CN112647957A - 土压平衡盾构的土压智能控制方法及其系统 - Google Patents

土压平衡盾构的土压智能控制方法及其系统 Download PDF

Info

Publication number
CN112647957A
CN112647957A CN202011537271.2A CN202011537271A CN112647957A CN 112647957 A CN112647957 A CN 112647957A CN 202011537271 A CN202011537271 A CN 202011537271A CN 112647957 A CN112647957 A CN 112647957A
Authority
CN
China
Prior art keywords
data
shield
construction data
settlement value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011537271.2A
Other languages
English (en)
Inventor
李刚
李波
胡珉
裴烈烽
董鹏
陈刚
王延年
吴忠明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Tunnel Engineering Co Ltd
University of Shanghai for Science and Technology
Original Assignee
Shanghai Tunnel Engineering Co Ltd
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Tunnel Engineering Co Ltd, University of Shanghai for Science and Technology filed Critical Shanghai Tunnel Engineering Co Ltd
Priority to CN202011537271.2A priority Critical patent/CN112647957A/zh
Publication of CN112647957A publication Critical patent/CN112647957A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/12Devices for removing or hauling away excavated material or spoil; Working or loading platforms
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

本发明涉及一种土压平衡盾构的土压智能控制方法及其系统,包括如下步骤:数据处理:获取历史施工数据以及与历史施工数据对应的土压数据,并对历史施工数据进行预处理;模型训练:利用BP神经网络模型对历史施工数据和土压数据进行学习,从而将BP神经网络模型训练形成智能控制模型;智能控制:获取盾构机的实时施工数据,将实时施工数据输入智能控制模型,该智能控制模型输出相应的土压值,根据土压值调整盾构机的土仓压力。本发明有效地解决了控制土压时主观因素影响较大的问题,减少主观因素对土压控制的影响,保证地表沉降在合理范围内,避免较大的地表变形和严重的安全事故。

Description

土压平衡盾构的土压智能控制方法及其系统
技术领域
本发明涉及盾构施工领域,特指一种土压平衡盾构的土压智能控制方法及其系统。
背景技术
土压平衡盾构是利用挖掘出来的泥土支撑开挖面,无需额外大规模泥水处理设备,因此运用十分广泛,土压平衡盾构施工的核心是保持开挖面稳定,并精确控制地表沉降的幅度。
目前控制土压平衡的主要方法是先根据地质条件、隧道埋深以及人工经验来设置土仓压力,在掘进过程中将土压维持在目标范围内,并根据监测地表沉降数据来调整目标土压,这种控制土压的方法受到操作者经验、能力等主观因素的影响,难以对土压精准控制,难以保证地表沉降在合理范围内,从而可能导致较大的地表变形以及严重的安全事故。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种土压平衡盾构的土压智能控制方法,解决了控制土压时主观因素影响较大的问题,减少主观因素对土压控制的影响,保证地表沉降在合理范围内,避免较大的地表变形和严重的安全事故。
实现上述目的的技术方案是:
本发明提供了一种土压平衡盾构的土压智能控制方法,包括如下步骤:
S11.数据处理:获取历史施工数据以及与历史施工数据对应的土压数据,并对历史施工数据进行预处理;
S12.模型训练:利用BP神经网络模型对历史施工数据和土压数据进行学习,从而将BP神经网络模型训练形成智能控制模型;
S13.智能控制:获取盾构机的实时施工数据,将实时施工数据输入智能控制模型,该智能控制模型输出相应的土压值,根据土压值调整盾构机的土仓压力。
本发明提出了一种土压平衡盾构的土压智能控制方法,通过获取历史施工数据和对应土压数据,经处理后形成特征数据,利用BP神经网络模型对特征数据进行学习,从而形成智能控制模型,形成的智能控制模型能够对输入的实时施工数据自动输出对应的土压值,根据该土压值调整盾构机的土仓压力,以减少主观因素对盾构施工的影响,解决了控制土压时主观因素影响较大的问题,减少主观因素对土压控制的影响,保证地表沉降在合理范围内,避免较大的地表变形和严重的安全事故。
本发明土压平衡盾构的土压智能控制方法的进一步改进在于,该历史施工数据和实时施工数据均包括盾构机推进状态下的总推力、盾构机的推进速度、盾构机的螺旋机转速、盾构机的刀盘扭矩、隧道埋深、开挖面前方累积沉降值和开挖面前方目标累积沉降值;
开挖面前方目标累积沉降值根据开挖面前方单次沉降值和开挖面前方累积沉降值确定,该开挖面前方单次沉降值根据盾构机的地表监测数据计算得到,该开挖面前方累积沉降值从盾构机的地表监测数据中获取。
本发明土压平衡盾构的土压智能控制方法及其系统的进一步改进在于,计算开挖面前方单次沉降值时,采用公式如下:
Figure BDA0002853874880000021
其中,y为待测点与盾构机切口之间的距离,H为隧道埋深,D为盾构直径,Sy为待测点的沉降值且通过地表监测获得,S为开挖面前方单次沉降值。
本发明土压平衡盾构的土压智能控制方法及其系统的进一步改进在于,开挖面前方目标累积沉降值等于开挖面前方累积沉降值加上开挖面前方单次沉降值。
本发明土压平衡盾构的土压智能控制方法的进一步改进在于,历史施工数据预处理时,还包括:
根据历史施工数据的获取频率划分时间段,计算时间段内的历史施工数据和土压数据的平均值,进而BP神经网络模型对历史施工数据的平均值和对应的土压数据的平均值进行学习。
本发明土压平衡盾构的土压智能控制方法的进一步改进在于,将实时施工数据输入智能控制模型前,还包括:
根据盾构机的施工环境确定沉降范围,利用全站仪获取地表沉降数据,当地表沉降数据超出沉降范围时,将实时施工数据输入智能控制模型,并根据智能控制模型输出的土压值对应调整盾构机的土仓压力。
本发明还提供了一种土压平衡盾构的土压智能控制系统,包括:
数据获取模块,以获取盾构机的实时施工数据;
数据处理模块,以对实时施工数据进行预处理;以及
智能控制模型,该智能控制模型由BP神经网络模型对历史施工数据和对应的土压数据学习形成的,以根据经处理的实时施工数据得出对应的土压值。
本发明土压平衡盾构的土压智能控制系统的进一步改进在于,该历史施工数据和实时施工数据均包括盾构机推进状态下的总推力、盾构机的推进速度、盾构机的螺旋机转速、盾构机的刀盘扭矩、隧道埋深、开挖面前方累积沉降值和开挖面前方目标累积沉降值;
开挖面前方目标累积沉降值根据开挖面前方单次沉降值和开挖面前方累积沉降值确定,该开挖面前方单次沉降值根据盾构机的地表监测数据计算得到,该开挖面前方累积沉降值从盾构机的地表监测数据中获取。
本发明土压平衡盾构的土压智能控制系统的进一步改进在于,还包括供计算开挖面前方单次沉降值的计算模块,计算公式如下:
Figure BDA0002853874880000031
其中,y为待测点与盾构机切口之间的距离,H为隧道埋深,D为盾构直径,Sy为待测点的沉降值且通过地表监测获得,S为开挖面前方单次沉降值。
本发明土压平衡盾构的土压智能控制系统的进一步改进在于,开挖面前方目标累积沉降值等于开挖面前方累积沉降值加上开挖面前方单次沉降值。
附图说明
图1为本发明土压平衡盾构的土压智能控制方法的流程图。
图2为本发明土压平衡盾构的土压智能控制方法中判断是否需要调整土仓压力的流程图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
本发明提供了一种土压平衡盾构的土压智能控制方法及其系统,通过获取历史施工数据和对应土压数据,经处理后形成特征数据,利用BP神经网络模型对特征数据进行学习,从而形成智能控制模型,形成的智能控制模型能够对输入的实时施工数据自动输出对应的土压值,根据该土压值调整盾构机的土仓压力,以减少主观因素对盾构施工的影响,解决了控制土压时主观因素影响较大的问题,减少主观因素对土压控制的影响,保证地表沉降在合理范围内,避免较大的地表变形和严重的安全事故。下面结合附图对本发明土压平衡盾构的土压智能控制方法及其系统进行说明。
参阅图1为本发明土压平衡盾构的土压智能控制方法的流程图。下面结合图1,对本发明土压平衡盾构的土压智能控制方法及其系统进行说明。
如图1所示,本发明提供了一种土压平衡盾构的土压智能控制方法,包括如下步骤:
执行步骤S11.数据处理:获取历史施工数据以及与历史施工数据对应的土压数据,并对历史施工数据进行预处理;接着执行步骤S12
执行步骤S12.模型训练:利用BP神经网络模型对历史施工数据和土压数据进行学习,从而将BP神经网络模型训练形成智能控制模型;接着执行步骤S13
执行步骤S13.智能控制:获取盾构机的实时施工数据,将实时施工数据输入智能控制模型,该智能控制模型输出相应的土压值,根据土压值调整盾构机的土仓压力。
作为本发明的一较佳实施方式,该历史施工数据和实时施工数据均包括盾构机推进状态下的总推力、盾构机的推进速度、盾构机的螺旋机转速、盾构机的刀盘扭矩、隧道埋深、开挖面前方累积沉降值和开挖面前方目标累积沉降值;
开挖面前方目标累积沉降值根据开挖面前方单次沉降值和开挖面前方累积沉降值确定,该开挖面前方单次沉降值根据盾构机的地表监测数据计算得到,该开挖面前方累积沉降值从盾构机的地表监测数据中获取。
具体的,计算开挖面前方单次沉降值时,采用公式如下:
Figure BDA0002853874880000041
其中,y为待测点与盾构机切口之间的距离,H为隧道埋深,D为盾构直径,Sy为待测点的沉降值且通过地表监测获得,S为开挖面前方单次沉降值。
具体的,该开挖面前方目标累积沉降值等于开挖面前方累积沉降值加上开挖面前方单次沉降值。
进一步的,历史施工数据预处理时,还包括:
根据历史施工数据的获取频率划分时间段,计算时间段内的历史施工数据和土压数据的平均值,进而BP神经网络模型对历史施工数据的平均值和对应的土压数据的平均值进行学习,由于各历史施工数据自动获取的频率不同因此要对其进行处理,可根据获取频率最长的数据划分时间段,对该时间段中的历史施工数据求平均值,以避免因获取频率不同而导致数据间难以匹配的问题,对实时施工数据也可进行平均处理。
较佳地,盾构推进数据来源于传感器采集到的盾构设备数据,采集频率为1次/秒,地表监测数据来源于人工全站仪测量,测量频率为2次/天,各数据的采集频率不同,因此以地表监测数据的采集频率为主,将地表监测数据前后两次采集作为一个时间段,假设st,st+1分别表示时刻t和时刻t+1测量地表监测数据,St,St+1表示由st,st+1计算得到的时刻t和时刻t+1开挖面前方单次沉降值,x1,x2表示时刻t和时刻t+1分别对应盾构机推进里程,△x=x2-x1表示盾构机推进的米数;Pt,t+1表示时刻t和t+1之间盾构机推进状态下的总推力,vt,t+1表示时刻t和t+1之间推进状态下的速度,Qt,t+1表示时刻t和t+1之间盾构机推进状态下的螺旋机转速,Tt,t+1表示时刻t和t+1之间盾构机推进状态下的刀盘转速;Ht,t+1表示x1,x2之间的隧道埋深,然后分别对Pt,t+1,vt,t+1,Qt,t+1,Tt,t+1,Ht,t+1求平均值,从而完成对数据的处理,向智能控制模型输入的也是各项施工数据的平均值。
进一步的,将实时施工数据输入智能控制模型前,还包括:
根据盾构机的施工环境确定沉降范围,利用全站仪获取地表沉降数据,当地表沉降数据超出沉降范围时,将实时施工数据输入智能控制模型,并根据智能控制模型输出的土压值对应调整盾构机的土仓压力,若地表沉降数据未超出沉降范围时,则可以不调整土仓压力。
较佳地,结合图2所示,首先根据最新地表沉降数据,计算出当前地表沉降最大累计值和最大单次变化量,通过判断最大累计沉降和最大单次变化量是否在合适范围内,确定是否调整土仓压力,首先观察最大累计沉降是否在[-3mm,+5mm]以内,该范围应根据具体项目来设置,如果符合则再观察最大单次变化量是否在合适范围,以[-2,+2]mm为例,如果符合则不用调整,否则调整土仓压力,如果最大累计沉降不在对应的范围内,则再观察最大单次变化量是否向着好的趋势发展,即如果最大累计值大于0,最大单次变化也大于0,这样将使最大累计沉降变得更大,因此需要调整土压;如果单次变化量小于0,使得最大累计值变小,此时则不需要调整土压。
本发明的具体实施方式如下:
获取历史施工数据和对应的土压数据,历史施工数据包括盾构机推进状态下的总推力、盾构机的推进速度、盾构机的螺旋机转速、盾构机的刀盘扭矩、隧道埋深、开挖面前方累积沉降值和开挖面前方目标累积沉降值,其中开挖面前方目标累积沉降值根据开挖面前方单次沉降值和开挖面前方累积沉降值确定,该开挖面前方单次沉降值根据盾构机的地表监测数据计算得到,该开挖面前方累积沉降值从盾构机的地表监测数据中获取;
将上述的历史施工数据进行平均化处理以消除数据获取频率不同的问题,并将平均化后的历史施工数据和对应的土压数据作为特征数据,利用BP神经网络模型对该特征数据进行学习,从而将BP神经网络模型训练形成智能控制模型;
在盾构机掘进时,获取盾构机的实时施工数据,获取的实时施工数据包括盾构机推进状态下的总推力、盾构机的推进速度、盾构机的螺旋机转速、盾构机的刀盘扭矩、隧道埋深、开挖面前方累积沉降值和开挖面前方目标累积沉降值,其中开挖面前方累积沉降值根据开挖面前方单次沉降值确定,该开挖面前方单次沉降值根据盾构机的地表监测数据计算得到;
根据获得的地表沉降数据判断是否超出设置的沉降范围,若未超过,则不需要调整土仓压力,若超过沉降范围,则需要调整土仓压力;
将获取的实时施工数据进行平均化处理,将各项实时施工数据的平均值输入智能控制模型中,模型自动计算得出对应的土压值,施工人员根据土压值调整盾构机的土仓压力,从而能够避免人为因素对施工的影响,保证施工的安全性。
本发明还提供了一种土压平衡盾构的土压智能控制系统,包括:
数据获取模块,以获取盾构机的实时施工数据;
数据处理模块,以对实时施工数据进行预处理;以及
智能控制模型,该智能控制模型由BP神经网络模型对历史施工数据和对应的土压数据学习形成的,以根据经处理的实时施工数据得出对应的土压值。
进一步的,该历史施工数据和实时施工数据均包括盾构机推进状态下的总推力、盾构机的推进速度、盾构机的螺旋机转速、盾构机的刀盘扭矩、隧道埋深、开挖面前方累积沉降值和开挖面前方目标累积沉降值;
开挖面前方目标累积沉降值根据开挖面前方单次沉降值和开挖面前方累积沉降值确定,该开挖面前方单次沉降值根据盾构机的地表监测数据计算得到,该开挖面前方累积沉降值从盾构机的地表监测数据中获取。
进一步的,还包括供计算开挖面前方单次沉降值的计算模块,计算公式如下:
Figure BDA0002853874880000071
其中,y为待测点与盾构机切口之间的距离,H为隧道埋深,D为盾构直径,Sy为待测点的沉降值且通过地表监测获得,S为开挖面前方单次沉降值。
具体的,该开挖面前方目标累积沉降值等于开挖面前方累积沉降值加上开挖面前方单次沉降值。
以上结合附图实施例对本发明进行了详细说明,本领域中普通技术人员可根据上述说明对本发明做出种种变化例。因而,实施例中的某些细节不应构成对本发明的限定,本发明将以所附权利要求书界定的范围作为本发明的保护范围。

Claims (10)

1.一种土压平衡盾构的土压智能控制方法,其特征在于,包括如下步骤:
S11.数据处理:获取历史施工数据以及与所述历史施工数据对应的土压数据,并对所述历史施工数据进行预处理;
S12.模型训练:利用BP神经网络模型对所述历史施工数据和所述土压数据进行学习,从而将所述BP神经网络模型训练形成智能控制模型;
S13.智能控制:获取盾构机的实时施工数据,将所述实时施工数据输入所述智能控制模型,所述智能控制模型输出相应的土压值,根据所述土压值调整所述盾构机的土仓压力。
2.如权利要求1所述的土压平衡盾构的土压智能控制方法,其特征在于,所述历史施工数据和所述实时施工数据均包括盾构机推进状态下的总推力、盾构机的推进速度、盾构机的螺旋机转速、盾构机的刀盘扭矩、隧道埋深、开挖面前方累积沉降值和开挖面前方目标累积沉降值;
所述开挖面前方目标累积沉降值根据开挖面前方单次沉降值和所述开挖面前方累积沉降值确定,所述开挖面前方单次沉降值根据盾构机的地表监测数据计算得到,所述开挖面前方累积沉降值从盾构机的地表监测数据中获取。
3.如权利要求2所述的土压平衡盾构的土压智能控制方法,其特征在于,计算所述开挖面前方单次沉降值时,采用公式如下:
Figure FDA0002853874870000011
其中,y为待测点与盾构机切口之间的距离,H为隧道埋深,D为盾构直径,Sy为待测点的沉降值且通过地表监测获得,S为开挖面前方单次沉降值。
4.如权利要求3所述的土压平衡盾构的土压智能控制方法,其特征在于,所述开挖面前方目标累积沉降值等于所述开挖面前方累积沉降值加上所述开挖面前方单次沉降值。
5.如权利要求1所述的土压平衡盾构的土压智能控制方法,其特征在于,所述历史施工数据预处理时,还包括:
根据所述历史施工数据的获取频率划分时间段,计算所述时间段内的历史施工数据和土压数据的平均值,进而所述BP神经网络模型对所述历史施工数据的平均值和对应的所述土压数据的平均值进行学习。
6.如权利要求1所述的土压平衡盾构的土压智能控制方法,其特征在于,将所述实时施工数据输入所述智能控制模型前,还包括:
根据所述盾构机的施工环境确定沉降范围,利用全站仪获取地表沉降数据,当所述地表沉降数据超出所述沉降范围时,将所述实时施工数据输入所述智能控制模型,并根据所述智能控制模型输出的土压值对应调整所述盾构机的土仓压力。
7.一种如权利要求1所述的土压平衡盾构的土压智能控制系统,其特征在于,包括:
数据获取模块,以获取所述盾构机的实时施工数据;
数据处理模块,以对所述实时施工数据进行预处理;以及
智能控制模型,所述智能控制模型由BP神经网络模型对历史施工数据和对应的土压数据学习形成的,以根据经处理的所述实时施工数据得出对应的土压值。
8.如权利要求7所述的土压平衡盾构的土压智能控制系统,其特征在于,所述历史施工数据和所述实时施工数据均包括盾构机推进状态下的总推力、盾构机的推进速度、盾构机的螺旋机转速、盾构机的刀盘扭矩、隧道埋深、开挖面前方累积沉降值和开挖面前方目标累积沉降值;
所述开挖面前方目标累积沉降值根据开挖面前方单次沉降值和所述开挖面前方累积沉降值确定,所述开挖面前方单次沉降值根据盾构机的地表监测数据计算得到,所述开挖面前方累积沉降值从盾构机的地表监测数据中获取。
9.如权利要求8所述的土压平衡盾构的土压智能控制系统,其特征在于,还包括供计算所述开挖面前方单次沉降值的计算模块,计算公式如下:
Figure FDA0002853874870000021
其中,y为待测点与盾构机切口之间的距离,H为隧道埋深,D为盾构直径,Sy为待测点的沉降值且通过地表监测获得,S为开挖面前方单次沉降值。
10.如权利要求8所述的土压平衡盾构的土压智能控制系统,其特征在于,所述开挖面前方目标累积沉降值等于所述开挖面前方累积沉降值加上所述开挖面前方单次沉降值。
CN202011537271.2A 2020-12-23 2020-12-23 土压平衡盾构的土压智能控制方法及其系统 Pending CN112647957A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011537271.2A CN112647957A (zh) 2020-12-23 2020-12-23 土压平衡盾构的土压智能控制方法及其系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011537271.2A CN112647957A (zh) 2020-12-23 2020-12-23 土压平衡盾构的土压智能控制方法及其系统

Publications (1)

Publication Number Publication Date
CN112647957A true CN112647957A (zh) 2021-04-13

Family

ID=75359534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011537271.2A Pending CN112647957A (zh) 2020-12-23 2020-12-23 土压平衡盾构的土压智能控制方法及其系统

Country Status (1)

Country Link
CN (1) CN112647957A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113535748A (zh) * 2021-07-02 2021-10-22 中铁十五局集团有限公司 一种基于历史案例的盾构机选型系统及选型方法
CN113847049A (zh) * 2021-10-13 2021-12-28 中交天和机械设备制造有限公司 一种土压平衡盾构机土压智能控制系统
CN114578871A (zh) * 2022-01-30 2022-06-03 扬州地龙机械有限公司 基于工业数据智能分析的顶管机的压力补偿系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104963691A (zh) * 2015-06-03 2015-10-07 华中科技大学 一种复杂地层条件下土压盾构开挖面稳定性预测控制方法
CN108468549A (zh) * 2018-03-11 2018-08-31 辽宁石油化工大学 土压平衡盾构的优化方法及装置
CN110617074A (zh) * 2019-09-20 2019-12-27 西安电子科技大学 一种盾构施工中地面沉降量与掘进参数的关联关系方法
CN111832223A (zh) * 2020-06-29 2020-10-27 上海隧道工程有限公司 基于神经网络的盾构施工地表沉降预测方法
CN111931842A (zh) * 2020-08-05 2020-11-13 中铁二十局集团有限公司 盾构机导向预测方法、模型训练方法、装置以及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104963691A (zh) * 2015-06-03 2015-10-07 华中科技大学 一种复杂地层条件下土压盾构开挖面稳定性预测控制方法
CN108468549A (zh) * 2018-03-11 2018-08-31 辽宁石油化工大学 土压平衡盾构的优化方法及装置
CN110617074A (zh) * 2019-09-20 2019-12-27 西安电子科技大学 一种盾构施工中地面沉降量与掘进参数的关联关系方法
CN111832223A (zh) * 2020-06-29 2020-10-27 上海隧道工程有限公司 基于神经网络的盾构施工地表沉降预测方法
CN111931842A (zh) * 2020-08-05 2020-11-13 中铁二十局集团有限公司 盾构机导向预测方法、模型训练方法、装置以及设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113535748A (zh) * 2021-07-02 2021-10-22 中铁十五局集团有限公司 一种基于历史案例的盾构机选型系统及选型方法
CN113535748B (zh) * 2021-07-02 2024-05-07 中铁十五局集团有限公司 一种基于历史案例的盾构机选型系统及选型方法
CN113847049A (zh) * 2021-10-13 2021-12-28 中交天和机械设备制造有限公司 一种土压平衡盾构机土压智能控制系统
CN114578871A (zh) * 2022-01-30 2022-06-03 扬州地龙机械有限公司 基于工业数据智能分析的顶管机的压力补偿系统
CN114578871B (zh) * 2022-01-30 2022-11-08 扬州地龙机械有限公司 基于工业数据智能分析的顶管机的压力补偿系统

Similar Documents

Publication Publication Date Title
CN112647957A (zh) 土压平衡盾构的土压智能控制方法及其系统
CN108868807B (zh) 盾构掘进纠偏的智能控制方法
CN110110419B (zh) 一种基于多目标学习的tbm掘进参数预测方法
CN111832223A (zh) 基于神经网络的盾构施工地表沉降预测方法
CN109779649A (zh) 基于大数据的盾构掘进轴线实时纠偏系统及方法
CN103014720B (zh) 大范围长距离阴极保护系统及其工作方法
CN116502478B (zh) 一种基于海底地形监测的自提升平台下桩辅助决策方法
CN111272215A (zh) 一种泥水平衡盾构机出土量及地表沉降预警系统
CN105298961B (zh) 海洋工程领域多油缸同步牵引控制系统及控制方法
CN112518017A (zh) 一种剪前夹送辊智能调节系统及调节方法
CN117514128B (zh) 一种煤矿井下水平定向智能化钻探控制方法
CN112924990A (zh) 基于gnss加速度计融合的滑坡体监测方法和系统
CN110471911A (zh) 一种对测风塔测风数据的清洗方法
CN210691110U (zh) 一种基于北斗导航的农业机械姿态监测装置
CN112324451A (zh) 一种土压平衡盾构基于渣土监测的地表沉降及管线变形预警系统
CN109716895B (zh) 一种双行开沟深度距离自动调节装置及方法
CN109190301B (zh) 一种变工况下回转支承高精度寿命预测方法
CN114036696B (zh) 一种基于神经网络模型微调的刀盘扭矩预测方法及系统
CN111832175B (zh) 一种降雨条件下散射计海面风速测量方法及系统
CN110651569B (zh) 一种精密播种机地轮驱动力监控系统
CN113653496A (zh) 一种泥水盾构隧道掘进全过程稳定方法
CN111397593B (zh) 一种轨道交通装备导航数据处理系统及方法
CN115032355B (zh) 一种多深度地下水水质参数自动化监测系统
CN113762635B (zh) Epb隧道施工地表沉降全周期自适应模糊推理预测方法
CN110618683A (zh) 一种基于北斗导航的农业机械姿态监测装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination