CN112658286B - 一种金属3d打印用融熔挤压喷嘴 - Google Patents

一种金属3d打印用融熔挤压喷嘴 Download PDF

Info

Publication number
CN112658286B
CN112658286B CN202011399224.6A CN202011399224A CN112658286B CN 112658286 B CN112658286 B CN 112658286B CN 202011399224 A CN202011399224 A CN 202011399224A CN 112658286 B CN112658286 B CN 112658286B
Authority
CN
China
Prior art keywords
pipe
core
heat insulation
extrusion
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011399224.6A
Other languages
English (en)
Other versions
CN112658286A (zh
Inventor
刘正文
赵时迁
罗毅彪
焦向东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Petrochemical Technology
Original Assignee
Beijing Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Petrochemical Technology filed Critical Beijing Institute of Petrochemical Technology
Priority to CN202011399224.6A priority Critical patent/CN112658286B/zh
Publication of CN112658286A publication Critical patent/CN112658286A/zh
Application granted granted Critical
Publication of CN112658286B publication Critical patent/CN112658286B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)
  • Coating Apparatus (AREA)

Abstract

本发明公开了一种金属3D打印用融熔挤压喷嘴,包括送丝管、送丝管接头、导丝外冷管、散热片、管芯顶紧螺母、隔热套外扣盖、压紧铜管外套管、隔热套外扣、外隔热套、压紧铜管、内隔热套、紧固螺丝盖、厚壁芯管、密封压紧柱、芯部外管、挤压枪芯壳、感应受热管、薄壁芯管、挤出嘴、挤压枪头、挤压枪外壳、电感应水冷铜管。能够使送入融熔挤压喷嘴的金属丝材以电磁感应加热的方式加热熔化,再通过金属丝材的不断送入而产生的挤出压力,迫使融熔态金属从挤出嘴下方的小孔连续挤出,达到将金属丝材挤出成融熔态金属微丝的目的,可满足金属熔融挤压快速成形方法中对在多种金属丝材融熔加热并挤出的要求。

Description

一种金属3D打印用融熔挤压喷嘴
技术领域
本发明涉及一种3D打印或快速成形制造,尤其涉及一种金属3D打印用融熔挤压喷嘴,金属融熔挤压3D打印是将金属材料加热融化或半融化后,通过挤压的方式将融熔金属从小孔隙中挤压出来,并进行堆积成形的过程,其物理过程类似于有机材料的3D打印原理。
背景技术
3D打印或快速成形制造以其特有的造形能力,方便快捷的制造形式,目前成为各种先进制造领域的热点研究对象,随着科技水平的发展,作为关键的金属3D打印技术越来越受到科研机构和工业生产厂家的关注,成为一种新兴的制造手段。
目前,非金属材料3D打印以融熔挤压方式为主,即将丝材送入一个安装有电阻加热的喷嘴受热熔化成半融熔态,喷嘴下端开有小孔,在新丝材不断送入过程中,喷嘴内压力增大使得半融熔态的成形材料从喷嘴下端小孔挤出并形成融熔态的细丝,用于堆积成形。而金属3D打印或快速成形技术以激光加热源为主,通过发射激光并改变激光照射角度达到使激光对焦点快速在平台面的粉末层上移动,达到烧结成形的目的。
与激光热源的3D打印技术相比,金属融熔挤压的3D快速成形技术原理更类似于非金属材料的电热融熔挤压3D打印技术,由于金属融熔挤压快速成形技术要求喷嘴的加热融熔温度非常高,通常需要达到金属熔点的2/3以上,是常规非金属3D打印喷嘴加热温度的3~4倍,同时成形环境条件也较为严酷,其核心部件均需要浸入在密闭的高温环境中,如此对机械结构设计和电气设计带来很大不便,需要考虑材料的抗高温性能,从而实现的技术难度高,目前没有现实可用的金属融熔成形装备。
发明内容
基于金属融熔挤压3D打印或快速成形技术所面临的问题,本发明的目的是提供一种金属3D打印用融熔挤压喷嘴,该融熔挤压喷嘴可将送入的金属丝材通过电感加热到半融熔态,再通过丝材送入过程本身带来的挤压效果,使融熔态金属从喷嘴下方的小孔挤出,以实现金属融熔挤压快速成形的目的。
本发明的目的是通过以下技术方案实现的:
本发明的金属3D打印用融熔挤压喷嘴,包括:
送丝管、送丝管接头、导丝外冷管、散热片、管芯顶紧螺母、隔热套外扣盖、压紧铜管外套管、隔热套外扣、外隔热套、压紧铜管、内隔热套、紧固螺丝盖、厚壁芯管、密封压紧柱、芯部外管、挤压枪芯壳、感应受热管、薄壁芯管、挤出嘴、挤压枪头、挤压枪外壳、电感应水冷铜管;其中,
所述送丝管端头由所述送丝管接头的细端卡紧,所述送丝管接头的粗端与所述导丝外冷管螺纹固紧,所述导丝外冷管通过所述散热片背部卡槽并由螺丝固紧,所述导丝外冷管的下端螺丝口与所述管芯顶紧螺母固紧,所述管芯顶紧螺母的外螺丝口旋入所述隔热套外扣盖的中心螺纹孔,并压紧所述压紧铜管,所述隔热套外扣盖外螺纹旋入所述隔热套外扣,并压紧所述内隔热套,所述内隔热套受压后再压紧所述挤压枪芯壳,所述压紧铜管外是所述压紧铜管外套管,所述压紧铜管的下端凹孔内插入所述厚壁芯管并向下压紧,同时将下方所述薄壁芯管压紧,所述压紧铜管和所述压紧铜管外套的下端一并插入所述紧固螺丝盖的上方凹孔,所述紧固螺丝盖的外螺丝口旋入所述挤压枪芯壳上端螺纹孔内,将位于所述挤压枪芯壳内的所述密封压紧柱、所述感应受热管和所述挤出嘴一并压紧,所述挤压枪芯壳外还套有所述芯部外管,所述电感应水冷铜管的感应环套在所述挤压枪芯壳下方位置,即所述感应受热管位置处,所述挤压枪芯壳的下端枪嘴和所述挤出嘴从所述挤压枪头的心孔探出,所述挤压枪头与所述挤压枪外壳将所有上述部件包裹其内,中间空隙由抗高温绝缘隔热材料填实。
由上述本发明提供的技术方案可以看出,本发明实施例提供的金属3D打印用融熔挤压喷嘴,金属丝材从送丝管进入导丝外冷管后,通过管芯顶紧螺母到达压紧铜管,再通过厚壁芯管最后进入薄壁芯管中,电感应水冷铜管上加载高频振荡电流,在水冷铜管的螺旋线圈轴径产生高频电磁场,从而使处于螺旋线圈轴心位置的感应受热管受交变电磁场影响在管壁产生交变电流,感应受热管被电磁场快速加热后,感应受热管的热量通过薄壁芯管的良好导热性迅速传递给处于薄壁芯管内的金属丝材上,使其受热融化为液态或融熔态,随着金属丝材不断的送入薄壁芯管,薄壁芯管的空腔被充满融熔态金属,薄壁芯管内的温度还会沿金属丝材向上方,丝材的送入方向传递,从而沿挤压喷嘴的轴心形成一条由下往上的温度梯度场,并在压紧铜管位置处,热量沿压紧铜管、管芯顶紧螺母、导丝外冷管传导到散热片上,使丝材温度明显下降,该沿丝材往上传递的喷嘴轴心温度场,使得金属丝材在向薄壁芯管送入时,丝材的硬度沿送入方向逐渐降低,从而使丝材在送入过程中具有足够的挺度,使得丝材能很好的连续送入,这时,不断送入的金属丝材将挤压位于薄壁芯管内的融熔态金属,使薄壁芯管内压强增大,并迫使融熔态金属从挤出嘴下方的小孔连续挤压,最终达到将金属丝材挤出成融熔态金属微丝的目的。
附图说明
图1为本发明实施例提供的高温密闭箱体局部剖视结构示意图;
图2为本发明实施例提供的正面剖视结构示意图;
图中:
1-送丝管、2-送丝管接头、3-导丝外冷管、4-散热片、5-管芯顶紧螺母、6-隔热套外扣盖、7-压紧铜管外套管、8-隔热套外扣、9-外隔热套、10-压紧铜管、11-内隔热套、12-紧固螺丝盖、13-厚壁芯管、14-密封压紧柱、15-芯部外管、16-挤压枪芯壳、17-感应受热管、18-薄壁芯管、19-挤出嘴、20-挤压枪头、21-挤压枪外壳、22-电感应水冷铜管。
具体实施方式
下面结合本发明的具体内容,对本发明实施例中的技术方案进行清楚、完整地描述,本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
本发明的金属3D打印用融熔挤压喷嘴,其较佳的具体实施方式如图1、2所示,包括:
送丝管1、送丝管接头2、导丝外冷管3、散热片4、管芯顶紧螺母5、隔热套外扣盖6、压紧铜管外套管7、隔热套外扣8、外隔热套9、压紧铜管10、内隔热套11、紧固螺丝盖12、厚壁芯管13、密封压紧柱14、芯部外管15、挤压枪芯壳16、感应受热管17、薄壁芯管18、挤出嘴19、挤压枪头20、挤压枪外壳21、电感应水冷铜管22;其中,
送丝管1端头由送丝管接头2的细端卡紧,送丝管接头2的粗端与导丝外冷管3螺纹固紧,导丝外冷管3通过散热片4背部卡槽并由螺丝固紧,导丝外冷管3的下端螺丝口与管芯顶紧螺母5固紧,管芯顶紧螺母5的外螺丝口旋入隔热套外扣盖6的中心螺纹孔,并压紧压紧铜管10,隔热套外扣盖6外螺纹旋入隔热套外扣8,并压紧内隔热套11,内隔热套11受压后再压紧挤压枪芯壳16,压紧铜管10外是压紧铜管外套管7,压紧铜管10的下端凹孔内插入厚壁芯管13并向下压紧,同时将下方薄壁芯管18压紧,压紧铜管10和压紧铜管外套7的下端一并插入紧固螺丝盖12的上方凹孔,紧固螺丝盖12的外螺丝口旋入挤压枪芯壳16上端螺纹孔内,将位于挤压枪芯壳16内的密封压紧柱14、感应受热管17和挤出嘴19一并压紧,挤压枪芯壳16外还套有芯部外管15,电感应水冷铜管22的感应环套在挤压枪芯壳16下方位置,即感应受热管17位置处,挤压枪芯壳16的下端枪嘴和挤出嘴19从挤压枪头20的心孔探出,挤压枪头20与挤压枪外壳21将所有上述部件包裹其内,中间空隙由抗高温绝缘隔热材料填实。
管芯顶紧螺母5上端凹孔底部为锥度角,以便于金属丝材进入时能顺利滑入其中心细孔,细孔孔径比丝材直径稍粗;
管芯顶紧螺母5的下端亦为锥度角,与压紧铜管10上端的锥度凹坑吻合;
挤压枪芯壳16的下端为带锥度内孔,与挤压嘴19的锥度相吻合;
厚壁芯管13的管径比管芯顶紧螺母5和压紧铜管10的孔径略粗,薄壁芯管18的管径比厚壁芯管13的管径略粗,金属丝材在进入管组时不会发生淤堵,并在所述薄壁芯管的管腔内受热形成融熔态;
挤压枪外壳21内的挤压枪主体为多层法兰边胀紧结构,相关部件包括隔热套外扣盖6、隔热套外扣8、外隔热套9、挤压枪芯壳16和内隔热套11,即,外隔热套9的法兰边与隔热套外扣8的内孔相搭连,挤压枪芯壳16的法兰边与外隔热套9内孔相搭连,当隔热套外扣盖6旋入隔热套外扣8后,将直接抵紧内隔热套11,内隔热套11下端抵紧挤压枪芯壳16的上端,从而形成上述的多层法兰边胀紧结构;
管芯顶紧螺母5旋入隔热套外扣盖6的中心螺纹孔中,沿着其中心轴径方向顺次抵紧下方的压紧铜管10、厚壁芯管13、薄壁芯管18和挤出嘴19,从而构成金属丝材的送入的密封通道,并在薄壁芯管的管腔内受热形成融熔态金属;
紧固螺丝盖12旋入挤压枪芯壳16上端的螺纹孔中,沿其中心轴径方向顺次抵紧下方的密封压紧柱14、感应受热管17、挤出嘴19和挤压枪芯壳16的下端带锥度内孔壁上,从而在丝材送入通道之外构成第二道密封防漏空腔;
感应受热管17的内管壁与薄壁芯管18的外壁贴合,厚壁芯管13和薄壁芯管18为绝缘耐高温材料,并有良好的导热性能,感应受热管17温度变化可直接传导给薄壁芯管18及其内的金属丝材;
感应受热管17为碳钢材质,电感应水冷铜管22通过高频振荡电流后,会在其盘绕的感应受热管17位置处产生高频交变电磁场,从而可迅速加热感应受热管17,挤压枪芯壳16为耐高温不锈钢材质,不受电磁感应加热的影响;
压紧铜管外套管7、外隔热套9、内隔热套11和芯部外管15均为绝缘隔热材料,避免融熔喷嘴枪芯部金属结构与外层的电感应水冷铜管22误接触;
挤压枪外壳21为耐高温绝缘材料,其与外隔热套9和挤压枪芯壳16的外壁构成的空腔内,填充有绝缘隔热的耐高温材料;
上述由各所述部件构成的融熔挤压喷嘴将没入高温密闭箱的顶部圆形开孔,高温密闭箱用于保证3D打印过程中的融熔态金属所需的环境温度,隔热套外扣盖6及以上的结构处于高温密闭箱之外的常温环境中。
具体实施例:
如图1、图2所示,本实施例提供的一种金属3D打印用融熔挤压喷嘴,是一种应用电磁感应加热做为热源,对金属丝材进行加热成融熔态后挤出成形的金属3D打印的融熔挤出喷嘴。通过电磁感应方式将融熔挤压喷嘴内的碳钢受热管加热形成高温腔室,金属丝材从导丝管送入该高温腔后受热软化为液态或融熔态金属,再通过挤压的方式将融熔金属从喷嘴下方小孔挤压出来,并进行堆积成形的过程,其物理过程类似于有机材料的3D打印原理。
具体包括:送丝管1、送丝管接头2、导丝外冷管3、散热片4、管芯顶紧螺母5、隔热套外扣盖6、压紧铜管外套管7、隔热套外扣8、外隔热套9、压紧铜管10、内隔热套11、紧固螺丝盖12、厚壁芯管13、密封压紧柱14、芯部外管15、挤压枪芯壳16、感应受热管17、薄壁芯管18、挤出嘴19、挤压枪头20、挤压枪外壳21、电感应水冷铜管22;其中,送丝管1端头由送丝管接头2的细端卡紧,送丝管接头2的粗端与导丝外冷管3螺纹固紧,导丝外冷管3通过散热片4背部卡槽并由螺丝固紧,导丝外冷管3的下端螺丝口与管芯顶紧螺母5固紧,管芯顶紧螺母5的外螺丝口旋入隔热套外扣盖6的中心螺纹孔,并压紧压紧铜管10,隔热套外扣盖6外螺纹旋入隔热套外扣8,并压紧内隔热套11,内隔热套11受压后再压紧挤压枪芯壳16,压紧铜管10外是压紧铜管外套管7,压紧铜管10的下端凹孔内插入厚壁芯管13并向下压紧,同时将下方薄壁芯管18压紧,压紧铜管10和压紧铜管外套7的下端一并插入紧固螺丝盖12的上方凹孔,紧固螺丝盖12的外螺丝口旋入挤压枪芯壳16上端螺纹孔内,将位于挤压枪芯壳16内的密封压紧柱14、感应受热管17和挤出嘴19一并压紧,挤压枪芯壳16外还套有芯部外管15,电感应水冷铜管22的感应环套在挤压枪芯壳16下方位置,即感应受热管17位置处,挤压枪芯壳16的下端枪嘴和挤出嘴19从挤压枪头20的心孔探出,挤压枪头20与挤压枪外壳21将所有上述部件包裹其内,中间空隙由抗高温绝缘隔热材料填实。
上述管芯顶紧螺母5上端凹孔底部为锥度角,以便于金属丝材进入时能顺利滑入其中心细孔,细孔孔径比丝材直径稍粗;
上述管芯顶紧螺母5的下端亦为锥度角,与压紧铜管10上端的锥度凹坑吻合;
上述挤压枪芯壳16的下端为带锥度内孔,与挤压嘴19的锥度相吻合;
上述厚壁芯管13的管径比管芯顶紧螺母5和压紧铜管10的孔径略粗,薄壁芯管18的管径比厚壁芯管13的管径略粗,金属丝材在进入管组时不会发生淤堵,并在所述薄壁芯管的管腔内受热形成融熔态;
上述挤压枪外壳21内的挤压枪主体为多层法兰边胀紧结构,相关部件包括隔热套外扣盖6、隔热套外扣8、外隔热套9、挤压枪芯壳16和内隔热套11,即,外隔热套9的法兰边与隔热套外扣8的内孔相搭连,挤压枪芯壳16的法兰边与外隔热套9内孔相搭连,当隔热套外扣盖6旋入隔热套外扣8后,将直接抵紧内隔热套11,内隔热套11下端抵紧挤压枪芯壳16的上端,从而形成上述的多层法兰边胀紧结构;
上述管芯顶紧螺母5旋入隔热套外扣盖6的中心螺纹孔中,沿着其中心轴径方向顺次抵紧下方的压紧铜管10、厚壁芯管13、薄壁芯管18和挤出嘴19,从而构成金属丝材的送入的密封通道,并在薄壁芯管的管腔内受热形成融熔态金属;
上述紧固螺丝盖12旋入挤压枪芯壳16上端的螺纹孔中,沿其中心轴径方向顺次抵紧下方的密封压紧柱14、感应受热管17、挤出嘴19和挤压枪芯壳16的下端带锥度内孔壁上,从而在丝材送入通道之外构成第二道密封防漏空腔;
上述感应受热管17的内管壁与薄壁芯管18的外壁贴合,厚壁芯管13和薄壁芯管18为绝缘耐高温材料,并有良好的导热性能,感应受热管17温度变化可直接传导给薄壁芯管18及其内的金属丝材;
上述感应受热管17为碳钢材质,电感应水冷铜管22通过高频振荡电流后,会在其盘绕的感应受热管17位置处产生高频交变电磁场,从而可迅速加热感应受热管17,挤压枪芯壳16为耐高温不锈钢材质,不受电磁感应加热的影响;
上述压紧铜管外套管7、外隔热套9、内隔热套11和芯部外管15均为绝缘隔热材料,避免融熔喷嘴枪芯部金属结构与外层的电感应水冷铜管22误接触;
上述挤压枪外壳21为耐高温绝缘材料,其与外隔热套9和挤压枪芯壳16的外壁构成的空腔内,填充有绝缘隔热的耐高温材料;
上述由各所述部件构成的融熔挤压喷嘴将没入高温密闭箱的顶部圆形开孔,高温密闭箱用于保证3D打印过程中的融熔态金属所需的环境温度,隔热套外扣盖6及以上的结构处于高温密闭箱之外的常温环境中。
本发明的一种金属3D打印用融熔挤压喷嘴,能够使送入融熔挤压喷嘴的金属丝材加热熔化,再通过送入丝材的挤入压力从喷嘴小孔不断挤出。金属丝材从送丝管进入导丝外冷管,通过管芯顶紧螺母、压紧铜管和厚壁芯管,最后进入薄壁芯管中,电感应水冷铜管的绕圈上通过高频振荡电流感生出高频电磁场,快速加热感应受热管,热量再通过薄壁芯管传递给金属丝材,随着金属丝材不断送入,充满融熔态金属不断受到送入的金属丝材的挤压,迫使融熔态金属从挤出嘴下方的小孔连续挤压,最终达到将金属丝材挤出成融熔态金属微丝的目的。该融熔挤压喷嘴的电磁感应加热与丝材送入挤出结构设计巧妙、结构紧凑,其喷嘴主体可浸入高温密闭箱体内,外部温度与喷嘴内部电感应加热部件温度相互隔离无影响,对送入丝材加热迅速,上限温度高,可加热挤出多种金属,对外绝缘隔热性好,安全热效率高,从而满足了金属熔融挤压快速成形方法中对金属丝材融熔加热并挤出的要求。
结合图1、图2,本发明的工作流程如下:金属丝材从送丝管进入导丝外冷管后,通过管芯顶紧螺母到达压紧铜管,再通过厚壁芯管最后进入薄壁芯管中,电感应水冷铜管上加载高频振荡电流,在水冷铜管的螺旋线圈轴径产生高频电磁场,从而使处于螺旋线圈轴心位置的感应受热管受交变电磁场影响在管壁产生交变电流,感应受热管被电磁场快速加热后,感应受热管的热量通过薄壁芯管的良好导热性迅速传递给处于薄壁芯管内的金属丝材上,使其受热融化为液态或融熔态,随着金属丝材不断的送入薄壁芯管,薄壁芯管的空腔被充满融熔态金属,薄壁芯管内的温度还会沿金属丝材向上方,丝材的送入方向传递,从而沿挤压喷嘴的轴心形成一条由下往上的温度梯度场,并在压紧铜管位置处,热量沿压紧铜管、管芯顶紧螺母、导丝外冷管传导到散热片上,使丝材温度明显下降,该沿丝材往上传递的喷嘴轴心温度场,使得金属丝材在向薄壁芯管送入时,丝材的硬度沿送入方向逐渐降低,从而使丝材在送入过程中具有足够的挺度,使得丝材能很好的连续送入,这时,不断送入的金属丝材将挤压位于薄壁芯管内的融熔态金属,使薄壁芯管内压强增大,并迫使融熔态金属从挤出嘴下方的小孔连续挤压,最终达到将金属丝材挤出成融熔态金属微丝的目的。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (1)

1.一种金属3D打印用融熔挤压喷嘴,其特征在于,包括送丝管(1)、送丝管接头(2)、导丝外冷管(3)、散热片(4)、管芯顶紧螺母(5)、隔热套外扣盖(6)、压紧铜管外套管(7)、隔热套外扣(8)、外隔热套(9)、压紧铜管(10)、内隔热套(11)、紧固螺丝盖(12)、厚壁芯管(13)、密封压紧柱(14)、芯部外管(15)、挤压枪芯壳(16)、感应受热管(17)、薄壁芯管(18)、挤出嘴(19)、挤压枪头(20)、挤压枪外壳(21)、电感应水冷铜管(22);
其中,送丝管(1) 端头由送丝管接头(2) 的细端卡紧,送丝管接头(2) 的粗端与导丝外冷管(3) 螺纹固紧,导丝外冷管(3) 通过散热片(4) 背部卡槽并由螺丝固紧,导丝外冷管(3) 的下端螺丝口与管芯顶紧螺母(5) 固紧,管芯顶紧螺母(5) 的外螺丝口旋入隔热套外扣盖(6) 的中心螺纹孔,并压紧压紧铜管(10),隔热套外扣盖(6) 外螺纹旋入隔热套外扣(8),并压紧内隔热套(11),内隔热套(11) 受压后再压紧挤压枪芯壳(16),压紧铜管(10)外是压紧铜管外套管(7),压紧铜管(10) 的下端凹孔内插入厚壁芯管(13) 并向下压紧,同时将下方薄壁芯管(18) 压紧,压紧铜管(10) 和压紧铜管外套管(7) 的下端一并插入紧固螺丝盖(12) 的上方凹孔,紧固螺丝盖(12) 的外螺丝口旋入挤压枪芯壳(16) 上端螺纹孔内,将位于挤压枪芯壳(16) 内的密封压紧柱(14)、感应受热管(17) 和挤出嘴(19) 一并压紧,挤压枪芯壳(16) 外还套有芯部外管(15),电感应水冷铜管(22) 的感应环套在挤压枪芯壳(16) 下方位置,即感应受热管(17) 位置处,挤压枪芯壳(16)的下端枪嘴和挤出嘴(19) 从挤压枪头(20) 的心孔探出,挤压枪头(20) 与挤压枪外壳(21) 将挤压枪主体、压紧铜管外套管(7)、压紧铜管(10)、紧固螺丝盖(12)、厚壁芯管(13)、密封压紧柱(14)、芯部外管(15)、感应受热管(17)、薄壁芯管(18)、挤出嘴(19)及电感应水冷铜管(22)的下部包裹其内,中间空隙由抗高温绝缘隔热材料填实;
所述管芯顶紧螺母(5) 上端凹孔底部为锥度角,以便于金属丝材进入时能顺利滑入其中心细孔,细孔孔径比丝材直径稍粗;
所述管芯顶紧螺母(5) 的下端亦为锥度角,与压紧铜管(10) 上端的锥度凹坑吻合;
所述挤压枪芯壳(16) 的下端为带锥度内孔,与挤出嘴(19) 的锥度相吻合;
所述厚壁芯管(13) 的管径比管芯顶紧螺母(5) 和压紧铜管(10) 的孔径略粗,薄壁芯管(18) 的管径比厚壁芯管(13) 的管径略粗,金属丝材在进入管组时不会发生淤堵,并在所述薄壁芯管的管腔内受热形成融熔态;
所述挤压枪外壳(21) 内的挤压枪主体为多层法兰边胀紧结构,相关部件包括隔热套外扣盖(6)、隔热套外扣(8)、外隔热套(9)、挤压枪芯壳(16) 和内隔热套(11),即,外隔热套(9) 的法兰边与隔热套外扣(8) 的内孔相搭连,挤压枪芯壳(16) 的法兰边与外隔热套(9)内孔相搭连,当隔热套外扣盖(6) 旋入隔热套外扣(8) 后,将直接抵紧内隔热套(11),内隔热套(11) 下端抵紧挤压枪芯壳(16) 的上端,从而形成上述的多层法兰边胀紧结构;
所述管芯顶紧螺母(5) 旋入隔热套外扣盖(6) 的中心螺纹孔中,沿着其中心轴径方向顺次抵紧下方的压紧铜管(10)、厚壁芯管(13)、薄壁芯管(18) 和挤出嘴(19),从而构成金属丝材的送入的密封通道,并在薄壁芯管的管腔内受热形成融熔态金属;
所述紧固螺丝盖(12) 旋入挤压枪芯壳(16) 上端的螺纹孔中,沿其中心轴径方向顺次抵紧下方的密封压紧柱(14)、感应受热管(17)、挤出嘴(19) 和挤压枪芯壳(16) 的下端带锥度内孔壁上,从而在丝材送入通道之外构成第二道密封防漏空腔;
所述感应受热管(17) 的内管壁与薄壁芯管(18) 的外壁贴合,厚壁芯管(13) 和薄壁芯管(18) 为绝缘耐高温材料,并有良好的导热性能,感应受热管(17) 温度变化可直接传导给薄壁芯管(18) 及其内的金属丝材;
所述感应受热管(17) 为碳钢材质,电感应水冷铜管(22) 通过高频振荡电流后,会在其盘绕的感应受热管(17) 位置处产生高频交变电磁场,从而可迅速加热感应受热管(17),挤压枪芯壳(16) 为耐高温不锈钢材质,不受电磁感应加热的影响;
所述压紧铜管外套管(7)、外隔热套(9)、内隔热套(11) 和芯部外管(15) 均为绝缘隔热材料,避免融熔喷嘴枪芯部金属结构与外层的电感应水冷铜管(22)误接触;
所述挤压枪外壳(21) 为耐高温绝缘材料,其与外隔热套(9) 和挤压枪芯壳(16) 的外壁构成的空腔内,填充有绝缘隔热的耐高温材料;
该融熔挤压喷嘴将没入高温密闭箱的顶部圆形开孔,高温密闭箱用于保证3D打印过程中的融熔态金属所需的环境温度,隔热套外扣盖(6) 及以上的结构处于高温密闭箱之外的常温环境中。
CN202011399224.6A 2020-12-02 2020-12-02 一种金属3d打印用融熔挤压喷嘴 Active CN112658286B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011399224.6A CN112658286B (zh) 2020-12-02 2020-12-02 一种金属3d打印用融熔挤压喷嘴

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011399224.6A CN112658286B (zh) 2020-12-02 2020-12-02 一种金属3d打印用融熔挤压喷嘴

Publications (2)

Publication Number Publication Date
CN112658286A CN112658286A (zh) 2021-04-16
CN112658286B true CN112658286B (zh) 2022-07-19

Family

ID=75402525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011399224.6A Active CN112658286B (zh) 2020-12-02 2020-12-02 一种金属3d打印用融熔挤压喷嘴

Country Status (1)

Country Link
CN (1) CN112658286B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113427028A (zh) * 2021-06-01 2021-09-24 江苏威拉里新材料科技有限公司 一种金属3d打印物料喷头
CN113751727B (zh) * 2021-08-26 2023-06-09 南方科技大学 3d打印喷头及3d打印装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203817392U (zh) * 2014-05-15 2014-09-10 东莞市亚美精密机械配件有限公司 挤出式金属流3d打印机
CN104014793B (zh) * 2014-05-15 2016-01-27 东莞市亚美精密机械配件有限公司 挤出式金属流3d打印机
CN104550958B (zh) * 2014-12-19 2018-09-28 北京机科国创轻量化科学研究院有限公司 一种金属3d打印机喷头
JP2018525522A (ja) * 2015-07-23 2018-09-06 チョ, キュンギルCHO, Kyungil 金属合金フィラメント用3dプリンター
CN105216334A (zh) * 2015-11-17 2016-01-06 李乾勇 一种感应加热器、3d打印机挤出机
CN105499572B (zh) * 2016-01-05 2018-01-19 哈尔滨工程大学 一种电磁感应加热式3d打印机挤出喷头
CN106392076B (zh) * 2016-06-21 2019-05-17 中国科学院宁波材料技术与工程研究所 3d打印系统及其喷头装置
CN205871232U (zh) * 2016-08-08 2017-01-11 南京增材制造研究院发展有限公司 带感应加热功能的fdm式3d打印机喷头结构
CN206703526U (zh) * 2017-05-18 2017-12-05 四川建筑职业技术学院 一种增材制造电磁感应加热式打印喷头装置
KR20190023373A (ko) * 2017-08-29 2019-03-08 엘븐트리 주식회사 3d 프린터용 노즐 유닛
CN207308972U (zh) * 2017-09-19 2018-05-04 四川建筑职业技术学院 一种用于金属打印的陶瓷电感喷头及挤出机总成

Also Published As

Publication number Publication date
CN112658286A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
CN112658286B (zh) 一种金属3d打印用融熔挤压喷嘴
CN102226486B (zh) 一种铜铝双金属复合管及其模具挤压成型方法
CN104475744A (zh) 一种气雾化制备球形钛粉及钛合金粉末的装置及方法
US3409973A (en) Process for producing annular composite members
CN206216093U (zh) 改进型水冷焊枪
WO2018196840A1 (zh) 粒子流探针,其使用方法和用途
CN104075603A (zh) 一种热管复合吸液芯及其制备方法
CN112589129B (zh) 一种金属3d打印用双水冷融熔喷嘴
US2647979A (en) Method and apparatus for forming large upsets
CN108555427B (zh) 一种用于小直径厚壁管的高频焊接装置
CN106735786B (zh) 一种一体化锁孔效应tig深熔焊焊枪
CN100450760C (zh) 对接焊金属管与聚合物复合的复合管生产方法
EP3205441B1 (en) Welding electrodes and methods of manufacturing same
CN209393743U (zh) 一种金属复合管的热挤压成型模具
CN106521856A (zh) 油电两用节能烫光辊
CN103962814B (zh) 一种注塑模具用常温热管式热喷嘴的制造方法
CN214324124U (zh) 一种双层共挤机头
CN203140937U (zh) 焊锡装置
EP3205429A1 (en) Methods of manufacturing composite materials, composite wires, and welding electrodes
CN101434126A (zh) 塑料波纹管定型冷却装置
CN108262364A (zh) 一种微细管挤压温度控制装置
CN201171246Y (zh) 等离子枪的喷嘴
CN114505502B (zh) 一种适用金属丝材的3d打印喷头
CN111447703B (zh) 一种浸入型节能铝合金熔体加热器
CN109041306A (zh) 一种电缆挤包和铺设导热丝流水线

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant