CN112665586A - 一种提高mems陀螺仪精度的方法 - Google Patents

一种提高mems陀螺仪精度的方法 Download PDF

Info

Publication number
CN112665586A
CN112665586A CN202011464418.XA CN202011464418A CN112665586A CN 112665586 A CN112665586 A CN 112665586A CN 202011464418 A CN202011464418 A CN 202011464418A CN 112665586 A CN112665586 A CN 112665586A
Authority
CN
China
Prior art keywords
mems
combined model
mems gyroscopes
precision
gyroscopes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011464418.XA
Other languages
English (en)
Other versions
CN112665586B (zh
Inventor
史凯
曹国军
卓晗
曹砺原
张超
张琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avic Shaanxi Huayan Aero Instrument Co ltd
Original Assignee
Avic Shaanxi Huayan Aero Instrument Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avic Shaanxi Huayan Aero Instrument Co ltd filed Critical Avic Shaanxi Huayan Aero Instrument Co ltd
Priority to CN202011464418.XA priority Critical patent/CN112665586B/zh
Publication of CN112665586A publication Critical patent/CN112665586A/zh
Application granted granted Critical
Publication of CN112665586B publication Critical patent/CN112665586B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

一种提高MEMS陀螺仪精度的方法,涉及MEMS惯性导航领域,其将现有的MEMS陀螺仪相对地设置在PCB电路板的两侧,使得两个MEMS陀螺仪的敏感轴共线,得到组合模型。在组合模型工作时,利用差分处理两个MEMS陀螺仪的信号,其相比于使用单个MEMS陀螺仪来说,显著提高了测试的精度。除此之外,该方法可以将两个低精度的MEMS陀螺仪组合后得到高精度的组合模型,具有明显的成本优势。该方法简单易行,工程实用性强,可广泛适用于各种MEMS航姿、惯导领域。

Description

一种提高MEMS陀螺仪精度的方法
技术领域
本发明涉及MEMS惯性导航领域,具体而言,涉及一种提高 MEMS陀螺仪精度的方法。
背景技术
陀螺仪是惯性测量单元IMU中的核心器件,决定了整个惯性测量单元的工作精度,随着微机电系统技术的发展,MEMS陀螺仪在惯性导航、军事及民用领域得到了广泛应用,是惯性器件未来的发展方向之一,相对于传统的机械陀螺,MEMS陀螺仪具有体积小、重量轻、成本低、功耗低、抗过载能力强等优点,但是MEMS陀螺仪的精度较低,现阶段随着MEMS技术的发展,MEMS陀螺在精度方面有了长足的进步,国外AD公司的IMU产品ADIS16488A集成10自由度测量单元(3加计、3陀螺、3磁传感器、1大气压力)陀螺精度在5.1°/h;ADIS16495惯导级IMU陀螺精度可达0.3°/h。国内目前的MEMS陀螺仪精度距离战术级还有一定差距。
MEMS陀螺仪误差主要包括两大类,一类是系统随机误差,没有办法完全消除;一类是系统测量误差,通过地面标定及误差补偿技术可以消除。在小型化方面MEMS陀螺有其独有的优势,但国内目前MEMS陀螺仪普遍精度在10°/h左右,在0.5°/h~5°/h之间的MEMS陀螺仪很少,价格居高不下,限制了在低成本、工程化平台使用。
本发明通过使用两个低成本、低精度陀螺仪组合方式,基于差分补偿的理论,按照GJB陀螺仪测试方法经地面试验验证,可以明显减小MEMS陀螺仪随机误差(零偏稳定性等),从而提高了MEMS 陀螺仪精度,可以广泛应用于MEMS惯性测量单元、航姿测量单元及惯性导航领域。
发明内容
本发明的目的在于提供一种提高MEMS陀螺仪精度的方法,其操作简单方便,成本较低。其在现有MEMS陀螺仪的基础上,经过简单改造,即可显著提高整体的测量精度。
本发明的实施例是这样实现的:
一种提高MEMS陀螺仪精度的方法,其包括:
将两个同型号的MEMS陀螺仪相对地设置在PCB电路板的两侧,使得两个MEMS陀螺仪的敏感轴共线,得到组合模型;其中, PCB电路板分别与两个MEMS陀螺仪电连接,PCB电路板包含有数据采集模块和运算模块;
在组合模型工作时,利用采集模块分别对两个MEMS陀螺仪输出的原始信号进行采集,采集到的原始信号经过运算模块的差分处理后,输出为最终信号。
进一步地,在本发明其它较佳实施例中,MEMS陀螺仪的敏感轴均与PCB电路板的质心重合。
进一步地,在本发明其它较佳实施例中,MEMS陀螺仪的零偏稳定性≤10°/h。
进一步地,在本发明其它较佳实施例中,两个MEMS陀螺仪零偏稳定性的偏差率小于10%,偏差率按照以下公式计算
Figure BDA0002832331930000031
式中,A为偏差率,D1、D2分别为两个MEMS陀螺仪的零偏稳定性。
进一步地,在本发明其它较佳实施例中,还包括在使用组合模型之前,对组合模型进行标定;对组合模型进行标定的方法包括:
将组合模型放置于高精密转台上保持静止,记录最终信号,并根据最终信号计算组合模型的标度因数和零偏。
进一步地,在本发明其它较佳实施例中,进行标定时,组合模型的敏感轴平行于高精密转台的转轴,且与当地水平面垂直。
进一步地,在本发明其它较佳实施例中,进行标定时,记录最终信号的时长≥1h。
本发明实施例的有益效果是:
本发明实施例提供了一种提高MEMS陀螺仪精度的方法,其将现有的MEMS陀螺仪相对地设置在PCB电路板的两侧,使得两个 MEMS陀螺仪的敏感轴共线,得到组合模型。在组合模型工作时,利用差分处理两个MEMS陀螺仪的信号,其相比于使用单个MEMS 陀螺仪来说,显著提高了测试的精度。除此之外,该方法可以将两个低精度的MEMS陀螺仪组合后得到高精度的组合模型,具有明显的成本优势。该方法简单易行,工程实用性强,可广泛适用于各种MEMS 航姿、惯导领域。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例所提供的组合模型的示意图;
图2为本发明试验例所采用的速率转台的示意图;
图3为本发明试验例所提供的两个MEMS陀螺仪的原始信号的图样;
图4为本发明试验例所提供的差分处理后的最终信号的图样。
图标:100-组合模型;110-MEMS陀螺仪;120-PCB电路板。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的设备或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
实施例
本实施例提供了一种提高MEMS陀螺仪精度的方法,其包括:
如图1所示,其首先将两个同型号的MEMS陀螺仪110相对地设置在PCB电路板120的两侧,使得两个MEMS陀螺仪110的敏感轴共线,得到组合模型100;其中,PCB电路板120分别与两个MEMS 陀螺仪110电连接,PCB电路板120包含有数据采集模块和运算模块。值得说明的是,这里所指的相对设置,是指两个MEMS陀螺仪 110均以其顶部与PCB电路板120连接,或均以其底部与PCB电路板120连接,使得两个MEMS陀螺仪110的敏感轴方向是相反的。
在组合模型工作时,利用采集模块分别对两个MEMS陀螺仪110 输出的原始信号进行采集,采集到的原始信号经过运算模块的差分处理后,输出为最终信号。
两个MEMS陀螺仪110要求是同一型号,其各项参数越接近效果越好。每个MEMS陀螺仪110的原始信号可以按照以下公式进行计算,
T=Sω+D+w
式中,T为MEMS陀螺仪110的原始信号,ω表示角速率输入值,D表示MEMS陀螺仪110的零偏,w表示MEMS陀螺仪110的随机噪声向量。
通过上式可以分别测出两个MEMS陀螺仪110的原始信号T1和 T2,由于两个MEMS陀螺仪110型号相同,那么理论上其S、D、w等参数应该是一致的,在有角速度输入时,两个MEMS陀螺仪110的原始信号应该数值相等,且方向相反,就可以得到
T1=-T2
在对两个原始信号进行差分之后,理论上可以完全消除随机误差。然而,在实际操作时,即使选择同型号的MEMS陀螺仪110,其实际测试零偏稳定性及随机误差也不尽相同,故差分之后不能做到随机误差的完全消除,但也足以做到显著提高MEMS陀螺仪110的测试精度。
在进行安装时,两个MEMS陀螺仪110的敏感轴均与PCB电路板120的质心重合,从而增加整个组合模型100的稳定性。
除此之外,MEMS陀螺仪110的零偏稳定性≤10°/h。在上述范围内,得到的组合模型100的精度较高。
同时,所选的两个MEMS陀螺仪110的差距不能太大,可选地,两个MEMS陀螺仪100零偏稳定性的偏差率小于10%,偏差率可以按照以下公式计算
Figure BDA0002832331930000081
式中,A为偏差率,D1、D2分别为两个MEMS陀螺仪110的零偏稳定性。
进一步地,为了提高测试结果的准确性,还包括在使用组合模型 100之前,对组合模型100进行标定;对组合模型100进行标定的方法包括:
将组合模型100放置于高精密转台上保持静止,记录最终信号,并根据最终信号计算组合模型100的标度因数和零偏。
对组合模型的零偏按照下式进行计算
Figure BDA0002832331930000091
进行标定时,组合模型100的敏感轴平行于高精密转台的转轴,且与当地水平面垂直。记录最终信号的时长≥1h,使得测得的性能达到要求的置信度,数据采样率应至少是要求的最高频率的两倍。
试验例
本试验例选取的两个同型号的MEMS陀螺仪均为国产陀螺仪,其主要指标如表1所示:
Figure BDA0002832331930000092
具体步骤如下:
1、按照GJB669-89分别将单个MEMS陀螺仪安装在速率转台(如图2所示)上,使其敏感轴平行于速率转台轴且与当地水平面垂直。数据记录长度(测试时间)应足够长(至少1h以上)使得测得的性能达到要求的置信度,数据采样率应至少是要求的最高频率的两倍。
零偏计算公式按照下式计算,
Figure BDA0002832331930000093
式中,
Figure BDA0002832331930000101
为数据采样平均值,S为标度因数,经过单独测试,计算得到两个MEMS陀螺仪的零偏稳定性分别为D1=10°/h,D2=9°/h。
2、将上述两个MEMS陀螺仪与PCB电路板组装成组合模型,将组合模型利用工装固定在转台上,使其敏感轴平行于速率转台轴且与当地水平面垂直。分别采集两个MEMS陀螺仪的原始信号,数据记录长度(测试时间)应足够长(至少1h以上)使得测得的性能达到要求的置信度,数据采样率应至少是要求的最高频率的两倍。采集到的原始信号如图3所示。
3、对采集到的原始信号进行差分处理,输出的最终信号如图4 所示。经统计可以得到组合模型的零偏稳定性D3=3.16°/h。
由以上试验例可以看出,其采用两个低成本、低精度的MEMS 陀螺仪组合之后,得到了高精度(零偏稳定性≤5°/h)的组合模型,相比于现有市面上的高精度陀螺仪来说,具有即为显著的成本优势。
综上所述,一种提高MEMS陀螺仪精度的方法,其将现有的 MEMS陀螺仪相对地设置在PCB电路板的两侧,使得两个MEMS 陀螺仪的敏感轴共线,得到组合模型。在组合模型工作时,利用差分处理两个MEMS陀螺仪的信号,其相比于使用单个MEMS陀螺仪来说,显著提高了测试的精度。除此之外,该方法可以将两个低精度的 MEMS陀螺仪组合后得到高精度的组合模型,具有明显的成本优势。该方法简单易行,工程实用性强,可广泛适用于各种MEMS航姿、惯导领域。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种提高MEMS陀螺仪精度的方法,其特征在于,包括:
将两个同型号的MEMS陀螺仪相对地设置在PCB电路板的两侧,使得两个所述MEMS陀螺仪的敏感轴共线,得到组合模型;其中,所述PCB电路板分别与两个所述MEMS陀螺仪电连接,所述PCB电路板包含有数据采集模块和运算模块;
在所述组合模型工作时,利用所述采集模块分别对两个所述MEMS陀螺仪输出的原始信号进行采集,采集到的所述原始信号经过所述运算模块的差分处理后,输出为最终信号。
2.根据权利要求1所述的方法,其特征在于,所述MEMS陀螺仪的敏感轴均与所述PCB电路板的质心重合。
3.根据权利要求2所述的方法,其特征在于,所述MEMS陀螺仪的零偏稳定性≤10°/h。
4.根据权利要求3所述的方法,其特征在于,两个所述MEMS陀螺仪零偏稳定性的偏差率小于10%,所述偏差率按照以下公式计算
Figure FDA0002832331920000011
式中,A为偏差率,D1、D2分别为两个所述MEMS陀螺仪的零偏稳定性。
5.根据权利要求1所述的方法,其特征在于,还包括在使用所述组合模型之前,对所述组合模型进行标定;对所述组合模型进行标定的方法包括:
将所述组合模型放置于高精密转台上保持静止,记录所述最终信号,并根据所述最终信号计算所述组合模型的标度因数和零偏。
6.根据权利要求2所述的方法,其特征在于,进行标定时,所述组合模型的敏感轴平行于所述高精密转台的转轴,且与当地水平面垂直。
7.根据权利要求3所述的方法,其特征在于,进行标定时,记录所述最终信号的时长≥1h。
CN202011464418.XA 2020-12-11 2020-12-11 一种提高mems陀螺仪精度的方法 Active CN112665586B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011464418.XA CN112665586B (zh) 2020-12-11 2020-12-11 一种提高mems陀螺仪精度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011464418.XA CN112665586B (zh) 2020-12-11 2020-12-11 一种提高mems陀螺仪精度的方法

Publications (2)

Publication Number Publication Date
CN112665586A true CN112665586A (zh) 2021-04-16
CN112665586B CN112665586B (zh) 2024-06-14

Family

ID=75405554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011464418.XA Active CN112665586B (zh) 2020-12-11 2020-12-11 一种提高mems陀螺仪精度的方法

Country Status (1)

Country Link
CN (1) CN112665586B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1388732A (fr) * 1963-10-25 1965-02-12 Comp Generale Electricite Perfectionnement aux gyromètres à laser
CN101158582A (zh) * 2007-10-25 2008-04-09 北京航空航天大学 一种mems陀螺仪的差分测量方法
US20140208823A1 (en) * 2013-01-28 2014-07-31 The Regents Of The University Of California Multi-Axis Chip-Scale MEMS Inertial Measurement Unit (IMU) Based on Frequency Modulation
CN106289207A (zh) * 2015-06-26 2017-01-04 中国航天科工集团第四研究院指挥自动化技术研发与应用中心 一种基于差分mems陀螺仪的高精度测量方法
CN207850389U (zh) * 2017-12-27 2018-09-11 东莞前沿技术研究院 系留艇的飞行控制系统及其姿态角测量装置
CN110174104A (zh) * 2019-05-30 2019-08-27 北京邮电大学 一种组合导航方法、装置、电子设备及可读存储介质
CN111189472A (zh) * 2018-11-14 2020-05-22 北京自动化控制设备研究所 一种mems陀螺组合标定方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1388732A (fr) * 1963-10-25 1965-02-12 Comp Generale Electricite Perfectionnement aux gyromètres à laser
CN101158582A (zh) * 2007-10-25 2008-04-09 北京航空航天大学 一种mems陀螺仪的差分测量方法
US20140208823A1 (en) * 2013-01-28 2014-07-31 The Regents Of The University Of California Multi-Axis Chip-Scale MEMS Inertial Measurement Unit (IMU) Based on Frequency Modulation
CN106289207A (zh) * 2015-06-26 2017-01-04 中国航天科工集团第四研究院指挥自动化技术研发与应用中心 一种基于差分mems陀螺仪的高精度测量方法
CN207850389U (zh) * 2017-12-27 2018-09-11 东莞前沿技术研究院 系留艇的飞行控制系统及其姿态角测量装置
CN111189472A (zh) * 2018-11-14 2020-05-22 北京自动化控制设备研究所 一种mems陀螺组合标定方法
CN110174104A (zh) * 2019-05-30 2019-08-27 北京邮电大学 一种组合导航方法、装置、电子设备及可读存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PAN JINYAN等: "Study on zero position error of micro-machined gyro", 《 JOURNAL OF XI\'AN JIAOTONG UNIVERSITY》, 1 April 2006 (2006-04-01) *
王健;戴俊洁;郭全民;: "组合陀螺测试系统的设计与实现", 西安工业大学学报, no. 03, 30 June 2011 (2011-06-30) *

Also Published As

Publication number Publication date
CN112665586B (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
CN111426318B (zh) 基于四元数-扩展卡尔曼滤波的低成本ahrs航向角补偿方法
CN100419380C (zh) 一种高集成度mimu/gps/微磁罗盘/气压高度计组合导航系统
CN106767805B (zh) 基于mems传感器阵列的高精度惯性量测量方法及测量系统
CN105607093B (zh) 一种组合导航系统及获取导航坐标的方法
CN100405014C (zh) 一种载体姿态测量方法
CN106482746B (zh) 一种用于混合式惯导系统的加速度计内杆臂标定与补偿方法
RU2406973C2 (ru) Способ калибровки бесплатформенных инерциальных навигационных систем
CN109029500A (zh) 一种双轴旋转调制系统全参数自标定方法
CN109186638B (zh) 一种电流标度因数可控的加速度计伺服电路及其制造工艺
CN111157761B (zh) 一种温度自补偿的面内双轴加速度传感器及温度补偿方法
CN111076748A (zh) 基于mems加速度计的水平倾角仪误差补偿方法及系统
CN105371868A (zh) 一种惯性稳定平台系统加速度计组合误差标定和补偿方法
CN106840100A (zh) 一种数字式倾角传感器及测量方法
CN109407159A (zh) 一种地磁全要素传感器姿态误差校正方法
CN107024673A (zh) 基于陀螺仪辅助的三轴磁强计全误差标定方法
CN103808349A (zh) 矢量传感器的误差校正方法和装置
CN103454449A (zh) 一种三轴微机械加速度计
CN103344252A (zh) 一种航空高光谱成像系统定位误差分析方法
CN111141285B (zh) 一种航空重力测量装置
CN112665586A (zh) 一种提高mems陀螺仪精度的方法
RU2717566C1 (ru) Способ определения погрешностей инерциального блока чувствительных элементов на двухосном поворотном столе
CN110954081A (zh) 一种磁罗盘快速校准装置及方法
CN217483543U (zh) 一种集成传感器芯片
CN114313303B (zh) 一种无人机飞行性能的检测设备、系统及检测方法
CN108398576A (zh) 一种静态误差标定系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant