一者内的光学透射率的最大值和最小值之间的差值小于30%,其中所述镜膜对于所述带边缘区域内的垂直入射的光而言的光学透射率随着波长的增大而至少从10%单调地增加到70%。
CN201980059127.1A 2018-09-14 2019-09-13 光学膜 Active CN112673290B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862731325P 2018-09-14 2018-09-14
US62/731,325 2018-09-14
PCT/IB2019/057744 WO2020053832A1 (en) 2018-09-14 2019-09-13 Optical film

Publications (2)

Publication Number Publication Date
CN112673290A CN112673290A (zh) 2021-04-16
CN112673290B true CN112673290B (zh) 2023-08-01

Family

ID=67999999

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980059127.1A Active CN112673290B (zh) 2018-09-14 2019-09-13 光学膜

Country Status (5)

Country Link
US (1) US20210333455A1 (zh)
JP (2) JP7423609B2 (zh)
KR (1) KR20210060503A (zh)
CN (1) CN112673290B (zh)
WO (1) WO2020053832A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022027589A1 (en) * 2020-08-07 2022-02-10 3M Innovative Properties Company Optical stack and housing for electronic device
US20240023905A1 (en) * 2020-12-16 2024-01-25 3M Innovative Properties Company Optical film for oxygen saturation sensing
CN116745661A (zh) * 2020-12-21 2023-09-12 3M创新有限公司 双因子认证膜
CN116964490A (zh) * 2021-02-12 2023-10-27 3M创新有限公司 光学膜和包装件
CN117642656A (zh) * 2021-06-28 2024-03-01 3M创新有限公司 包括多层光学膜和无线电波抗反射片的光学叠堆
WO2024074960A1 (en) 2022-10-04 2024-04-11 3M Innovative Properties Company Display systems using multilayer optical films

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906605A (zh) * 2010-05-21 2013-01-30 3M创新有限公司 具有降低的彩色的部分反射型多层光学膜
CN108139613A (zh) * 2015-10-02 2018-06-08 3M创新有限公司 滤光片

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882774A (en) 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
US6737154B2 (en) * 1995-06-26 2004-05-18 3M Innovative Properties Company Multilayer polymer film with additional coatings or layers
JPH09251105A (ja) * 1996-03-14 1997-09-22 Canon Inc 複合ミラーおよびその製造方法ならびに前記複合ミラーを用いた観察装置
US5976424A (en) * 1996-07-31 1999-11-02 Minnesota Mining And Manufacturing Company Method for making multilayer optical films having thin optical layers
FR2760449B1 (fr) 1997-03-06 1999-04-16 Alcatel Fibres Optiques Procede pour purifier de la silice naturelle ou synthetique et application au depot de silice naturelle ou synthetique purifiee sur une preforme de fibre optique
US6179948B1 (en) 1998-01-13 2001-01-30 3M Innovative Properties Company Optical film and process for manufacture thereof
US6808658B2 (en) 1998-01-13 2004-10-26 3M Innovative Properties Company Method for making texture multilayer optical films
US6157486A (en) * 1998-01-13 2000-12-05 3M Innovative Properties Company Retroreflective dichroic reflector
US6157490A (en) 1998-01-13 2000-12-05 3M Innovative Properties Company Optical film with sharpened bandedge
JP4544662B2 (ja) * 1999-04-30 2010-09-15 日本真空光学株式会社 可視光線遮断赤外線透過フィルター
US7172294B2 (en) * 2001-02-27 2007-02-06 Seiko Epson Corporation Multi-layer film cut filter and production method therefor, UV cut filter, dustproof glass, display panel and projection type display unit
JP5856149B2 (ja) 2010-05-07 2016-02-09 スリーエム イノベイティブ プロパティズ カンパニー 多層高分子フィルムを製造するためのフィードブロック
BR112012030018A2 (pt) 2010-05-27 2016-08-02 3M Innovative Properties Co método de eliminação de defeitos durante o revestimento de extrusão de filme com o uso de controle de velocidade de cilindro de estrangulamento
CN102749667B (zh) * 2012-07-28 2014-09-17 杭州科汀光学技术有限公司 用于图像芯片的光学滤波器
JP2014071295A (ja) * 2012-09-28 2014-04-21 Tokai Kogaku Kk 赤外線受発光用光学物品及び赤外線受発光部
US10429558B2 (en) 2013-09-30 2019-10-01 3M Innovative Properties Company Polymeric multilayer optical film
CN111856635B (zh) 2015-12-18 2022-08-09 3M创新有限公司 宽带可见光反射器
TW201738588A (zh) 2016-01-21 2017-11-01 3M新設資產公司 偽裝濾光片
KR20190099305A (ko) 2017-01-04 2019-08-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 색상 보상 광학 필터

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906605A (zh) * 2010-05-21 2013-01-30 3M创新有限公司 具有降低的彩色的部分反射型多层光学膜
CN105652358A (zh) * 2010-05-21 2016-06-08 3M创新有限公司 部分反射型多层光学膜
CN108139613A (zh) * 2015-10-02 2018-06-08 3M创新有限公司 滤光片

Also Published As

Publication number Publication date
KR20210060503A (ko) 2021-05-26
US20210333455A1 (en) 2021-10-28
JP7423609B2 (ja) 2024-01-29
JP2024041941A (ja) 2024-03-27
WO2020053832A1 (en) 2020-03-19
JP2022500693A (ja) 2022-01-04
CN112673290A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
CN112673290B (zh) 光学膜
CN111344613B (zh) 光学部件和光学系统
CN106796306B (zh) 具有重叠谐波的多层光学膜
JP6960496B2 (ja) 多層光学フィルム
EP3225906A1 (en) Light source incorporating multilayer optical film
US20230204839A1 (en) Optical Film
CN111427106A (zh) 多层反射膜
EP3946929A1 (en) Optical film and glass laminate
CN114787670A (zh) 光学滤光器和光学系统
US20230273359A1 (en) Optical film
EP3743751A1 (en) Multilayer reflective polarizer with crystalline low index layers
JPWO2020053832A5 (zh)
US11828972B2 (en) Optical layers, films and systems
CN116997835A (zh) 光学膜和光学系统
CN117295984A (zh) 多层光学膜
WO2020049424A1 (en) Multilayer reflective polarizer with crystalline low index layers
EP3899610A1 (en) Optical stack

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant