CN112646829B - Plasmid standard molecule capable of being used for detecting multiple crops and multiple exogenous genes - Google Patents

Plasmid standard molecule capable of being used for detecting multiple crops and multiple exogenous genes Download PDF

Info

Publication number
CN112646829B
CN112646829B CN202011604483.8A CN202011604483A CN112646829B CN 112646829 B CN112646829 B CN 112646829B CN 202011604483 A CN202011604483 A CN 202011604483A CN 112646829 B CN112646829 B CN 112646829B
Authority
CN
China
Prior art keywords
gene
terminator
promoter
plasmid
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011604483.8A
Other languages
Chinese (zh)
Other versions
CN112646829A (en
Inventor
肖金华
杨翅春
朱丹
彭佩
郑秀婷
唐顺学
田冰川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhi Biotechnology Co ltd
Original Assignee
Huazhi Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhi Biotechnology Co ltd filed Critical Huazhi Biotechnology Co ltd
Priority to CN202011604483.8A priority Critical patent/CN112646829B/en
Publication of CN112646829A publication Critical patent/CN112646829A/en
Application granted granted Critical
Publication of CN112646829B publication Critical patent/CN112646829B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention discloses a plasmid standard molecule pLANGUTUOU-5 for detecting various crops and exogenous genes and application thereof, wherein the base sequence of the plasmid standard molecule is shown as SEQ ID NO. 1. The pLANGUTUOU-5 is used as a positive control or a positive standard substance, can detect 13 species and 39 exogenous genes, solves the problems of difficult acquisition of transgenic positive materials and the like, greatly expands the detection range of the exogenous genes, reduces the risk of missed detection and reduces the requirement for preparing a plurality of positive controls. The plasmid constructed by the method can be applied to 13 main crops and economic crops, greatly expands the variety of detected crops and is beneficial to transgene monitoring and safety supervision. The plasmid molecule provided by the method is simple and rapid in construction and low in cost, and the transgene detection cost can be greatly saved.

Description

Plasmid standard molecule capable of being used for detecting multiple crops and multiple exogenous genes
Technical Field
The invention belongs to the technical field of transgene detection, and particularly relates to a plasmid standard molecule capable of being used for detecting multiple crops and multiple exogenous genes.
Background
The safety of transgenic products is always concerned, and the molecular detection of transgenic crops and products thereof is more and more important. At present, different requirements are provided for the identification of transgenic products in various countries, the content of transgenic components must be indicated by the regulations of some countries, and the requirements of various countries on the content of identified transgenes are different. In order to solve the problems of trade disputes and the like, qualitative and quantitative detection of transgenic products becomes a key (Dong Lianhua and the like, 2012). The detection methods of the transgenic crops commonly used at present are a detection method based on sample DNA and a detection method based on sample protein. Sample protein-based detection methods include Enzyme-linked immunosorbent assay (ELISA) and transgenic rapid detection strips. Sample DNA-based detection methods are most widely used. The transgenic detection method of gene PCR can be divided into screening, gene-specific detection, vector-specific detection and event-specific detection, which respectively detect the integration sites of universal elements and screening markers, target genes, transformation vectors and foreign genes on chromosomes (segu wude, 2009). Under the condition that the screening PCR result is positive, the specificity detection of genes, vectors and events can be further carried out to judge which exogenous genes contained in the transgenic variety are from which transformation vector and belong to which transformation strain. The common PCR method based on sample DNA needs electrophoresis and ultraviolet observation processes, is complex to operate, consumes long time and is difficult to realize high-throughput detection. The DNA detection of crops by utilizing fluorescent quantitative PCR is the mainstream method for international transgene detection at present, and has the advantages of very high sensitivity and accuracy.
When performing PCR assays, transgenic crop DNA is required as a positive control to ensure the accuracy of the assay. The transgenic standard substance is a substance having sufficient stability and uniformity to contain a transgenic component. As an important positive control sample, the current home and abroad transgenic standard substances comprise 2 types: matrix standard substance and nucleic acid molecule standard substance. The matrix standard substance mainly comprises a seed standard substance and a seed powder standard substance; the nucleic acid molecule standard substance mainly comprises plant genome DNA and plasmid DNA molecule standard substances. On the other hand, in the aspect of developing matrix standard substances in China, the development of matrix standard substances in China has a large difference compared with developed countries such as European Union, united states and the like, the commercialized transgenic standard substances are only Bt63 and the like, and if other standard substances are bought, import is needed, and the procedure is complicated and the period is long. The transgenic plasmid standard molecule is one of transgenic standard products, and has the advantages of simple manufacturing process and low cost, thereby having better application prospect.
The plasmid DNA standard substance refers to a plasmid DNA molecule containing an exogenous target gene and an internal standard gene. The positive plasmid molecule has many advantages, for example, one standard molecule can simultaneously possess a plurality of exogenous target genes; fussy addition and reproduction are not needed; the microorganism can be used for mass culture, and has the advantages of easy preservation and high purity; quantitative analysis can be performed by converting the molecular weight into plant genomic DNA molecules. However, the current transgenic plasmid standard molecules also have certain limitations, for example, the transgenic plasmid standard molecules can be used for detecting limited types of crops, most of the transgenic plasmid standard molecules can only detect one species, and the few transgenic plasmid standard molecules can detect 4-5 species, and are limited to corn, rice, cotton, rape and soybean; in addition, the transgenic plasmid standard molecule contains limited foreign genes, most of which can only detect 4-5 genes, and the few of which can detect about 10 genes, and is limited to CaMV35S promoter, FMV promoter, NOS terminator, BT, HPT, NPTII, cry1Ab, EPSPS, BAR, PAT and the like. With the increase of commercial transgenic crop varieties, more and more genes are applied to the breeding of transgenic crops, so that the expansion of the range of screening genes and the expansion of the variety of monitoring crops become more and more necessary. Therefore, it is urgently needed to create a plasmid standard molecule aiming at various crops and various exogenous genes and develop a detection method aiming at more exogenous genes.
At present, transgenic lines are various and expensive, and if the transgenic lines are to be identified, positive controls are needed, so that the transgenic lines need to be purchased with standard products. There are hundreds of transgenic lines that are evaluated for safety or have been commercialized throughout the world, but many transgenic lines have not been commercially produced in China. The plant materials of the strains are difficult to obtain, the current commercialized transgenic detection standard is mainly matrix standard substances, the development process of the matrix standard substances is complex, the price is very expensive, and the powder of each gram of the matrix standard substances is about 100-200 Euros. Therefore, the purchase of standard substances is a heavy burden for the institution that wants to perform the transgenic test. In addition, the development of domestic standard products is relatively delayed, and if other standard products need to be purchased, import is needed, and the procedures are complicated and the period is long due to the transgenic process. With the increase of commercial transgenic crop varieties, more and more genes are applied to the breeding of transgenic crops, so that the expansion of the range of screening genes and the expansion of the variety of monitoring crops become more and more necessary. Therefore, it is urgently needed to create a plasmid standard molecule aiming at various crops and various exogenous genes and develop a detection method aiming at more exogenous genes. The invention aims to create and apply a positive plasmid which can be used for detecting various transgenic crops and various exogenous genes, and develop corresponding fluorescent quantitative PCR primers aiming at a promoter and a terminator which are commonly used for the transgenic crops.
Disclosure of Invention
The first object of the present invention is to provide a nucleic acid molecule.
It is a second object of the present invention to provide a plasmid molecule.
The third purpose of the invention is to provide the application of the nucleic acid molecule and the plasmid molecule in qualitative screening and detection of transgenic crops and/or exogenous genes.
The technical scheme adopted by the invention is as follows:
in a first aspect of the invention, there is provided a nucleic acid molecule comprising the nucleic acid sequence of:
(1) Transgenic breeding exogenous genes;
(2) A standard gene in the crop;
wherein the transgenic breeding exogenous gene is selected from at least one of the following genes: T-G7 terminator, T-E9 terminator, T-CaMV35S terminator, T-NOS terminator, PVYep gene, P-SSuAra promoter, P-NOS promoter, PMI gene, PLRVrep gene, P-ubitin promoter, P-TA29 promoter, P-RACT promoter, NPTII gene, P-CaMV35S promoter, P-FMV35S promoter, PAT gene, HPT gene, GUS gene, EPSPS gene, cry3A gene, cry1Ac gene, cry1Ab gene, cry1A.105 gene, bt gene, barnase gene, bar gene, T-VSP terminator, T-Tr7 terminator, T-TML terminator, T-pinII terminator, T-PEPC terminator, T-OCS3 terminator, T-GLB1 terminator, UTRT-7 sP terminator, P-MTL promoter, GLOCS 1P-4 GAX promoter, and GLOCS promoter.
According to the nucleic acid molecule of the first aspect of the present invention, the standard gene in crop plants is derived from one or more of corn, rice, cotton, rape, wheat, soybean, alfalfa, papaya, tomato, sugar beet, sesame, flax or peanut.
The nucleic acid molecule according to the first aspect of the present invention, which comprises the following nucleotide fragments:
(1) One or more nucleotide fragments in any linkage order selected from SEQ ID NO 4 to SEQ ID NO 42, and
(2) One or two nucleotide fragments selected from any connection sequence in SEQ ID NO. 43-55.
The nucleic acid molecule according to the first aspect of the present invention, which comprises a 52 nucleotide fragment of SEQ ID NO. 4 to SEQ ID NO. 55.
The nucleic acid molecule according to the first aspect of the invention comprises a nucleotide fragment of SEQ ID NO 2 and SEQ ID NO 3.
Preferably, the nucleic acid molecule contains nucleotide fragments of SEQ ID NO. 2 and SEQ ID NO. 3, specifically, SEQ ID NO. 4 to 42 are spliced in series into SEQ ID NO. 2, and SEQ ID NO. 43 to 55 are spliced in series into SEQ ID NO. 3.
Preferably, the nucleic acid molecule contains a nucleotide fragment shown as SEQ ID NO. 1, and is formed by splicing SEQ ID NO. 2-SEQ ID NO. 3 in series.
In a second aspect of the invention, there is provided a plasmid comprising a nucleic acid molecule according to the first aspect of the invention.
Furthermore, the plasmid is obtained by inserting the nucleotide fragments shown in SEQ ID NO. 2 and SEQ ID NO. 3 into a plasmid vector.
Preferably, the plasmid is obtained by inserting the nucleotide fragments shown as SEQ ID NO. 2 and SEQ ID NO. 3 into an Escherichia coli vector.
Preferably, the plasmid is pUC57, which is preferred as an E.coli vector, into which the nucleotide fragments shown in SEQ ID NO. 2 and SEQ ID NO. 3 have been inserted.
Furthermore, the plasmid is a positive plasmid molecule which is constructed by inserting nucleotide fragments shown in SEQ ID NO. 2 and SEQ ID NO. 3 into an EcoRV site of pUC57 optimized by an escherichia coli vector and polymerizes 39 exogenous genes and 13 internal standard genes of large crops, and is named as pLANGUTUOU-5.
The construction process comprises the following steps: the detection target sequences of 13 internal standard genes of main crops and commercial crops are connected in series to form a sequence SEQ ID NO. 3, the detection target sequences of 39 exogenous genes with higher use frequency are connected in series to form a sequence SEQ ID NO. 2, and then the SEQ ID NO. 2 and the SEQ ID NO. 3 are spliced to form a long sequence SEQ ID NO. 1. Entrusted general biological system (Anhui) limited company synthesizes the sequence SEQ ID NO:1 by means of gene synthesis and inserts the sequence into the EcoRV site of an escherichia coli vector pUC57 to construct a positive plasmid molecule pLANGUTUOU-5 which polymerizes 39 screening elements and 13 crop internal standard genes.
Characteristics of the positive plasmid molecules: pLANGUTUOU-5 has 39 exogenous genes and 13 crop internal standard genes polymerized, and pLANGUTUOU-5 as positive control can be used to perform real-time fluorescent PCR screening detection of transgenic components in 13 transgenic crop samples.
In a third aspect of the present invention, there is provided a use of the nucleic acid molecule of the first aspect of the present invention or the plasmid of the second aspect of the present invention in qualitative screening and detecting of transgenic crops and/or exogenous genes.
According to the third aspect of the invention, the crop is one or more of corn, rice, cotton, rape, wheat, soybean, alfalfa, papaya, tomato, sugar beet, sesame, flax or peanut.
According to the third aspect of the present invention, the foreign gene is one or more of a T-G7 terminator, a T-E9 terminator, a T-CaMV35S terminator, a T-NOS terminator, a PVYep gene, a P-SSuAra promoter, a P-NOS promoter, a PMI selectable marker gene, a PLRVrep gene, a P-Ubiquitin promoter, a P-TA29 promoter, a P-RACT promoter, an NPTII resistance screening gene, a P-CaMV35S promoter, a P-FMV35S promoter, a PAT herbicide resistance screening gene, an HPT resistance screening gene, a GUS marker gene, an EPSPS herbicide resistance gene, a Cry3A gene, a Cry1Ac gene, a Cry1Ab gene, a Cry1A 105 gene, a Bt gene, a Barnase gene, a Barr gene, a T-VSP terminator, a T-Tr7 terminator, a T-TML terminator, a T-pinII terminator, a T-PEPC terminator, a T-OCS3 terminator, a MTOCS 1-GLS 1-P promoter, a GLP 4-GAP promoter.
According to the third aspect of the invention, the application is particularly used as a positive control or a positive standard substance for detecting the transgenic crops and/or exogenous genes.
According to the application of the third aspect of the invention, the plasmid or the positive standard substance used as the positive control substance for detecting the transgenic crops is used for carrying out real-time fluorescence PCR screening detection on transgenic components of crops or exogenous genes to be detected.
Furthermore, fluorescent dye method PCR detection primers aiming at promoters such as P-MTL, P-OCS, P-PepC and P-RbcS and terminator transgenic elements such as T-TML, corn T-Glb1, soybean T-7sUTR, T-PEPC, potato T-pinII, T-Tr7 and T-VSP and the like aiming at the exogenous genes are also developed:
Figure BDA0002870113740000031
Figure BDA0002870113740000041
the invention has the beneficial effects that:
the method constructs universal positive plasmids and reduces the need for preparing a plurality of positive controls. The plasmid standard molecule constructed by the invention can detect up to 39 exogenous genes, greatly expands the detection range of the exogenous genes and reduces the risk of missed detection. The plasmid constructed by the method can be applied to 13 main crops and economic crops, greatly expands the variety of detected crops and is beneficial to transgene monitoring and safety supervision. Can solve the problems of difficult acquisition of transgenic positive materials and the like. The purchase of transgenic standard substances is expensive. The plasmid molecule provided by the method is simple and rapid in construction and low in cost, and the transgene detection cost can be greatly saved.
Drawings
FIG. 1 is a diagram showing a structure of plasmid standard molecule pLANGUTUOU-5.
FIG. 2 shows the verification of 13 crop internal standard genes in plasmid standard molecule pLANGUTUOU-5 by real-time fluorescent PCR method.
FIG. 3 shows the verification of the original 39 foreign genes in plasmid standard molecule pLANGUTUOU-5 by real-time fluorescent PCR.
Detailed Description
Preferred embodiments of the present invention will be described in detail with reference to the following examples. It is to be understood that the following examples are given for illustrative purposes only and are not intended to limit the scope of the present invention. Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the spirit and scope of this invention. The experimental procedures used in the following examples are all conventional procedures unless otherwise specified. Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The invention provides a plasmid standard molecule, which comprises 39 exogenous genes commonly used for transgenic breeding and 13 endogenous genes of species (corn ZmzSSIIb, rice OsSPS, cotton GhACP, rape BnCruA, wheat TsWaxy, soybean Gmletin, alfalfa MsAcc, pawpaw CpChy, tomato StLAT52, beet BvGluA, sesame SiAlb, flax LuSad and peanut JrVic). When detecting whether the sample of the species contains common transgenic components, the plasmid molecule can be used as a positive control. Promoters such as P-MTL, P-OCS, P-PepC and P-RbcS, terminators such as T-TML, corn T-Glb1, soybean T-7sUTR, T-PEPC, potato T-pinII, T-Tr7 and T-VSP, and the like are widely used in transgenic crops, but detection of these elements is lacked in a corresponding method, and a fluorescent quantitative PCR detection method for these genes is also developed in the present invention.
EXAMPLE 1 construction of plasmid Standard molecules
1. Interrogation of DNA sequences of foreign genes and internal standard genes
39 exogenous genes and 13 internal standard genes of main crops and commercial crops, wherein the frequency of use of the genes in selective transgenic breeding is high, the 39 exogenous genes are shown in a table 1, the 13 internal standard genes are shown in a table 2, and DNA sequences of the genes are searched in GenBank. According to the method published by the Chinese and European Union transgenic organism detection technical standard and the verified detection method, the detection target sequence SEQ ID NO. 4-SEQ ID NO. 55 of each gene is determined.
TABLE 1 common foreign genes
Figure BDA0002870113740000042
/>
Figure BDA0002870113740000051
/>
Figure BDA0002870113740000061
TABLE 2 internal Standard genes
Internal standard gene name Origin of genes Fragment sequences
zSSIIb Corn (maize) SEQ ID NO:43
TsWaxy Wheat (Triticum aestivum L.) SEQ ID NO:44
StLAT52 Tomato SEQ ID NO:45
SiAlb Sesame seed SEQ ID NO:46
OsSPS Rice (Oryza sativa L.) with improved resistance to stress SEQ ID NO:47
MsACC Alfalfa SEQ ID NO:48
LuSad Flax SEQ ID NO:49
JrVic Peanut SEQ ID NO:50
GmLectin Soybean SEQ ID NO:51
GhACP Cotton SEQ ID NO:52
CpChy Pawpaw SEQ ID NO:53
BvGluA Sugar beet SEQ ID NO:54
BnCruA Rape SEQ ID NO:55
2. Obtaining of target DNA fragment
According to the published transgenic detection standard method, determining PCR amplification fragments of the exogenous genes and the internal standard genes, connecting detection target sequences of all the exogenous genes in series to form a sequence SEQ ID NO. 2, connecting detection target sequences of all the internal standard genes in series to form a sequence SEQ ID NO. 3, and connecting the sequence SEQ ID NO. 2 and the sequence SEQ ID NO. 3 in series to form SEQ ID NO. 1. General biosystems (Anhui) Ltd was entrusted with the synthesis of SEQ ID NO:1 by means of gene synthesis.
3. Plasmid construction
The full-length DNA sequence SEQ ID NO 1 containing 39 exogenous gene elements and 13 crop internal standard genes is digested by EcoRV endonuclease and cloned to pUC57 vector, the plasmid is named pLANGUTUOU-5, and the connection sequence and molecular size are shown in figure 1. The constructed plasmid is transferred into escherichia coli, a single clone is selected and extracted, and sequencing confirms that 39 exogenous gene elements and 13 crop internal standard genes are constructed on the pUC57 vector.
Example 2 primer information
Fluorescent dye method PCR detection primers for P-MTL, P-OCS, P-PepC, P-RbcS and other promoters and T-TML, corn T-Glb1, soybean T-7sUTR, T-PEPC, potato T-pinII, T-Tr7, T-VSP and other terminator transgenic elements are also developed, and are shown in Table 3.
TABLE 3 fluorescent dye method PCR detection primers
Figure BDA0002870113740000071
EXAMPLE 3 use of Standard plasmid molecules
The real-time fluorescent PCR amplification is carried out by using 39 synthesized exogenous gene elements and real-time fluorescent PCR primers and Taqman probes of 13 crop internal standard genes and using a plasmid molecule pLANGUTUOU-5 as a template, wherein the amplification curve of the 13 crop internal standard genes is shown in figure 2, and the amplification curve of the 39 exogenous gene elements is shown in figure 3.
From FIGS. 2 and 3, it can be seen that each gene element generates a typical amplification curve, indicating that the plasmid molecule pLANGUTUOU-5 contains the real-time fluorescent PCR detection target of each gene element. The plasmid molecule pLANGUTUOU-5 can be used as a positive control and a quality control sample for real-time fluorescent PCR screening detection of 13 transgenic crops.
The above embodiments are merely preferred examples to illustrate the present invention, and it should be apparent to those skilled in the art that any obvious variations and modifications can be made without departing from the spirit of the present invention.
SEQUENCE LISTING
<110> Huazhi Biotechnology Limited
<120> a plasmid standard molecule for detecting various crops and various exogenous genes
<130>
<160> 73
<170> PatentIn version 3.5
<210> 1
<211> 5975
<212> DNA
<213> Artificial sequence
<400> 1
atgtattaca cataatatcg cactcagtct ttcatctacg gcaatgtacc agctgatata 60
atcagttatt gaaatatttc tgaatttaaa cttgcattga gaatgaacaa aaggaccata 120
tcattcatta actcttctcc atccatttcc atttcacagt tcgatagcga aaaccgaata 180
aaaaggggat ctggatttta gtactggatt ttggttttag gaattagaaa ttttattgat 240
agaagtattt tacaaataca aatacatact aagggtttct tatatgctca acacatgagc 300
gaaacatcgt tcaaacattt ggcaataaag tttcttaaga ttgaatcctg ttgccggtct 360
tgcgatgatt atcatataat ttctgttgaa ttacgttaag catgtaataa ttaacatgta 420
atgcatgacg ttatttatga gatgggtttt tatgattaga gtcccgcaat gaatcaaggc 480
tatcacgtcc aaaatgagaa tgcccacaag caagggagca accgtgctaa acttagaaca 540
cttgcttgag tatgctccac aacaaattga tatttcaaat actcgggcca ctcaatcaca 600
gtttgatacg tggtatgagg cagtgcggat gggcctaagg agaggtgttg agacccttat 660
cggcttgaac cgctggaata atgccacgtg gaagataatt ccatgaatct tatcgttatc 720
tatgaggaca gaaccgcaac gttgaaggag ccactcagcc gcgggtttct ggagtttaat 780
gagctaagca catacgtcag aaactgcctt tcctgttcaa agtattatgc gcagcacagc 840
cactctccat tcaggttcat ccaaacaaac acaattctga aatcggtttt gccaaagatc 900
gtcattaaac ttgacgaccc aaccaccgcc gccgcttaca gatcggagct actacgagtt 960
agttcaagct cttacatcca aaatgcggct ggattgtcaa acggttgggg acatgacatg 1020
gaggcatttg tcagaaatgc tatttgcctc ctggaactcc gtgaaagaag gagtagataa 1080
tgccagcctg ttaaacgccg tcgacgagtc taacggacac caaccagcga accagcagcg 1140
tcgcgtgctc gaagtatgca catttagcaa tgtaaattaa atcagttttt gaatcaagct 1200
aaaagcagac ttgcataagg tgggtggctg gactagaata aacatcttct ctagcacagc 1260
ttctcgaggt cattcatatg cttgagaaga gagtcgggat agtccaaaat aaaacaaagg 1320
taagattacc tggtcaaaag tgaaaacatc agttaaaact atgactgggc acaacagaca 1380
atcggctgct ctgatgccgc cgtgttccgg ctgtcagcgc aggggcgccc ggttcttttt 1440
gtcaagaccg acctgtccga agacgtggtt ggaacgtctt ctttttccac gatgctcctc 1500
gtgggtgggg gtccatcttt gggaccactg tcgaagacat ccaccgaaga cttaaagtta 1560
gtgggcatct ttgaaagtaa tcttgtcaac atcgagcagc tggcttgtgg ggaccagaca 1620
aaaaaggaat ggtgcagaat tgttaggcgc acctaccaaa agcatctttg cctttattgc 1680
aaagataaag cagattcctc tagtacaagt ggggaacaaa ataacgtgga aaagagctgt 1740
cctgtcgaca tgtctccgga gaggagacca gttgagatta ggccagctac agcagctgat 1800
atggccgcgg tttgtgatat cgttaaccat tacattgaga cgtctacagt gaactttagg 1860
acagagccac aaacaccaca agagtggatt gatgatctag agaggttgca agatagatac 1920
ccttggttgg ttgctgaggt tgagggtgtt gtggctggta ttgcttacgc tgggccctgg 1980
aaggctagga acgcttacga ttggacaccg ctcgtctggc taagatcggc cgcagcgatc 2040
gcatccatag cctccgcgac cggttgtaga acagcgggca gttcggtttc aggcaggtct 2100
tgcaacgtga caccctgtta actatgccgg aatccatcgc agcgtaatgc tctacaccac 2160
gccgaacacc tgggtggacg atatcaccgt ggtgacgcat gtcgcgcaag actgtaacca 2220
cgcgtctgtt gactggcagg tggtggccaa tggtgatgtc agcgttccga cgccgatcac 2280
ctaccgcgtg ccgatggcct ccgcacaggt gaagtccgcc gtgctgctcg ccggcctcaa 2340
cacgcccggc atctccggtt acgaggttct tttcctcact acctatgctc aagctgccaa 2400
cacccacttg tttctcctta aggacgctca aatctatggt acttggtgga gaacgcattg 2460
aaaccggtta cactcccatc gacatctcct tgtccttgac acagtttctg ctcagcgagt 2520
tcgtgccagg tgctgggttc gttctcggac tagttgacat ccgcgactgg atcaggtaca 2580
accagttccg ccgcgagctg accctgaccg tgctggacat cgtgagcctg ttccccatca 2640
gaggtccagg gtttacagga ggagacattc ttcgtcgcac aagtggagga ccctttgctt 2700
acactattgt taacatcaat ggccaattgc cccaaaggta tcgtgcaaga atccgctatg 2760
cctctactac gaccctcaca gttttggaca ttgtgtctct cttcccgaac tatgactcca 2820
gaacctaccc tatccgtaca gtgtcccaac ttaccagaga aataatcaga agcacaagcc 2880
ctcggctggg tggcatcaaa agggaacctt gcagacgtcg ctccggggaa aagcatcggc 2940
ggagacatct tctcaaacag ggaaggcaaa ctacaagcac ggtcaacttc cgtaccgagc 3000
cgcaggaacc gcaggagtgg acggacgacc tcgtccgtct gcgggagcgc tatccctggc 3060
tcgtcgccga ggtggacggc gaggtcgccg gcatcgccta cgcgggcccc tggaaggcac 3120
gcaacgccta cgactggacg gccgagtgtt taaacttatg ttatgtgggt aagtcaccta 3180
agacactcca cgtacctact tgttgtctct taccgcggct ttaataaatc ttctgccctt 3240
gttccatatt tactaatcaa tttatgtatt acacataata tcgcactcag tctttcatct 3300
acggcaatgt accagctgat ataatcagtt attgaaatat ttctgaattt aaactaaaag 3360
caggctgtgt tttcggcaaa catcgccacc catcgctagt ttttctaaaa gtgttctaag 3420
ctagcctggt aataatctat acgagcttat atttccctag acttgtccat cttctggatt 3480
ggccaactta attaatgtat gaaataaaag gatgcacaca tagtgacatg ctaatcacta 3540
taatgtgggc atcaaccaac atctccccgc tctactaaga gctctagatc tgttctgcac 3600
aaagtggagt agtcagtcat cgatcaggaa ccagacacca gacttttatt cataccggtc 3660
aaacctaaaa gactgattac ataaatctta ttcaaatttc aaaagtgccc caggggctag 3720
tatctacgac acaccgagcg gcgaactaat aacgctcact gaagggaact ccggttcccc 3780
ttcgcttctt catttgtccc cttgcggagt ttggcatcca ttgatgccgt tacgctgaga 3840
acagacacag cagacgaacc aaaagtgagt tcttgtatga agtatcgggc tatttaacta 3900
tgacttgagc tccatctatg aataaataaa tcagcatatg atgcttttgt tttgtgtact 3960
tcaactgtct gcttagctat ttatagcgac tgacgctgtg gcaggcacgc tatcggaggt 4020
tacgacgtgg cgggtcactc gacgcggagt tcacaggtcc tatccttgca tcgctcggcc 4080
ctctcttaca gcaaattgtc cgctgcccgt cgtccagata caatgaacgt acctagtagg 4140
aactctttta cacgctcggt cgctcgccgc ggatcggagg tcgtttattt cggcgtgtag 4200
gacatggcaa ccgggcctga atttcgcggg tattctgttt ctattccaac tttttcttga 4260
tccgcagcca ttaacgactg tcttcgtgtt gctggaaccg ttgagttcgc tggtctcact 4320
gctgctccta actggaagcg tgctcacgtt ctctacactc acgctcgtaa gttgcttcca 4380
gctctcgctc ctgccagttc ctgcttcagg atactacagg aagttgggat tcagtgagca 4440
aggagaggtg ttcgatactc ctccagttgg acctcacatc ctgatgtata agaggatcac 4500
gtttaaacat cggatcccgg gcccgtcgac tgcagagggt ttaaacatcc tttgacatct 4560
gctccgaagc aaagtcagag cgctgcaatg caaaacggaa cgagtggggg cagcagcgcg 4620
agcaccgccg cgccggtgtc cggacccaaa gctgatcatc catcagctcc tgtcaccaag 4680
agagaaatcg atgccagtgc ggtgaagcca gagcccgcag gtgatgatgc tagaccggtg 4740
gaaagcatag gcatcgctga accggtggat gctaaggctg atgcagctcc ggctacagat 4800
gcggcggcga gtgctcctta tgacagggag gataatgaac ctggcccttt gtcgcaggaa 4860
cagaggtgtt caaggcggcc gaaataggtt gccgcctgcg gcggaatcgc cacccaccgt 4920
gaagttcacc gtttcgcaat ggaggaacac cagaccacga gaacgatatt tgcgaggtga 4980
cagttgtgaa aagcccaagg gaggactgca aagagagtgt gtctggatat gaaaaggcaa 5040
gaattaccag agggctaggg accttcctcg caggtgcaac atgcgacccc agcaatgcca 5100
attccgagtt tgaacatgtc caaggctctg ggggaacagg ttagcaatgg gaagctggtc 5160
ttgcgcctga acggatatct ttcagtttgt aaccaccgga tgacgcacgg acggctcgga 5220
tcatcccgaa aagatcaacc ggatcagtga acttcgcaaa gtactcggtt agtagacagt 5280
gaatgctcct gtgatctgcc catgcactca tgttgtagtg ttcacgtcgt tggctcaacc 5340
cagtcaccac cttcccttca acacgctccc tcaacaactt ctcctccaga tctcctcgca 5400
gcgcagagaa agcagaggcc gggaagagga gcaacagagg cacaatccct actactttca 5460
ctcccagagc attaggtcga gacatgaggc cctctactcc acccccatcc acatttggga 5520
caaagaaacc ggtagcgttg ccagcttcgc cgcttccttc aacttcacct tctatgcccc 5580
tgacacaaaa aggcttgcag atgggcattg tgatgggact tgaggaagaa ttcggaatca 5640
cggtggaaga ggacaatgca caatccatca caactgttca agccatgcgg atcctcccat 5700
ttcccttcat ccattcccac tcttgagagt tagctagtgt tacaatggct acgatggacc 5760
tccatattac tgaaaggaag ccaaaaggga tcaattaagt gctctacgaa gtttaaagta 5820
tgtgccgctc tcaagactga acatggcact gtgaacagga tggagcaatt actcggccag 5880
ggtttccgtg atatgcacca gaaagtggag cacataagga ctggggacac catcgctaca 5940
catcccggtg tagcccaatg gttctacaac gacgg 5975
<210> 2
<211> 4500
<212> DNA
<213> Artificial sequence
<400> 2
atgtattaca cataatatcg cactcagtct ttcatctacg gcaatgtacc agctgatata 60
atcagttatt gaaatatttc tgaatttaaa cttgcattga gaatgaacaa aaggaccata 120
tcattcatta actcttctcc atccatttcc atttcacagt tcgatagcga aaaccgaata 180
aaaaggggat ctggatttta gtactggatt ttggttttag gaattagaaa ttttattgat 240
agaagtattt tacaaataca aatacatact aagggtttct tatatgctca acacatgagc 300
gaaacatcgt tcaaacattt ggcaataaag tttcttaaga ttgaatcctg ttgccggtct 360
tgcgatgatt atcatataat ttctgttgaa ttacgttaag catgtaataa ttaacatgta 420
atgcatgacg ttatttatga gatgggtttt tatgattaga gtcccgcaat gaatcaaggc 480
tatcacgtcc aaaatgagaa tgcccacaag caagggagca accgtgctaa acttagaaca 540
cttgcttgag tatgctccac aacaaattga tatttcaaat actcgggcca ctcaatcaca 600
gtttgatacg tggtatgagg cagtgcggat gggcctaagg agaggtgttg agacccttat 660
cggcttgaac cgctggaata atgccacgtg gaagataatt ccatgaatct tatcgttatc 720
tatgaggaca gaaccgcaac gttgaaggag ccactcagcc gcgggtttct ggagtttaat 780
gagctaagca catacgtcag aaactgcctt tcctgttcaa agtattatgc gcagcacagc 840
cactctccat tcaggttcat ccaaacaaac acaattctga aatcggtttt gccaaagatc 900
gtcattaaac ttgacgaccc aaccaccgcc gccgcttaca gatcggagct actacgagtt 960
agttcaagct cttacatcca aaatgcggct ggattgtcaa acggttgggg acatgacatg 1020
gaggcatttg tcagaaatgc tatttgcctc ctggaactcc gtgaaagaag gagtagataa 1080
tgccagcctg ttaaacgccg tcgacgagtc taacggacac caaccagcga accagcagcg 1140
tcgcgtgctc gaagtatgca catttagcaa tgtaaattaa atcagttttt gaatcaagct 1200
aaaagcagac ttgcataagg tgggtggctg gactagaata aacatcttct ctagcacagc 1260
ttctcgaggt cattcatatg cttgagaaga gagtcgggat agtccaaaat aaaacaaagg 1320
taagattacc tggtcaaaag tgaaaacatc agttaaaact atgactgggc acaacagaca 1380
atcggctgct ctgatgccgc cgtgttccgg ctgtcagcgc aggggcgccc ggttcttttt 1440
gtcaagaccg acctgtccga agacgtggtt ggaacgtctt ctttttccac gatgctcctc 1500
gtgggtgggg gtccatcttt gggaccactg tcgaagacat ccaccgaaga cttaaagtta 1560
gtgggcatct ttgaaagtaa tcttgtcaac atcgagcagc tggcttgtgg ggaccagaca 1620
aaaaaggaat ggtgcagaat tgttaggcgc acctaccaaa agcatctttg cctttattgc 1680
aaagataaag cagattcctc tagtacaagt ggggaacaaa ataacgtgga aaagagctgt 1740
cctgtcgaca tgtctccgga gaggagacca gttgagatta ggccagctac agcagctgat 1800
atggccgcgg tttgtgatat cgttaaccat tacattgaga cgtctacagt gaactttagg 1860
acagagccac aaacaccaca agagtggatt gatgatctag agaggttgca agatagatac 1920
ccttggttgg ttgctgaggt tgagggtgtt gtggctggta ttgcttacgc tgggccctgg 1980
aaggctagga acgcttacga ttggacaccg ctcgtctggc taagatcggc cgcagcgatc 2040
gcatccatag cctccgcgac cggttgtaga acagcgggca gttcggtttc aggcaggtct 2100
tgcaacgtga caccctgtta actatgccgg aatccatcgc agcgtaatgc tctacaccac 2160
gccgaacacc tgggtggacg atatcaccgt ggtgacgcat gtcgcgcaag actgtaacca 2220
cgcgtctgtt gactggcagg tggtggccaa tggtgatgtc agcgttccga cgccgatcac 2280
ctaccgcgtg ccgatggcct ccgcacaggt gaagtccgcc gtgctgctcg ccggcctcaa 2340
cacgcccggc atctccggtt acgaggttct tttcctcact acctatgctc aagctgccaa 2400
cacccacttg tttctcctta aggacgctca aatctatggt acttggtgga gaacgcattg 2460
aaaccggtta cactcccatc gacatctcct tgtccttgac acagtttctg ctcagcgagt 2520
tcgtgccagg tgctgggttc gttctcggac tagttgacat ccgcgactgg atcaggtaca 2580
accagttccg ccgcgagctg accctgaccg tgctggacat cgtgagcctg ttccccatca 2640
gaggtccagg gtttacagga ggagacattc ttcgtcgcac aagtggagga ccctttgctt 2700
acactattgt taacatcaat ggccaattgc cccaaaggta tcgtgcaaga atccgctatg 2760
cctctactac gaccctcaca gttttggaca ttgtgtctct cttcccgaac tatgactcca 2820
gaacctaccc tatccgtaca gtgtcccaac ttaccagaga aataatcaga agcacaagcc 2880
ctcggctggg tggcatcaaa agggaacctt gcagacgtcg ctccggggaa aagcatcggc 2940
ggagacatct tctcaaacag ggaaggcaaa ctacaagcac ggtcaacttc cgtaccgagc 3000
cgcaggaacc gcaggagtgg acggacgacc tcgtccgtct gcgggagcgc tatccctggc 3060
tcgtcgccga ggtggacggc gaggtcgccg gcatcgccta cgcgggcccc tggaaggcac 3120
gcaacgccta cgactggacg gccgagtgtt taaacttatg ttatgtgggt aagtcaccta 3180
agacactcca cgtacctact tgttgtctct taccgcggct ttaataaatc ttctgccctt 3240
gttccatatt tactaatcaa tttatgtatt acacataata tcgcactcag tctttcatct 3300
acggcaatgt accagctgat ataatcagtt attgaaatat ttctgaattt aaactaaaag 3360
caggctgtgt tttcggcaaa catcgccacc catcgctagt ttttctaaaa gtgttctaag 3420
ctagcctggt aataatctat acgagcttat atttccctag acttgtccat cttctggatt 3480
ggccaactta attaatgtat gaaataaaag gatgcacaca tagtgacatg ctaatcacta 3540
taatgtgggc atcaaccaac atctccccgc tctactaaga gctctagatc tgttctgcac 3600
aaagtggagt agtcagtcat cgatcaggaa ccagacacca gacttttatt cataccggtc 3660
aaacctaaaa gactgattac ataaatctta ttcaaatttc aaaagtgccc caggggctag 3720
tatctacgac acaccgagcg gcgaactaat aacgctcact gaagggaact ccggttcccc 3780
ttcgcttctt catttgtccc cttgcggagt ttggcatcca ttgatgccgt tacgctgaga 3840
acagacacag cagacgaacc aaaagtgagt tcttgtatga agtatcgggc tatttaacta 3900
tgacttgagc tccatctatg aataaataaa tcagcatatg atgcttttgt tttgtgtact 3960
tcaactgtct gcttagctat ttatagcgac tgacgctgtg gcaggcacgc tatcggaggt 4020
tacgacgtgg cgggtcactc gacgcggagt tcacaggtcc tatccttgca tcgctcggcc 4080
ctctcttaca gcaaattgtc cgctgcccgt cgtccagata caatgaacgt acctagtagg 4140
aactctttta cacgctcggt cgctcgccgc ggatcggagg tcgtttattt cggcgtgtag 4200
gacatggcaa ccgggcctga atttcgcggg tattctgttt ctattccaac tttttcttga 4260
tccgcagcca ttaacgactg tcttcgtgtt gctggaaccg ttgagttcgc tggtctcact 4320
gctgctccta actggaagcg tgctcacgtt ctctacactc acgctcgtaa gttgcttcca 4380
gctctcgctc ctgccagttc ctgcttcagg atactacagg aagttgggat tcagtgagca 4440
aggagaggtg ttcgatactc ctccagttgg acctcacatc ctgatgtata agaggatcac 4500
<210> 3
<211> 1475
<212> DNA
<213> Artificial sequence
<400> 3
gtttaaacat cggatcccgg gcccgtcgac tgcagagggt ttaaacatcc tttgacatct 60
gctccgaagc aaagtcagag cgctgcaatg caaaacggaa cgagtggggg cagcagcgcg 120
agcaccgccg cgccggtgtc cggacccaaa gctgatcatc catcagctcc tgtcaccaag 180
agagaaatcg atgccagtgc ggtgaagcca gagcccgcag gtgatgatgc tagaccggtg 240
gaaagcatag gcatcgctga accggtggat gctaaggctg atgcagctcc ggctacagat 300
gcggcggcga gtgctcctta tgacagggag gataatgaac ctggcccttt gtcgcaggaa 360
cagaggtgtt caaggcggcc gaaataggtt gccgcctgcg gcggaatcgc cacccaccgt 420
gaagttcacc gtttcgcaat ggaggaacac cagaccacga gaacgatatt tgcgaggtga 480
cagttgtgaa aagcccaagg gaggactgca aagagagtgt gtctggatat gaaaaggcaa 540
gaattaccag agggctaggg accttcctcg caggtgcaac atgcgacccc agcaatgcca 600
attccgagtt tgaacatgtc caaggctctg ggggaacagg ttagcaatgg gaagctggtc 660
ttgcgcctga acggatatct ttcagtttgt aaccaccgga tgacgcacgg acggctcgga 720
tcatcccgaa aagatcaacc ggatcagtga acttcgcaaa gtactcggtt agtagacagt 780
gaatgctcct gtgatctgcc catgcactca tgttgtagtg ttcacgtcgt tggctcaacc 840
cagtcaccac cttcccttca acacgctccc tcaacaactt ctcctccaga tctcctcgca 900
gcgcagagaa agcagaggcc gggaagagga gcaacagagg cacaatccct actactttca 960
ctcccagagc attaggtcga gacatgaggc cctctactcc acccccatcc acatttggga 1020
caaagaaacc ggtagcgttg ccagcttcgc cgcttccttc aacttcacct tctatgcccc 1080
tgacacaaaa aggcttgcag atgggcattg tgatgggact tgaggaagaa ttcggaatca 1140
cggtggaaga ggacaatgca caatccatca caactgttca agccatgcgg atcctcccat 1200
ttcccttcat ccattcccac tcttgagagt tagctagtgt tacaatggct acgatggacc 1260
tccatattac tgaaaggaag ccaaaaggga tcaattaagt gctctacgaa gtttaaagta 1320
tgtgccgctc tcaagactga acatggcact gtgaacagga tggagcaatt actcggccag 1380
ggtttccgtg atatgcacca gaaagtggag cacataagga ctggggacac catcgctaca 1440
catcccggtg tagcccaatg gttctacaac gacgg 1475
<210> 4
<211> 97
<212> DNA
<213> Agrobacterium
<400> 4
atgtattaca cataatatcg cactcagtct ttcatctacg gcaatgtacc agctgatata 60
atcagttatt gaaatatttc tgaatttaaa cttgcat 97
<210> 5
<211> 87
<212> DNA
<213> pea
<400> 5
tgagaatgaa caaaaggacc atatcattca ttaactcttc tccatccatt tccatttcac 60
agttcgatag cgaaaaccga ataaaaa 87
<210> 6
<211> 121
<212> DNA
<213> cauliflower mosaic virus
<400> 6
ggggatctgg attttagtac tggattttgg ttttaggaat tagaaatttt attgatagaa 60
gtattttaca aatacaaata catactaagg gtttcttata tgctcaacac atgagcgaaa 120
c 121
<210> 7
<211> 165
<212> DNA
<213> Agrobacterium tumefaciens
<400> 7
atcgttcaaa catttggcaa taaagtttct taagattgaa tcctgttgcc ggtcttgcga 60
tgattatcat ataatttctg ttgaattacg ttaagcatgt aataattaac atgtaatgca 120
tgacgttatt tatgagatgg gtttttatga ttagagtccc gcaat 165
<210> 8
<211> 161
<212> DNA
<213> disease resistance Gene (PVYep)
<400> 8
gaatcaaggc tatcacgtcc aaaatgagaa tgcccacaag caagggagca accgtgctaa 60
acttagaaca cttgcttgag tatgctccac aacaaattga tatttcaaat actcgggcca 120
ctcaatcaca gtttgatacg tggtatgagg cagtgcggat g 161
<210> 9
<211> 95
<212> DNA
<213> Arabidopsis thaliana
<400> 9
ggcctaagga gaggtgttga gacccttatc ggcttgaacc gctggaataa tgccacgtgg 60
aagataattc catgaatctt atcgttatct atgag 95
<210> 10
<211> 76
<212> DNA
<213> Agrobacterium
<400> 10
gacagaaccg caacgttgaa ggagccactc agccgcgggt ttctggagtt taatgagcta 60
agcacatacg tcagaa 76
<210> 11
<211> 96
<212> DNA
<213> phosphomannose isomerase Gene (PMI)
<400> 11
actgcctttc ctgttcaaag tattatgcgc agcacagcca ctctccattc aggttcatcc 60
aaacaaacac aattctgaaa tcggttttgc caaaga 96
<210> 12
<211> 172
<212> DNA
<213> disease-resistant Gene (PLRVrep)
<400> 12
tcgtcattaa acttgacgac ccaaccaccg ccgccgctta cagatcggag ctactacgag 60
ttagttcaag ctcttacatc caaaatgcgg ctggattgtc aaacggttgg ggacatgaca 120
tggaggcatt tgtcagaaat gctatttgcc tcctggaact ccgtgaaaga ag 172
<210> 13
<211> 76
<212> DNA
<213> corn
<400> 13
gagtagataa tgccagcctg ttaaacgccg tcgacgagtc taacggacac caaccagcga 60
accagcagcg tcgcgt 76
<210> 14
<211> 117
<212> DNA
<213> tobacco
<400> 14
gctcgaagta tgcacattta gcaatgtaaa ttaaatcagt ttttgaatca agctaaaagc 60
agacttgcat aaggtgggtg gctggactag aataaacatc ttctctagca cagcttc 117
<210> 15
<211> 95
<212> DNA
<213> Rice
<400> 15
tcgaggtcat tcatatgctt gagaagagag tcgggatagt ccaaaataaa acaaaggtaa 60
gattacctgg tcaaaagtga aaacatcagt taaaa 95
<210> 16
<211> 101
<212> DNA
<213> Escherichia coli
<400> 16
ctatgactgg gcacaacaga caatcggctg ctctgatgcc gccgtgttcc ggctgtcagc 60
gcaggggcgc ccggttcttt ttgtcaagac cgacctgtcc g 101
<210> 17
<211> 74
<212> DNA
<213> cauliflower mosaic virus
<400> 17
aagacgtggt tggaacgtct tctttttcca cgatgctcct cgtgggtggg ggtccatctt 60
tgggaccact gtcg 74
<210> 18
<211> 210
<212> DNA
<213> Scrophularia mosaic Virus
<400> 18
aagacatcca ccgaagactt aaagttagtg ggcatctttg aaagtaatct tgtcaacatc 60
gagcagctgg cttgtgggga ccagacaaaa aaggaatggt gcagaattgt taggcgcacc 120
taccaaaagc atctttgcct ttattgcaaa gataaagcag attcctctag tacaagtggg 180
gaacaaaata acgtggaaaa gagctgtcct 210
<210> 19
<211> 264
<212> DNA
<213> glufosinate acetyltransferase gene (PAT)
<400> 19
gtcgacatgt ctccggagag gagaccagtt gagattaggc cagctacagc agctgatatg 60
gccgcggttt gtgatatcgt taaccattac attgagacgt ctacagtgaa ctttaggaca 120
gagccacaaa caccacaaga gtggattgat gatctagaga ggttgcaaga tagataccct 180
tggttggttg ctgaggttga gggtgttgtg gctggtattg cttacgctgg gccctggaag 240
gctaggaacg cttacgattg gaca 264
<210> 20
<211> 110
<212> DNA
<213> Streptomyces hygroscopicus
<400> 20
ccgctcgtct ggctaagatc ggccgcagcg atcgcatcca tagcctccgc gaccggttgt 60
agaacagcgg gcagttcggt ttcaggcagg tcttgcaacg tgacaccctg 110
<210> 21
<211> 149
<212> DNA
<213> Escherichia coli
<400> 21
ttaactatgc cggaatccat cgcagcgtaa tgctctacac cacgccgaac acctgggtgg 60
acgatatcac cgtggtgacg catgtcgcgc aagactgtaa ccacgcgtct gttgactggc 120
aggtggtggc caatggtgat gtcagcgtt 149
<210> 22
<211> 87
<212> DNA
<213> Agrobacterium tumefaciens
<400> 22
ccgacgccga tcacctaccg cgtgccgatg gcctccgcac aggtgaagtc cgccgtgctg 60
ctcgccggcc tcaacacgcc cggcatc 87
<210> 23
<211> 86
<212> DNA
<213> insect-resistant Gene (Cry 3A)
<400> 23
tccggttacg aggttctttt cctcactacc tatgctcaag ctgccaacac ccacttgttt 60
ctccttaagg acgctcaaat ctatgg 86
<210> 24
<211> 122
<212> DNA
<213> Bacillus thuringiensis
<400> 24
tacttggtgg agaacgcatt gaaaccggtt acactcccat cgacatctcc ttgtccttga 60
cacagtttct gctcagcgag ttcgtgccag gtgctgggtt cgttctcgga ctagttgaca 120
tc 122
<210> 25
<211> 76
<212> DNA
<213> insect-resistant Gene (Cry 1 Ab)
<400> 25
cgcgactgga tcaggtacaa ccagttccgc cgcgagctga ccctgaccgt gctggacatc 60
gtgagcctgt tcccca 76
<210> 26
<211> 133
<212> DNA
<213> insect-resistant Gene (Cry1A.105)
<400> 26
tcagaggtcc agggtttaca ggaggagaca ttcttcgtcg cacaagtgga ggaccctttg 60
cttacactat tgttaacatc aatggccaat tgccccaaag gtatcgtgca agaatccgct 120
atgcctctac tac 133
<210> 27
<211> 93
<212> DNA
<213> insect-resistant gene (Bt)
<400> 27
gaccctcaca gttttggaca ttgtgtctct cttcccgaac tatgactcca gaacctaccc 60
tatccgtaca gtgtcccaac ttaccagaga aat 93
<210> 28
<211> 109
<212> DNA
<213> Bacillus amyloliquefaciens
<400> 28
aatcagaagc acaagccctc ggctgggtgg catcaaaagg gaaccttgca gacgtcgctc 60
cggggaaaag catcggcgga gacatcttct caaacaggga aggcaaact 109
<210> 29
<211> 175
<212> DNA
<213> glufosinate resistance gene (Bar)
<400> 29
acaagcacgg tcaacttccg taccgagccg caggaaccgc aggagtggac ggacgacctc 60
gtccgtctgc gggagcgcta tccctggctc gtcgccgagg tggacggcga ggtcgccggc 120
atcgcctacg cgggcccctg gaaggcacgc aacgcctacg actggacggc cgagt 175
<210> 30
<211> 100
<212> DNA
<213> Soybean
<400> 30
ttatgttatg tgggtaagtc acctaagaca ctccacgtac ctacttgttg tctcttaccg 60
cggctttaat aaatcttctg cccttgttcc atatttacta 100
<210> 31
<211> 100
<212> DNA
<213> Agrobacterium
<400> 31
atcaatttat gtattacaca taatatcgca ctcagtcttt catctacggc aatgtaccag 60
ctgatataat cagttattga aatatttctg aatttaaact 100
<210> 32
<211> 100
<212> DNA
<213> cauliflower mosaic virus
<400> 32
aaaagcaggc tgtgttttcg gcaaacatcg ccacccatcg ctagtttttc taaaagtgtt 60
ctaagctagc ctggtaataa tctatacgag cttatatttc 100
<210> 33
<211> 100
<212> DNA
<213> Potato
<400> 33
cctagacttg tccatcttct ggattggcca acttaattaa tgtatgaaat aaaaggatgc 60
acacatagtg acatgctaat cactataatg tgggcatcaa 100
<210> 34
<211> 100
<212> DNA
<213> terminator of phosphoenolpyruvate carboxylase gene (T-PEPC)
<400> 34
ccaacatctc cccgctctac taagagctct agatctgttc tgcacaaagt ggagtagtca 60
gtcatcgatc aggaaccaga caccagactt ttattcatac 100
<210> 35
<211> 124
<212> DNA
<213> Octopus
<400> 35
cggtcaaacc taaaagactg attacataaa tcttattcaa atttcaaaag tgccccaggg 60
gctagtatct acgacacacc gagcggcgaa ctaataacgc tcactgaagg gaactccggt 120
tccc 124
<210> 36
<211> 100
<212> DNA
<213> corn
<400> 36
cttcgcttct tcatttgtcc ccttgcggag tttggcatcc attgatgccg ttacgctgag 60
aacagacaca gcagacgaac caaaagtgag ttcttgtatg 100
<210> 37
<211> 100
<212> DNA
<213> Soybean
<400> 37
aagtatcggg ctatttaact atgacttgag ctccatctat gaataaataa atcagcatat 60
gatgcttttg ttttgtgtac ttcaactgtc tgcttagcta 100
<210> 38
<211> 100
<212> DNA
<213> Bisui brachypodium
<400> 38
tttatagcga ctgacgctgt ggcaggcacg ctatcggagg ttacgacgtg gcgggtcact 60
cgacgcggag ttcacaggtc ctatccttgc atcgctcggc 100
<210> 39
<211> 100
<212> DNA
<213> corn
<400> 39
cctctcttac agcaaattgt ccgctgcccg tcgtccagat acaatgaacg tacctagtag 60
gaactctttt acacgctcgg tcgctcgccg cggatcggag 100
<210> 40
<211> 100
<212> DNA
<213> Octopus
<400> 40
gtcgtttatt tcggcgtgta ggacatggca accgggcctg aatttcgcgg gtattctgtt 60
tctattccaa ctttttcttg atccgcagcc attaacgact 100
<210> 41
<211> 121
<212> DNA
<213> human Ochrobactrum
<400> 41
gtcttcgtgt tgctggaacc gttgagttcg ctggtctcac tgctgctcct aactggaagc 60
gtgctcacgt tctctacact cacgctcgta agttgcttcc agctctcgct cctgccagtt 120
c 121
<210> 42
<211> 100
<212> DNA
<213> herbicide resistance Gene (GAT)
<400> 42
ctgcttcagg atactacagg aagttgggat tcagtgagca aggagaggtg ttcgatactc 60
ctccagttgg acctcacatc ctgatgtata agaggatcac 100
<210> 43
<211> 304
<212> DNA
<213> corn
<400> 43
atcctttgac atctgctccg aagcaaagtc agagcgctgc aatgcaaaac ggaacgagtg 60
ggggcagcag cgcgagcacc gccgcgccgg tgtccggacc caaagctgat catccatcag 120
ctcctgtcac caagagagaa atcgatgcca gtgcggtgaa gccagagccc gcaggtgatg 180
atgctagacc ggtggaaagc ataggcatcg ctgaaccggt ggatgctaag gctgatgcag 240
ctccggctac agatgcggcg gcgagtgctc cttatgacag ggaggataat gaacctggcc 300
cttt 304
<210> 44
<211> 101
<212> DNA
<213> wheat
<400> 44
gtcgcaggaa cagaggtgtt caaggcggcc gaaataggtt gccgcctgcg gcggaatcgc 60
cacccaccgt gaagttcacc gtttcgcaat ggaggaacac c 101
<210> 45
<211> 92
<212> DNA
<213> tomato
<400> 45
agaccacgag aacgatattt gcgaggtgac agttgtgaaa agcccaaggg aggactgcaa 60
agagagtgtg tctggatatg aaaaggcaag aa 92
<210> 46
<211> 67
<212> DNA
<213> sesame
<400> 46
ttaccagagg gctagggacc ttcctcgcag gtgcaacatg cgaccccagc aatgccaatt 60
ccgagtt 67
<210> 47
<211> 81
<212> DNA
<213> Rice
<400> 47
ttgcgcctga acggatatct ttcagtttgt aaccaccgga tgacgcacgg acggctcgga 60
tcatcccgaa aagatcaacc g 81
<210> 48
<211> 91
<212> DNA
<213> alfalfa
<400> 48
gatcagtgaa cttcgcaaag tactcggtta gtagacagtg aatgctcctg tgatctgccc 60
atgcactcat gttgtagtgt tcacgtcgtt g 91
<210> 49
<211> 68
<212> DNA
<213> flax
<400> 49
gctcaaccca gtcaccacct tcccttcaac acgctccctc aacaacttct cctccagatc 60
tcctcgca 68
<210> 50
<211> 88
<212> DNA
<213> peanut
<400> 50
gcgcagagaa agcagaggcc gggaagagga gcaacagagg cacaatccct actactttca 60
ctcccagagc attaggtcga gacatgag 88
<210> 51
<211> 118
<212> DNA
<213> Soybean
<400> 51
gccctctact ccacccccat ccacatttgg gacaaagaaa ccggtagcgt tgccagcttc 60
gccgcttcct tcaacttcac cttctatgcc cctgacacaa aaaggcttgc agatgggc 118
<210> 52
<211> 76
<212> DNA
<213> Cotton
<400> 52
attgtgatgg gacttgagga agaattcgga atcacggtgg aagaggacaa tgcacaatcc 60
atcacaactg ttcaag 76
<210> 53
<211> 74
<212> DNA
<213> pawpaw
<400> 53
ccatgcggat cctcccattt cccttcatcc attcccactc ttgagagtta gctagtgtta 60
caatggctac gatg 74
<210> 54
<211> 118
<212> DNA
<213> sugar beet
<400> 54
gacctccata ttactgaaag gaagccaaaa gggatcaatt aagtgctcta cgaagtttaa 60
agtatgtgcc gctctcaaga ctgaacatgg cactgtgaac aggatggagc aattactc 118
<210> 55
<211> 101
<212> DNA
<213> oil seed rape
<400> 55
ggccagggtt tccgtgatat gcaccagaaa gtggagcaca taaggactgg ggacaccatc 60
gctacacatc ccggtgtagc ccaatggttc tacaacgacg g 101
<210> 56
<211> 21
<212> DNA
<213> Artificial sequence
<400> 56
gtcgtttatt tcggcgtgta g 21
<210> 57
<211> 19
<212> DNA
<213> Artificial sequence
<400> 57
taatggctgc ggatcaaga 19
<210> 58
<211> 19
<212> DNA
<213> Artificial sequence
<400> 58
tgcccgtcgt ccagataca 19
<210> 59
<211> 21
<212> DNA
<213> Artificial sequence
<400> 59
ccgagcgtgt aaaagagttc c 21
<210> 60
<211> 18
<212> DNA
<213> Artificial sequence
<400> 60
gctgtggcag gcacgcta 18
<210> 61
<211> 23
<212> DNA
<213> Artificial sequence
<400> 61
gcaaggatag gacctgtgaa ctc 23
<210> 62
<211> 25
<212> DNA
<213> Artificial sequence
<400> 62
aagtatcggg ctatttaact atgac 25
<210> 63
<211> 24
<212> DNA
<213> Artificial sequence
<400> 63
gctaagcaga cagttgaagt acac 24
<210> 64
<211> 19
<212> DNA
<213> Artificial sequence
<400> 64
cttcatttgt ccccttgcg 19
<210> 65
<211> 21
<212> DNA
<213> Artificial sequence
<400> 65
tcacttttgg ttcgtctgct g 21
<210> 66
<211> 19
<212> DNA
<213> Artificial sequence
<400> 66
atttcaaaag tgccccagg 19
<210> 67
<211> 23
<212> DNA
<213> Artificial sequence
<400> 67
cttcagtgag cgttattagt tcg 23
<210> 68
<211> 24
<212> DNA
<213> Artificial sequence
<400> 68
tagacttgtc catcttctgg attg 24
<210> 69
<211> 24
<212> DNA
<213> Artificial sequence
<400> 69
tgcccacatt atagtgatta gcat 24
<210> 70
<211> 25
<212> DNA
<213> Artificial sequence
<400> 70
acataatatc gcactcagtc tttca 25
<210> 71
<211> 20
<212> DNA
<213> Artificial sequence
<400> 71
tcagctggta cattgccgta 20
<210> 72
<211> 18
<212> DNA
<213> Artificial sequence
<400> 72
caaacatcgc cacccatc 18
<210> 73
<211> 26
<212> DNA
<213> Artificial sequence
<400> 73
ttattaccag gctagcttag aacact 26

Claims (5)

1. A nucleic acid molecule comprising the nucleic acid sequence of the following genes:
(1) Transgenic breeding exogenous genes;
(2) A crop internal standard gene;
wherein the content of the first and second substances,
the transgenic breeding exogenous gene comprises the following genes: T-G7 terminator, T-E9 terminator, T-CaMV35S terminator, T-NOS terminator, PVYep gene, P-SSuAra promoter, P-NOS promoter, PMI gene, PLRVrep gene, P-ubitin promoter, P-TA29 promoter, P-RACT promoter, NPTII gene, P-CaMV35S promoter, P-FMV35S promoter, PAT gene, HPT gene, GUS gene, EPSPS gene, cry3A gene, cry1Ac gene, cry1Ab gene, cry1A.105 gene, bt gene, barnase gene, bar gene, T-VSP terminator, T-Tr7 terminator, T-TML terminator, T-pinII terminator, T-PEPC terminator, T-OCS3 terminator, T-GLB1 terminator, UTRT-7 sP promoter, P-MTL promoter, GLOCS 1 promoter, GLOCS 4 GAX gene and GAOCS promoter;
the standard gene in the crops is derived from corn, rice, cotton, rape, wheat, soybean, alfalfa, pawpaw, tomato, beet, sesame, flax and peanut;
the sequence of the nucleic acid molecule is shown as SEQ ID NO. 1.
2. A plasmid comprising the nucleic acid molecule of claim 1.
3. The plasmid of claim 2, wherein the nucleic acid molecule of claim 1 is inserted into an E.coli vector.
4. Use of the nucleic acid molecule of claim 1 or the plasmid of any one of claims 2 to 3 for the qualitative screening and detection of transgenic crops and/or foreign genes.
5. The use according to claim 4, in particular as a positive control or a positive standard for the detection of transgenic crops and/or foreign genes.
CN202011604483.8A 2020-12-29 2020-12-29 Plasmid standard molecule capable of being used for detecting multiple crops and multiple exogenous genes Active CN112646829B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011604483.8A CN112646829B (en) 2020-12-29 2020-12-29 Plasmid standard molecule capable of being used for detecting multiple crops and multiple exogenous genes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011604483.8A CN112646829B (en) 2020-12-29 2020-12-29 Plasmid standard molecule capable of being used for detecting multiple crops and multiple exogenous genes

Publications (2)

Publication Number Publication Date
CN112646829A CN112646829A (en) 2021-04-13
CN112646829B true CN112646829B (en) 2023-03-28

Family

ID=75364019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011604483.8A Active CN112646829B (en) 2020-12-29 2020-12-29 Plasmid standard molecule capable of being used for detecting multiple crops and multiple exogenous genes

Country Status (1)

Country Link
CN (1) CN112646829B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101063171A (en) * 2007-05-24 2007-10-31 上海交通大学 Standard plasmid molecule for detection of genetic improved soybean strain GTS40-3-2 and constructing method thereof
CN104651511B (en) * 2015-02-14 2016-07-27 中国农业科学院油料作物研究所 A kind of positive plasmid molecule pBI121-Screening and application thereof
CN106480216A (en) * 2016-12-07 2017-03-08 江苏省农业科学院 A kind of standard plasmid for detecting transgenic regulation element and its construction method and application
CN110408716A (en) * 2019-06-12 2019-11-05 中国检验检疫科学研究院 Containing there are many DNA standard sample of internal standard gene specific segment and its applications
CN110540999B (en) * 2019-08-21 2021-08-20 中国农业科学院油料作物研究所 Transgenic rape and positive plasmid molecule pYCSC-1905 screened by product thereof and application thereof

Also Published As

Publication number Publication date
CN112646829A (en) 2021-04-13

Similar Documents

Publication Publication Date Title
CA3116898C (en) Use of a maize untranslated region for transgene expression in plants
CN106957355A (en) It is a kind of to the resistance to low light of plant and low temperature resistant related PPR albumen and its encoding gene and application
CN103820445A (en) Identification and application of plant anther specific expression promoter
CN110563827B (en) Protein related to corn kernel yield and coding gene thereof
WO2009143155A2 (en) Delayed fruit deterioration allele in plants and methods of detection
CN103215346A (en) Recombinant standard plasmid and kit used in transgenic rice screening
CN112646829B (en) Plasmid standard molecule capable of being used for detecting multiple crops and multiple exogenous genes
AU2002212678B8 (en) Methods of quantitative detection of genetic recombinants and standard molecules for the methods.
Maas et al. Expression of intron modified NPT II genes in monocotyledonous and dicotyledonous plant cells
CN102559854B (en) Standard plasmid molecular used for detecting transgenic soybean, corn and cotton and construction of the standard plasmid molecular
CN105400814A (en) Method for cultivating insect-resistant transgenic maize
US20020157135A1 (en) Polynucleotide and method for selectively expressing a protein in a target cell or tissue of a plant
KR100723069B1 (en) Qualitative and quantitative detection methods using specific primers probes and standard plasmid for GM corns
CN108588080B (en) Common wild rice green tissue specific expression gene promoter and application thereof
CN107893077B (en) Corn ZmLTP3 gene promoter and application thereof
CN102586304B (en) Standard plasmid containing various transposable elements for insect-resistant rice and cotton and application of standard plasmid
US20120240286A1 (en) Nucleic acid promoter sequences that control gene expression in plants
CN108588079B (en) Common wild rice root specific promoter OrRSGp and application thereof
CN107338248B (en) Seed specific expression system and application thereof
Kumar et al. Isolation and In-Silico Analysis of A Novel Cucumis sativus Polyubiquitin Gene Promoter.
CN116731996A (en) Application of corn Ms33 protein in regulation and control of plant cold tolerance
US9441232B2 (en) Pericarp tissue preferred regulatory region and method of using same
CA2902741C (en) System and method for analysis of plant material for set of unique exogenous genetic elements
CN115896169A (en) Multifunctional plant binary expression vector pRC10 and construction method and application thereof
CN116096903A (en) Plant regulating element and method of use thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant