CN112648751B - 一种集热装置压力差除垢的方法 - Google Patents

一种集热装置压力差除垢的方法 Download PDF

Info

Publication number
CN112648751B
CN112648751B CN201910959853.0A CN201910959853A CN112648751B CN 112648751 B CN112648751 B CN 112648751B CN 201910959853 A CN201910959853 A CN 201910959853A CN 112648751 B CN112648751 B CN 112648751B
Authority
CN
China
Prior art keywords
heat
pipe
electric heater
tube
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910959853.0A
Other languages
English (en)
Other versions
CN112648751A (zh
Inventor
侯钦鹏
吴丹淼
齐宾
廉根宽
江程
刘一晟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Baiteng Technology Co ltd
Original Assignee
Qingdao Baiteng Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Baiteng Technology Co ltd filed Critical Qingdao Baiteng Technology Co ltd
Priority to CN201910959853.0A priority Critical patent/CN112648751B/zh
Publication of CN112648751A publication Critical patent/CN112648751A/zh
Application granted granted Critical
Publication of CN112648751B publication Critical patent/CN112648751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/60Details of absorbing elements characterised by the structure or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/60Details of absorbing elements characterised by the structure or construction
    • F24S2070/62Heat traps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

本发明提供了一种集热装置压力差除垢的方法,在集热管箱内设置电加热器,电加热器在晚上运行,控制器根据时间顺序提取压力数据,通过相邻的时间段的压力数据的比较,获取其压力差或者压力差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热。本发明通过电加热器的运行使得集热管根据压力差数据进行持续的振动从而进行除垢工作。

Description

一种集热装置压力差除垢的方法
技术领域
本发明属于太阳能领域,尤其涉及一种太阳能集热器系统。
背景技术
随着现代社会经济的高速发展,人类对能源的需求量越来越大。然而煤、石油、天然气等传统能源储备量不断减少、日益紧缺,造成价格的不断上涨,同时常规化石燃料造成的环境污染问题也愈加严重,这些都大大限制着社会的发展和人类生活质量的提高。能源问题已经成为当代世界的最突出的问题之一。因而寻求新的能源,特别是无污染的清洁能源已成为现在人们研究的热点。
太阳能是一种取之不尽用之不竭的清洁能源,而且资源量巨大,地球表面每年收的太阳辐射能总量为1×1018kW·h,为世界年耗总能量的一万多倍。世界各国都已经把太阳能的利用作为新能源开发的重要一项。然而由于太阳辐射到达地球上的能量密度小(每平方米约一千瓦),而且又是不连续的,这给大规模的开发利用带来一定困难。因此,为了广泛利用太阳能,不仅要解决技术上的问题,而且在经济上必须能同常规能源相竞争。
针对集热器的结构,现有技术已经进行了很多的研发和改进,但是整体来说集热能力不足,而且还存在运行时间长容易结垢问题,影响集热效果。
无论哪种形式和结构的太阳能集热器,都要有一个用来吸收太阳辐射的吸收部件,集热器的结构对太阳能的吸收起到重要的作用。
针对上述问题,本发明在前面发明的基础上进行了改进,提供了一种新的环路热管太阳能集热系统,从而解决热管换热量低及其换热不均匀的问题。
在应用中发现,太阳能持续集热加热或者晚上不加热会导致内部流体形成稳定性,即流体不再流动或者流动性很少,或者流量稳定,导致集热管振动性能大大减弱,从而影响集热管的除垢以及加热的效率。因此需要对上述太阳能集热器进行改进。本申请人已经对此申请了相关的专利。
但是,在实践中发现,通过固定性周期性变化来调整管束的振动,会出现滞后性以及周期会出现过长或者过短的情况。因此本发明对前面的申请进行了改进,对振动进行智能型控制,从而使得内部的流体能够实现的频繁性的振动,从而实现很好的除垢以及加热效果。
发明内容
本发明针对现有技术中的不足,提供一种新式结构的集热装置。该集热装置能够提高白天进行集热,晚上进行辅助加热和除垢的操作,提高了热利用效果和除垢效果。
为实现上述目的,本发明采用如下技术方案:
一种集热装置基于压力检测除垢的方法,所述集热装置包括位于下部的集热管箱、左上管、右上管和放热管组,左上管、右上管位于集热管箱的上部,所述放热管组包括左放热管组和右放热管组,左放热管组与左上管和集热管箱相连通,右放热管组与右上管和集热管箱相连通,从而使得集热管箱、左上管、右上管和放热管组形成加热流体封闭循环,所述放热管组为一个或多个,每个放热管组包括圆弧形的多根放热管,相邻放热管的端部连通,使多根放热管形成串联结构,并且使得放热管的端部形成放热管自由端;集热管箱包括第一管口和第二管口,第一管口连接左放热管组的入口,第二管口连接右放热管组的入口,左放热管组的出口连接左上管,右放热管组的出口连接右上管;其特征在于,在集热管箱内设置电加热器,集热装置内部设置压力感知元件,用于检测集热装置内部的压力,所述压力感知元件与控制器进行数据连接,所述除垢方法包括如下步骤:电加热器在晚上运行,控制器根据时间顺序提取压力数据,通过相邻的时间段的压力数据的比较,获取其压力差或者压力差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热。
作为优选,除垢步骤进一步包括:如果在前时间段的压力为P1,相邻的在后时间段的压力为P2,如果P1<P2,则低于阈值时,控制器控制电加热器停止加热;如果P1>P2,则低于阈值时,控制器控制电加热器进行加热。
作为优选,压力感知元件设置在集热管箱内或者压力感知元件设置在自由端。
本发明具有如下优点:
1、本发明一方面辅助太阳能集热装置晚上进行加热,另一方面通过电加热器的运行使得通过压力感知元件检测的前后时间段压力差或者累计压力差,能够通过压力差来判断内部的流体的蒸发基本达到了饱和,内部流体的体积也基本变化不大,此种情况下,内部流体相对稳定,此时的管束振动性变差,因此需要进行调整,使其进行振动,从而停止加热。使得流体进行体积变小从而实现振动。当压力差降低到一定程度时,此时内部流体又开始进入稳定状态,此时需要加热使得流体重新蒸发膨胀,因此需要进行启动电加热器进行加热。
2、本发明将换热管周期性不断增加加热功率以及降低加热功率,使得加热流体受热后会产生体积不停的处于变化状态中,诱导换热管自由端产生振动,从而强化传热。
3、本发明提出了新式结构的集热装置,该集热装置能够提高集热效果,提高集热管的放热能力,减小能量的耗费。
4、一种新式结构的集热装置,通过在有限的空间设置更多的放热管组,增加管束的振动范围,从而强化传热,增强除垢。
5、本发明通过流体流动方向上的放热管组管径以及间距分布的设置,可以进一步提高换热效率。
6、本发明通过大量的实验和数值模拟,优化了集热装置的参数的最佳关系,从而实现最优的加热效率。
附图说明:
图1为本发明集热装置的主视图。
图2为本发明集热系统的主视图。
图3是本发明图1集热装置的左侧观测视图。
图4是本发明图1集热装置的底部观察视图。
图5是本发明集热装置放热管组错列布置结构示意图。
图6是集热装置尺寸结构示意图。
图中:1、放热管组,左放热管组11、右放热管组12、21、左上管,22,右上管,3、自由端,4、自由端,5、自由端,6、自由端,7、放热管,8、集热管箱,9、电加热器,10第一管口,13第二管口,左回流管14,右回流管15,16反射镜,17支撑件,箱体18。
具体实施方式
下面结合附图对本发明的具体实施方式做详细的说明。
本文中,如果没有特殊说明,涉及公式的,“/”表示除法,“×”、“*”表示乘法。
如图1所示,一种集热装置,包括集热管箱8、左上管21、右上管22和放热管组1,所述放热管组1包括左放热管组11和右放热管组12,左放热管组11与左上管21和集热管箱8相连通,右放热管组12与右上管22和集热管箱8相连通,从而使得集热管箱8、左上管21、右上管22和放热管组1形成加热流体封闭循环,集热管箱8内填充相变流体,每个放热管组1包括圆弧形的多根放热管7,相邻放热管7的端部连通,使多根放热管7形成串联结构,并且使得放热管7的端部形成放热管自由端3-6;集热管箱包括第一管口10和第二管口13,第一管口10连接左放热管组11的入口,第二管口13连接右放热管组12的入口,左放热管组11的出口连接左上管21,右放热管组12的出口连接右上管22;所述第一管口10和第二管口13设置在在集热管箱8一侧。作为优选,左放热管组11和右放热管组12沿着集热管箱的中间位置对称。
作为优选,左上管21、右上管22和放热管组1设置在箱体18内,箱体18中设置流动的流体,所述流体优选是空气或者水。
作为优选,所述左上管21、右上管22与集热管箱8沿着水平方向延伸。
作为优选,流体沿着水平方向流动。
作为优选,沿着左上管21、右上管22与集热管箱8水平方向延伸上设置多个放热管组1,所述放热管组1之间是并联结构。
作为优选,所述左上管21与集热管箱8之间设置左回流管14,所述右上管22与集热管箱8之间设置右回流管15。作为优选,所述回流管设置在集热管箱8的两端。
集热管箱8内填充相变流体,优选是汽液相变流体。所述流体在集热管箱8进行加热蒸发,沿着放热管束向左上管21、右上管22流动,流体受热后会产生体积膨胀,从而形成蒸汽,而蒸汽的体积远远大于水,因此形成的蒸汽会在盘管内进行快速冲击式的流动。因为体积膨胀以及蒸汽的流动,能够诱导放热管自由端产生振动,换热管自由端在振动的过程中将该振动传递至箱体18内的换热流体,流体也会相互之间产生扰动,从而使得周围的换热流体形成扰流,破坏边界层,从而实现强化传热的目的。流体在左右上管冷凝放热后又通过回流管回流到集热管箱。
本发明通过对现有技术进行改进,将上管和放热管组分别设置为左右分布的两个,使得左右两侧分布的放热管组都能进行振动换热除垢,从而扩大换热振动的区域,越能够使得振动更加均匀,换热效果更加均匀,增加换热面积,强化换热和除垢效果。
上述结构已经进行了专利申请,本申请是对上述结构进行进一步改进,增强除垢以及换热效果。
在太阳能集热器的运行中,虽然上述结构具有弹性振动除垢效果,但是长时间运行发现除垢效果需要进一步改进。
研究以及实践中发现,持续性的稳定性的集热会导致内部换热部件的流体形成稳定性,即流体不再流动或者流动性很少,或者流量稳定,导致放热管组1振动性能大大减弱,从而影响管组1的除垢以及加热的效率。例如白天持续的集热,或者晚上持续不集热,导致除垢效果下降,因此需要对上述集热装置进行如下改进。
作为一个改进,在集热管箱8内设置电加热器9。通过电加热器在晚上运行,一方面辅助太阳能集热装置晚上进行加热,另一方面通过电加热器的运行使得集热管进行持续的振动从而进行除垢工作。
在本发明人的在先申请中,提出了一种周期性的加热方式,通过周期性的加热方式来不断的促进盘管的振动,从而提高加热效率和除垢效果。但是,通过固定性周期性变化来调整管束的振动,会出现滞后性以及周期会出现过长或者过短的情况。因此本发明对前面的申请进行了改进,对振动进行智能型控制,从而使得内部的流体能够实现频繁性的振动,从而实现很好的除垢效果。
本发明针对在先研究的技术中的不足,提供一种新式的智能控制振动的电加热除垢集热器。该集热器能够实现很好的除垢效果。
一、基于压力自主调节振动
作为优选,换热部件内部设置压力检测元件,用于检测换热部件内部的压力,控制器根据时间顺序提取压力数据,通过相邻的时间段的压力数据的比较,获取其压力差或者压力差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热。
通过压力感知元件检测的前后时间段压力差或者累计压力差,能够通过压力差来判断内部的流体的蒸发基本达到了饱和,内部流体的体积也基本变化不大,此种情况下,内部流体相对稳定,此时的管束振动性变差,因此需要进行调整,使其进行振动,从而停止加热。使得流体进行体积变小从而实现振动。当压力差降低到一定程度时,此时内部流体又开始进入稳定状态,此时需要加热使得流体重新蒸发膨胀,因此需要进行启动电加热器进行加热。
通过根据压力差或者压力差变化的累计来判断流体的稳定状态,使得结果更加准确,不会因为运行时间问题导致的老化而产生的误差增加问题。
作为优选,如果在前时间段的压力为P1,相邻的在后时间段的压力为P2,如果P1<P2,则低于阈值时,控制器控制电加热器停止加热;如果P1>P2,则低于阈值时,控制器控制电加热器进行加热。
通过先后的压力大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果在前时间段的压力为P1,相邻的在后时间段的压力为P2,如果P1=P2,则根据下面情况判断加热:
如果P1大于第一数据的压力,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的压力;优选第一数据是相变流体充分相变的压力;
如果P1小于等于第二数据的压力,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的压力。
所述的第一数据是充分加热状态的压力数据,第二数据是没有加热或者加热刚开始的压力数据。通过上述的压力大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,压力感知元件设置在集热管箱8内。
作为优选,压力感知元件设置在自由端。通过设置在自由端,能够感知自由端的压力变化,从而实现更好的控制和调节。
作为优选,压力感知元件设置在左上管21和/或者右上管22内。
作为优选,压力感知元件设置在左上管21和右上管22内。此时可以选择两个管箱的压力平均值作为调节数据。
作为优选,所述压力感知元件为n个,依次计算当前时间段压力Pi与前一时间段压力Qi-1的差Di=Pi-Qi-1,并对n个压力差Di进行算术累计求和
Figure BDA0002228563110000071
当Y的值低于设定阈值时,控制器控制电加热器停止加热或者继续加热。
作为优选,Y>0,则低于阈值时,控制器控制电加热器停止加热;如果Y<0,则低于阈值时,控制器控制电加热器进行加热。
通过先后的压力大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果Y=0,则根据下面情况判断加热:
如果Pi的算术平均数大于第一数据的压力,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的压力;优选是相变流体充分相变的压力;
如果Pi的算术平均数小于第二数据的压力,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的压力。
所述的第一数据是充分加热状态的压力数据,第二数据是没有加热或者加热刚开始的压力数据。通过上述的压力大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,测量压力的时间段周期是1-10分钟,优选3-6分钟,进一步优选是4分钟。
作为优选,阈值是100-1000pa,优选是500pa。
作为优选,压力值可以是时间段周期内的平均压力值。也可以是时间段内的某一时刻的压力。例如优选都是时间段结束时的压力。
作为优选,压力检测元件设置在自由端。通过设置在自由端,能够感知自由端的压力变化,从而实现更好的控制和调节。
二、基于温度自主调节振动
作为优选,换热部件内部设置温度检测元件,用于检测换热部件内部的温度,控制器根据时间顺序提取温度数据,通过相邻的时间段的温度数据的比较,获取其温度差或者温度差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热。
通过温度感知元件检测的前后时间段温度差或者累计温度差,能够通过温度差来判断内部的流体的蒸发基本达到了饱和,内部流体的体积也基本变化不大,此种情况下,内部流体相对稳定,此时的管束振动性变差,因此需要进行调整,使其进行振动,从而停止加热。使得流体进行体积变小从而实现振动。当温度差降低到一定程度时,此时内部流体又开始进入稳定状态,此时需要加热使得流体重新蒸发膨胀,因此需要进行启动电加热器进行加热。
通过根据温度差或者温度差变化的累计来判断流体的稳定状态,使得结果更加准确,不会因为运行时间问题导致的老化而产生的误差增加问题。
作为优选,如果在前时间段的温度为P1,相邻的在后时间段的温度为P2,如果P1<P2,则低于阈值时,控制器控制电加热器停止加热;如果P1>P2,则低于阈值时,控制器控制电加热器进行加热。
通过先后的温度大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果在前时间段的温度为P1,相邻的在后时间段的温度为P2,如果P1=P2,则根据下面情况判断加热:
如果P1大于第一数据的温度,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的温度;优选第一数据是相变流体充分相变的温度;
如果P1小于等于第二数据的温度,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的温度。
所述的第一数据是充分加热状态的温度数据,第二数据是没有加热或者加热刚开始的温度数据。通过上述的温度大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,温度感知元件设置在集热管箱8内。
作为优选,温度感知元件设置在自由端。通过设置在自由端,能够感知自由端的温度变化,从而实现更好的控制和调节。
作为优选,温度感知元件设置在左上管21和/或者右上管22内。
作为优选,温度感知元件设置在左上管21和右上管22内。此时可以选择两个管箱的温度平均值作为调节数据。
作为优选,所述温度感知元件为n个,依次计算当前时间段温度Pi与前一时间段温度Qi-1的差Di=Pi-Qi-1,并对n个温度差Di进行算术累计求和
Figure BDA0002228563110000101
当Y的值低于设定阈值时,控制器控制电加热器停止加热或者继续加热。
作为优选,Y>0,则低于阈值时,控制器控制电加热器停止加热;如果Y<0,则低于阈值时,控制器控制电加热器进行加热。
通过先后的温度大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果Y=0,则根据下面情况判断加热:
如果Pi的算术平均数大于第一数据的温度,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的温度;优选是相变流体充分相变的温度;
如果Pi的算术平均数小于第二数据的温度,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的温度。
所述的第一数据是充分加热状态的温度数据,第二数据是没有加热或者加热刚开始的温度数据。通过上述的温度大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,测量温度的时间段周期是1-10分钟,优选3-6分钟,进一步优选是4分钟。
作为优选,温度值可以是时间段周期内的平均温度值。也可以是时间段内的某一时刻的温度。例如优选都是时间段结束时的温度。
作为优选,温度检测元件设置在自由端。通过设置在自由端,能够感知自由端的温度变化,从而实现更好的控制和调节。
作为优选,温度检测元件设置在下管箱和/或者上管箱内的上端。
作为优选,温度检测元件设置在下管箱和上管箱内的上端。
作为优选,温度检测元件设置在自由端。通过设置在自由端,能够感知自由端的温度变化,从而实现更好的控制和调节。
三、基于液位自主调节振动
作为优选,集热管箱内部设置液位检测元件,用于检测下管箱内的流体的液位,所述液位检测元件与控制器进行数据连接,控制器根据时间顺序提取液位数据,通过相邻的时间段的液位数据的比较,获取其液位差或者液位差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热。
通过液位感知元件检测的前后时间液位差或者累计液位差,能够通过液位差来判断内部的流体的蒸发基本达到了饱和,内部流体的体积也基本变化不大,此种情况下,内部流体相对稳定,此时的管束振动性变差,因此需要进行调整,使其进行振动,从而停止加热。使得流体进行体积变小从而实现振动。当液位差升高到一定程度时,此时内部流体又开始进入稳定状态,此时需要加热使得流体重新蒸发膨胀,因此需要进行启动电加热器进行加热。
通过根据液位差或者液位差变化的累计来判断流体的稳定状态,使得结果更加准确,不会因为运行时间问题导致的老化而产生的误差增加问题。
作为优选,如果在前时间段的液位为L1,相邻的在后时间段的液位为L2,如果L1>L2,则低于阈值时,控制器控制电加热器停止加热;如果L1<L2,则低于阈值时,控制器控制电加热器进行加热。
通过先后的液位大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果在前时间段的液位为L1,相邻的在后时间段的液位为L2,如果L1=L2,则根据下面情况判断加热:
如果L1小于第一数据的液位或者L1是0,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的液位;优选第一数据是相变流体充分相变的液位;
如果L1大于等于第二数据的液位,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的液位。
所述的第一数据是充分加热状态的液位数据,包括干涸的液位,第二数据是没有加热或者加热刚开始的液位数据。通过上述的液位大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,所述液位感知元件为n个,依次计算当前时间段液位Li与前一时间段液位Qi-1的差Di=Li-Qi-1,并对n个液位差Di进行算术累计求和
Figure BDA0002228563110000121
当Y的值低于设定阈值时,控制器控制电加热器停止加热或者继续加热。
作为优选,Y>0,则低于阈值时,控制器控制电加热器停止加热;如果Y<0,则低于阈值时,控制器控制电加热器进行加热。
通过先后的液位大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果Y=0,则根据下面情况判断加热:
如果Li的算术平均数小于第一数据的液位或者是0,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的液位;优选是相变流体充分相变的液位;
如果Li的算术平均数大于第二数据的液位,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的液位。
所述的第一数据是充分加热状态的液位数据,包括干涸的液位,第二数据是没有加热或者加热刚开始的液位数据。通过上述的液位大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,测量也为的时间段周期是1-10分钟,优选3-6分钟,进一步优选是4分钟。
作为优选,阈值是1-10mm,优选是4mm。
作为优选,水位值可以是时间段周期内的平均水位值。也可以是时间段内的某一时刻的水位值。例如优选都是时间段结束时的水位。
四、基于速度自主调节振动
作为优选,管束自由端内部设置速度检测元件,用于检测管束自由端内的流体的流速,所述速度检测元件与控制器进行数据连接,控制器根据时间顺序提取速度数据,通过相邻的时间段的速度数据的比较,获取其速度差或者速度差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热。
通过速度感知元件检测的前后时间速度差或者累计速度差,能够通过速度差来判断内部的流体的蒸发基本达到了饱和,内部流体的体积也基本变化不大,此种情况下,内部流体相对稳定,此时的管束振动性变差,因此需要进行调整,使其进行振动,从而停止加热。使得流体进行体积变小从而实现振动。当速度差降低到一定程度时,此时内部流体又开始进入稳定状态,此时需要加热使得流体重新蒸发膨胀,因此需要进行启动电加热器进行加热。
通过根据速度差或者速度差变化的累计来判断流体的稳定状态,使得结果更加准确,不会因为运行时间问题导致的老化而产生的误差增加问题。
作为优选,如果在前时间段的速度为V1,相邻的在后时间段的速度为V2,如果V1<V2,则低于阈值时,控制器控制电加热器停止加热;如果V1>V2,则低于阈值时,控制器控制电加热器进行加热。
通过先后的速度大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果在前时间段的速度为V1,相邻的在后时间段的速度为V2,如果V1=V2,则根据下面情况判断加热:
如果V1大于第一数据的速度,则低于阈值时,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的速度;优选第一数据是相变流体充分相变的速度;
如果V1小于等于第二数据的速度,则低于阈值时,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的速度。
所述的第一数据是充分加热状态的速度数据,第二数据是没有加热或者加热刚开始的速度数据。通过上述的速度大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,所述速度感知元件为n个,依次计算当前时间段速度Vi与前一时间速度Qi-1的差Di=Vi-Qi-1,并对n个速度差Di进行算术累计求和
Figure BDA0002228563110000141
当Y的值低于设定阈值时,控制器控制电加热器停止加热或者继续加热。
作为优选,Y>0,则低于阈值时,控制器控制电加热器停止加热;如果Y<0,则低于阈值时,控制器控制电加热器进行加热。
通过先后的速度大小判断,来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,如果Y=0,则根据下面情况判断加热:
如果Vi的算术平均数大于第一数据的速度,控制器控制电加热器停止加热;其中第一数据大于相变流体发生相变后的速度;优选是相变流体充分相变的速度;
如果Vi的算术平均数小于第二数据的速度,控制器控制电加热器继续加热,其中第二数据小于等于相变流体没有发生相变的速度。
所述的第一数据是充分加热状态的速度数据,第二数据是没有加热或者加热刚开始的速度数据。通过上述的速度大小的判断,也是来确定目前的电加热器是处于加热状态还是非加热状态,从而根据不同情况决定电加热器的运行状态。
作为优选,测量速度的时间段周期是1-10分钟,优选3-6分钟,进一步优选是4分钟。
作为优选,阈值是1-3m/s,优选是2m/s。
作为优选,速度值可以是时间段周期内的平均速度值。也可以是时间段内的某一时刻的速度。例如优选都是时间段结束时的速度。
作为优选,所述左放热管组的放热管是以左上管的轴线为圆心分布,所述右放热管组的放热管是以右上管的轴线为圆心分布。通过将左右上管设置为圆心,可以更好的保证放热管的分布,使得振动和加热均匀。
作为优选,所述左放热管组、右放热管组均为多个。
作为优选,左放热管组和右放热管组沿着集热管箱的竖直方向轴心所在的面镜像对称。通过如此设置,能够使得换热的放热管分布更加合理均匀,提高换热效果。
作为优选,集热管箱8是扁平管结构。通过设置扁平管结构使得吸热面积增加。使得即使安装位置有点偏离,也能保证集热管箱8位于反射镜焦点位置处。
作为优选,左放热管组11和右放热管组12在水平延伸方向上错列分布,如图5所示。通过错列分布,能够使得在不同长度上进行振动放热和除垢,使得振动更加均匀,强化换热和除垢效果。
作为优选,集热装置下部设置反射镜16,所述集热管箱位于反射镜16的焦点位置处,所述左放热管组和右放热管组位于流体通道中。从而形成一种太阳能集热系统。
作为优选,包括支撑件17,支撑件17支撑集热装置。
作为优选,包括流体通道,流体在流体通道内流动。如图2所示,所述集热管箱8位于流体通道下端,如图2所示。左上管21、右上管22、左放热管组11和右放热管组12设置在流体通道内,通过放热加热流体通道内的流体。
作为优选,流体的流动方向与左上管21、右上管22与集热管箱8延伸的方向相同。通过如此设置,使得流体在流动的时候冲刷放热管组,尤其是放热管组自由端,从而使得自由端振动,从而强化传热,达到除垢的效果。
作为优选,沿着流体通道内的流体的流动方向,所述放热管组1(例如同一侧(左侧或者右侧))设置为多个,沿着流体通道内的流体的流动方向,放热管组1(例如同一侧(左侧或者右侧))的管径不断变大。
沿着流体的流动方向,流体温度不断的提高,从而使得换热温差不断的减小,换热能力越来越大。通过放热管组的管径变大,可以保证更多的蒸汽通过上部进入放热管组,保证沿着流体流动方向,因为蒸汽量大以及振动效果好,从而使得整体换热均匀。所有放热管组内蒸汽的分配均匀,进一步强化传热效果,使得整体振动效果均匀,换热效果增加,进一步提高换热效果以及除垢效果。
作为优选,沿着流体通道内的流体的流动方向,放热管组(例如同一侧(左侧或者右侧))的放热管管径不断变大的幅度不断的增加。
通过如此设置,避免流体都在前部进行换热,而使的尽量换热向后部增加,从而形成类似逆流的换热效果。通过实验发现,采取此种结构设计可以取得更好的换热效果以及除垢效果。
作为优选,沿着流体通道内的流体的流动方向,所述同一侧(左侧或者右侧)放热管组设置为多个,从上向下方向,同一侧(左侧或者右侧)相邻放热管组的间距不断变小。具体效果类似前面的管径变化的效果。
作为优选,沿着流体通道内的流体的流动方向,同一侧(左侧或者右侧)放热管组之间的间距不断变小的幅度不断的增加。具体效果类似前面的管径变化的效果。
在试验中发现,左上管21、右上管22的管径、距离以及放热管的管径可以对换热效率以及均匀性产生影响。如果集管之间距离过大,则换热效率太差,放热管之间的距离太小,则放热管分布太密,也会影响换热效率,集管以及换热管的管径大小影响容纳的液体或者蒸汽的体积,则对于自由端的振动会产生影响,从而影响换热。因此左上管21、右上管22的管径、距离以及放热管的管径具有一定的关系。
本发明是通过多个不同尺寸的热管的数值模拟以及试验数据总结出的最佳的尺寸关系。从换热效果中的换热量最大出发,计算了近200种形式。所述的尺寸关系如下:
左上管21的中心与右上管21的中心之间的距离为M,左上管21的管径、右上管22的半径相同,为B,放热管中最内侧放热管的轴线的半径为N1,最外侧放热管的轴线的半径为W2,则满足如下要求:
N1/W2=a*Ln(B/M)+b;其中a,b是参数,Ln是对数函数,其中0.5788<a<0.6002,1.6619<b<1.6623;作为优选,a=0.5790,b=1.6621。
作为优选,35<B<61mm;230<M<385mm;69<N1<121mm,119<W2<201mm。
作为优选,放热管组的放热管的数量为3-5根,优选为3或4根。
作为优选,0.55<N1/W2<0.62;0.154<B/M<0.166。
作为优选,0.57<N1/W2<0.61;0.158<B/M<0.162。
作为优选,集热箱体底部的中点与左上管21、右上管22圆心之间形成的夹角A为40-100度(角度),优选为60度(角度)。
作为优选,放热管的半径优选为10-40mm;优选为15-35mm,进一步优选为20-30mm。
作为优选,自由端3、4的端部之间以左集箱的中心轴线为圆心的弧度为95-130角度,优选120角度。同理自由端5、6和自由端3、4的弧度相同。通过上述优选的夹角的设计,使得自由端的振动达到最佳,从而使得加热效率达到最优。
作为优选,放热管组1的管束是弹性管束。
通过将放热管组1的管束设置弹性管束,可以进一步提高换热系数。
所述放热管组1为多个,多个放热管组1为并联结构。
虽然本发明已以较佳实施例披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (3)

1.一种集热装置压力差除垢的方法,所述集热装置包括位于下部的集热管箱、左上管、右上管和放热管组,左上管、右上管位于集热管箱的上部,所述放热管组包括左放热管组和右放热管组,左放热管组与左上管和集热管箱相连通,右放热管组与右上管和集热管箱相连通,从而使得集热管箱、左上管、右上管和放热管组形成加热流体封闭循环,所述放热管组为一个或多个,每个放热管组包括圆弧形的多根放热管,相邻放热管的端部连通,使多根放热管形成串联结构,并且使得放热管的端部形成放热管自由端;集热管箱包括第一管口和第二管口,第一管口连接左放热管组的入口,第二管口连接右放热管组的入口,左放热管组的出口连接左上管,右放热管组的出口连接右上管;其特征在于,在集热管箱内设置电加热器,集热装置内部设置压力感知元件,用于检测集热装置内部的压力,所述压力感知元件与控制器进行数据连接,所述除垢方法包括如下步骤:电加热器在晚上运行,控制器根据时间顺序提取压力数据,通过相邻的时间段的压力数据的比较,获取其压力差或者压力差变化的累计,低于阈值时,控制器控制电加热器停止加热或者继续加热。
2.如权利要求1所述的方法,其特征在于,除垢步骤进一步包括:如果在前时间段的压力为P1,相邻的在后时间段的压力为P2,如果P1<P2,则低于阈值时,控制器控制电加热器停止加热;如果P1>P2,则低于阈值时,控制器控制电加热器进行加热。
3.如权利要求1所述的方法,其特征在于,压力感知元件设置在集热管箱内或者压力感知元件设置在自由端。
CN201910959853.0A 2019-10-10 2019-10-10 一种集热装置压力差除垢的方法 Active CN112648751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910959853.0A CN112648751B (zh) 2019-10-10 2019-10-10 一种集热装置压力差除垢的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910959853.0A CN112648751B (zh) 2019-10-10 2019-10-10 一种集热装置压力差除垢的方法

Publications (2)

Publication Number Publication Date
CN112648751A CN112648751A (zh) 2021-04-13
CN112648751B true CN112648751B (zh) 2022-05-17

Family

ID=75343118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910959853.0A Active CN112648751B (zh) 2019-10-10 2019-10-10 一种集热装置压力差除垢的方法

Country Status (1)

Country Link
CN (1) CN112648751B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600124A (en) * 1991-12-03 1997-02-04 Berger; Alexander Sun tracker system for a solar assembly
EP2902722A1 (de) * 2014-01-31 2015-08-05 Vaillant GmbH Solarspeicher
CN106016710A (zh) * 2016-08-06 2016-10-12 青岛科技大学 一种智能过热检测的电热水器
CN112212522A (zh) * 2019-07-11 2021-01-12 青岛佰腾科技有限公司 一种夜间除垢的太阳能集热装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102620040B (zh) * 2012-04-23 2013-09-04 沈阳东北电力调节技术有限公司 太阳能小功率供电驱动大型角行程阀门电液系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5600124A (en) * 1991-12-03 1997-02-04 Berger; Alexander Sun tracker system for a solar assembly
EP2902722A1 (de) * 2014-01-31 2015-08-05 Vaillant GmbH Solarspeicher
CN106016710A (zh) * 2016-08-06 2016-10-12 青岛科技大学 一种智能过热检测的电热水器
CN112212522A (zh) * 2019-07-11 2021-01-12 青岛佰腾科技有限公司 一种夜间除垢的太阳能集热装置

Also Published As

Publication number Publication date
CN112648751A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
CN110285588B (zh) 一种太阳能集热装置
CN110285587B (zh) 一种太阳能蒸汽系统
CN111256373B (zh) 一种放热管组间距变化的太阳能空气加热装置
CN112212522B (zh) 一种夜间除垢的太阳能集热装置
CN112556210B (zh) 一种环路热管太阳能集热装置的运行方法
CN112648751B (zh) 一种集热装置压力差除垢的方法
CN112648752B (zh) 一种集热装置液位差除垢的方法
CN112728779B (zh) 一种环路热管太阳能集热温控方法
CN112797643B (zh) 一种累计温度差控制的环路热管太阳能系统
CN112797642B (zh) 一种累计液位差控制的环路热管太阳能系统
CN112797645B (zh) 一种环路热管太阳能速度差控制方法
CN113375346A (zh) 一种便携远程监控环路热管太阳能集热温控方法
CN113494779B (zh) 一种便携式远程环路热管速度差除垢控制方法
CN112212521B (zh) 一种分段加热除垢的太阳能集热装置
CN113494778B (zh) 一种环路热管太阳能压力差控制方法
CN113531507B (zh) 一种温度调整热平衡的太阳能空气加热系统
CN112797644A (zh) 一种环路热管太阳能压力差控制方法
CN113531505B (zh) 一种梯形结构太阳能集热系统
CN113531506B (zh) 一种均衡压力的太阳能蒸汽系统
CN112728780B (zh) 一种环路热管太阳能集热水位控制方法
CN112556209B (zh) 一种焦点位置变化的环路热管太阳能集热装置
CN113970190A (zh) 一种在线检测热损的环路热管太阳能集热系统
CN113970191A (zh) 一种通信控制蓄热的环路热管太阳能集热系统
CN113970189A (zh) 一种排空低温水的环路热管太阳能集热系统
CN113375349A (zh) 一种便携远程监控环路热管太阳能液位除垢方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant