CN112636165A - 一种多路同步输出激光器光源的温控模块 - Google Patents

一种多路同步输出激光器光源的温控模块 Download PDF

Info

Publication number
CN112636165A
CN112636165A CN202011586205.4A CN202011586205A CN112636165A CN 112636165 A CN112636165 A CN 112636165A CN 202011586205 A CN202011586205 A CN 202011586205A CN 112636165 A CN112636165 A CN 112636165A
Authority
CN
China
Prior art keywords
circuit
chip
temperature control
signal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011586205.4A
Other languages
English (en)
Other versions
CN112636165B (zh
Inventor
郭邦红
胡敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong National Quantum Technology Co ltd
Original Assignee
Guangdong National Quantum Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong National Quantum Technology Co ltd filed Critical Guangdong National Quantum Technology Co ltd
Priority to CN202011586205.4A priority Critical patent/CN112636165B/zh
Publication of CN112636165A publication Critical patent/CN112636165A/zh
Application granted granted Critical
Publication of CN112636165B publication Critical patent/CN112636165B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种多路同步输出激光器光源的温控模块,包括多路激光器光源产生电路,温控电路和处理器,所述多路激光器光源产生电路包括触发信号同步电路、驱动电路和DFB激光器调制电路;任意一路触发信号同步电路,驱动电路和DFB激光器调制电路均与所述处理器连接,所述温控电路采集DFB激光器调制电路腔内温度反馈至处理器,所述处理器根据控制TEC制冷片对温度进行调节。本发明通过温控电路对DFB激光器调制电路中的DFB激光器调制腔内的温度进行调节,调节反馈灵敏,实现了快速高精度温度控制,保证了DFB激光器调制腔正常运行温度,保证了系统的稳定性提高了整体性能。

Description

一种多路同步输出激光器光源的温控模块
技术领域
本发明涉及激光器领域,具体涉及一种多路同步输出激光器光源的温控模块。
背景技术
目前QKD(Quantum Key Distribution,量子密钥分发)通信系统主要基于BB84协议,该协议的编码要求QKD系统的发送端需制备两组非正交的四种偏振态单光子。
现有的工程方案中通常有两种方法实现四种偏振态单光子制备。
一种方法是:采用一个激光器LD作为光源,通过分束器BS一分为四,在分光后的四个光路上分别依次连接强度调制器IM、偏振分束器PBS以及电控偏振控制器EPC实现每个分支的偏振态单光子制备,最后通过BS合束输出至光纤中。
另一种方法是:采用四个激光器LD作为光源,在四个光路上分别依次连接偏振分光器PBS以及偏振态控制器EPC实现每个光路的偏振态单光子制备,最后通过BS合束输出至光纤中。
由于强度调制器IM的成本非常高,方法一只能在科研系统中采用,而在商用系统当中,更多的是采用方法二。但方法二由于采用了四个激光器LD作为系统光源,如果不能保证四个激光器输出时刻的相位一致,系统安全性将存在隐患。
在现有的四种偏振态单光子制备当中,要保证系统的正常工作,DFB激光器模块的腔内温度需要保持在25度左右,但是随着工作时间的加长,腔内温度会随之上升,从而影响系统的性能。
因此,需要对现有技术进行改进提出一种可以快速并精确调节DFB激光器模块的腔内温度的温度调节方法。
发明内容
为了解决上述技术问题,提出了一种可以快速并精确调节DFB激光器模块的腔内温度的多路同步输出激光器光源的温控模块。
为实现上述目的,本发明采取的技术方案如下:包括多路激光器光源产生电路,温控电路和处理器,其中:
所述多路激光器光源产生电路包括触发信号同步电路、驱动电路和DFB激光器调制电路;
任意一路触发信号同步电路与所述处理器连接,所述处理器控制触发信号同步电路对触发信号进行相应延时调节;
任意一路驱动电路与所述处理器连接,所述处理器控制驱动电路对触发信号进行超窄脉宽调制以及放大处理;
任意一路DFB激光器调制电路与温控电路连接,所述温控电路又与所述处理器连接,所述温控电路采集DFB(Distributed Feedback)激光器调制电路腔内温度反馈至处理器,所述处理器根据接收到的温度数据结合PID(Proportion Integral Differential)算法计算出调节的数值,并将调节数值发送给DFB激光器调制电路的TEC(Thermo ElectricCooler)制冷片对温度进行调节;
所述温控电路包括温度采集电路、温控ADC电路、温控DAC电路、放大电路以及TEC驱动电路,所述温度采集电路用于采集DFB激光器模块腔内的温度并输入温控ADC电路进行数模转换后发送给处理器;
所述处理器通过SPI总线读取温控ADC电路的实时温度采集数据然后根据PID算法计算出温度调节数据,通过I2C总线将温度调节数据输出至温控DAC电路进行模数转换后发送给放大电路进行信号放大然后输入到TEC驱动电路,所述TEC驱动电路根据接收的数据产生TEC制冷片的驱动电压完成温度调节。
所述触发信号同步电路包括触发信号延时芯片,触发信号延时芯片的调节范围是:实现10ns范围内步进10ps的信号延时调节。
优选地,所述触发信号延时芯片型号为MC100EP196BFAR2G。
优选地,所述驱动电路包括窄脉冲产生电路和信号调制及放大电路,所述窄脉冲产生电路用于将触发信号调节为超窄脉宽信号并将对其进行增强驱动后发送给信号调制及放大电路;
所述信号调制及放大电路对接收到的信号进行放大后输送至DFB激光器调制电路。
优选地,所述窄脉冲产生电路包括一分为二电平转换芯片、窄脉冲延时芯片、电平驱动芯片;
一路触发信号经过一分为二电平转换芯片后将信号一分为二输出两组差分信号,然后输入到窄脉冲延时芯片,所述处理器通过SPI总线调节窄脉冲延时芯片内部信号延时值,使得两组差分信号之间相差100ps,然后输入到电平驱动芯片将两组差分信号合成一路100ps的超窄脉宽信号并增强驱动后输出至DFB激光器调制电路。
优选地,所述信号调制及放大电路包括信号调制DAC芯片和信号放大芯片,所述处理器FPGA芯片通过I2C总线调节信号调制DAC芯片的输出,通过信号放大芯片进行信号放大后输出至DFB激光器调制电路。
优选地,所述一分为二电平转换芯片型号为NB7L11M、窄脉冲延时芯片型号为NB6L295MNTXG、电平驱动芯片型号为MC100LVEP05;
所述信号调制DAC芯片型号为AD566555RBRUZ-2,信号放大芯片型号为OPA4188AIPW。
优选地,所述温控电路包括温度采集电路、温控ADC电路、温控DAC电路、放大电路以及TEC驱动电路,所述温度采集电路用于采集DFB激光器模块腔内的温度并输入温控ADC电路进行数模转换后发送给处理器;
优选地,所述处理器通过SPI总线读取温控ADC电路的实时温度采集数据然后根据PID算法计算出温度调节数据,通过I2C总线将温度调节数据输出至温控DAC电路进行模数转换后发送给放大电路进行信号放大然后输入到TEC驱动电路,所述TEC驱动电路根据接收的数据产生TEC制冷片的驱动电压完成温度调节。
优选地,所述温度采集电路包括运算放大器,所述运算放大器将DFB激光器模块腔内的热敏电阻输出的电压信号进行直流偏置与放大后输入到温控ADC电路;
所述运算放大器的型号为OPA4350UA。
优选地,所述温控ADC电路包括ADC芯片ADS8370IB;所述温控DAC电路包括DAC芯片AD566555RBRUZ-2;所述TEC驱动电路包括TEC驱动芯片MAX8520ETP。
本发明有益的技术效果:本发明通过温控电路对DFB激光器调制电路中的DFB激光器调制腔内的温度进行调节,调节反馈灵敏,实现了快速高精度温度控制,保证了DFB激光器调制腔正常运行温度,保证了系统的稳定性提高了整体性能。
附图说明
图1为本发明的整体结构框图;
图2为本发明中触发信号同步电路的整体结构框图;
图3为本发明中驱动电路的整体结构框图;
图4为本发明中温控电路的整体结构框图;
图5为本发明中温控电路部分电路原理图一;
图6为本发明中温控电路部分电路原理图二。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明,但本发明要求保护的范围并不局限于下述具体实施例。
如图1-6所示,一种多路同步输出激光器光源的温控模块,包括多路激光器光源产生电路,温控电路和处理器,其中:
多路激光器光源产生电路并行设置,每一路激光器光源产生电路均与处理器以及温控电路连接;所述温控电路又与处理器连接,且通过处理器控制每一路激光器光源产生电路的温度。
具体地,所述每一路激光器光源产生电路都包括触发信号同步电路、驱动电路和DFB激光器调制电路;
任意一路触发信号同步电路与所述处理器连接,所述处理器控制触发信号同步电路对触发信号进行相应延时调节;
任意一路驱动电路与所述处理器连接,所述处理器控制驱动电路对触发信号进行超窄脉宽调制以及放大处理;
任意一路DFB激光器调制电路与温控电路连接,所述温控电路又与所述处理器连接,所述温控电路采集DFB激光器调制电路腔内温度反馈至处理器,所述处理器根据接收到的温度数据结合PID算法计算出调节的数值,并将调节数值发送给DFB激光器调制电路的TEC制冷片对温度进行调节;
具体地,所述触发信号同步电路包括触发信号延时芯片,触发信号延时芯片的调节范围是:实现10ns范围内步进10ps的信号延时调节,本实施例中实现2.2ns至12.4ns范围内步进10ps的信号延时调节。
所述处理器采用FPGA处理器,其芯片型号采用EP4CGX150系列或其它同等指标型号芯片,本实施例中采用EP4CGX150DF27I7型号芯片,处理器通过10位总线控制触发信号延时芯片从2.2ns至12.4ns范围内步进10ps的信号延时调节。
处理器FPGA通过10位总线SI-Delay与触发信号延时芯片(MC100EP196BFAR2G)的输入输出端口连接,激光器外部触发信号从触发信号延时芯片的输入引脚输入,经过延时处理后从输出引脚延时输出。
具体地参见图1,处理器控制触发信号同步电路的具体过程如下:以第一路激光器外部信号1#和以第二路激光器外部信号2#为例,两路激光器同时发出触发信号,两路信号依次经过触发信号同步电路、驱动电路和DFB激光器调制电路后输出处理后的激光信号,此时需要借用示波器连接2路电路,将处理后的机激光信号输入到示波器中,通过示波器的波形图得出两路光路的时间差,示波器也可以直接接入到处理器上,将获取的时间差T发送到处理器中。因为多路激光器几乎是同时发出触发信号的,因此通过两条光路的时间间隔在2.2ns至12.4ns之间。
若第一路信号1#的信号比第二路信号2#的信号早,则处理器控制第一路激光器光源产生电路的触发信号同步电路将地一路的激光触发信号延迟时间T,延时以后,两路激光器光源产生电路输出的信号可以同步输出。
所述驱动电路包括窄脉冲产生电路和信号调制及放大电路,所述窄脉冲产生电路用于将触发信号调节为超窄脉宽信号并对其进行增强驱动后发送给信号调制及放大电路;
所述信号调制及放大电路对接收到的信号进行放大后输送至DFB激光器调制电路。
优选地,所述窄脉冲产生电路包括一分为二电平转换芯片、窄脉冲延时芯片、电平驱动芯片,其中电平驱动芯片为LVPECL电平驱动芯片;
一路触发信号经过一分为二电平转换芯片后将信号一分为二输出两组差分信号,然后输入到窄脉冲延时芯片,所述处理器通过SPI总线调节窄脉冲延时芯片内部信号延时值,使得两组差分信号之间相差100ps,然后输入到电平驱动芯片将两组差分信号合成一路100ps的超窄脉宽信号并增强驱动后输出至DFB激光器调制电路。
所述信号调制及放大电路包括信号调制DAC芯片和信号放大芯片,所述处理器FPGA芯片通过I2C总线调节信号调制DAC芯片的输出,通过信号放大芯片进行信号放大后输出至DFB激光器调制电路。
具体地,所述一分为二电平转换芯片型号可选用NB7L11M系列或其它同等指标型号,具体采用NB7L11M芯片、窄脉冲延时芯片可选用NB6L295系列或其它同等指标型号,本实施例采用NB6L295MNTXG芯片、电平驱动芯片可选用MC100LVEP05系列或其它同等指标型号,本实施例采用型号为MC100LVEP05;所述信号调制DAC芯片可选用AD566555系列或其它同等指标型号,本实施例采用AD566555RBRUZ-2,信号放大芯片可选用OPA4188系列或其它同等指标型号,本实施例中采用OPA4188AIPW。
所述分为二电平转换芯片、窄脉冲延时芯片、LVPECL电平驱动芯片和DFB激光器调制电路依次顺序连接;所述调制DAC芯片和信号放大芯片依次连接,所述信号放大芯片又与DFB激光器调制电路电信号连接;FPCA处理器通过电信号分别与窄脉冲延时芯片和调制DAC芯片连接,对窄脉冲延时芯片和调制DAC芯片进行驱动控制。
具体地,整个驱动电路的工作原理为:一路触发信号经芯片(NB7L11M)输出两组差分信号,然后输入到芯片(NB6L295MNTXG);处理器FPGA芯片EP4CGX150DF27I7通过SPI总线调节芯片(NB6L295MNTXG)内部信号延时值,使得两组差分信号之间相差100ps,然后输入到芯片;(MC100LVEP05)的作用是将两组差分信号合成一路差分信号并增强驱动后输出,由此产生100ps的超窄脉宽信号;该信号输出至DFB激光器调制电路。
处理器FPGA芯片EP4CGX150DF27I7通过I2C总线调节调制DAC芯片(AD566555RBRUZ-2)的输出,通过信号放大芯片(OPA4188AIPW)进行信号放大后输出至DFB激光器调制电路。
综上所述,通过窄脉冲产生电路与信号调制及放大电路联合产生驱动信号对DFB激光器完成驱动后输出100ps的超窄脉宽激光光源。
所述温控电路包括温度采集电路、温控ADC电路、温控DAC电路、放大电路以及TEC驱动电路,所述温度采集电路用于采集DFB激光器模块腔内的温度并输入温控ADC电路进行数模转换后发送给处理器;
优选地,所述处理器通过SPI总线读取温控ADC电路的实时温度采集数据然后根据PID算法计算出温度调节数据,通过I2C总线将温度调节数据输出至温控DAC电路进行模数转换后发送给放大电路进行信号放大然后输入到TEC驱动电路,所述TEC驱动电路根据接收的数据产生TEC制冷片的驱动电压完成温度调节。
优选地,所述温度采集电路包括运算放大器型号为OPA4350UA实现,运算放大器将DFB激光器模块腔内的热敏电阻TH输出的电压信号进行直流偏置与放大后输入到温控ADC电路。所述温控ADC电路包括ADC芯片(ADC芯片可选用ADS8370系列或其它同等指标型号,本实施例采用型号为ADS8370IB);所述温控DAC电路包括DAC芯片(DAC芯片可选用AD566555系列或其它同等指标型号,本实施例型号为AD566555RBRUZ-2);所述TEC驱动电路包括TEC驱动芯片(TEC驱动芯片可选用MAX8520系列或其它同等指标型号,本实施例型号为MAX8520ETP)。
所述温度采集电路与DFB激光器模块内的TH热敏电阻连接,然后温控ADC电路与FPGA处理器连接,所述FPGA处理器又与温控DAC电路连接;所述温控DAC电路、放大电路和TEC驱动电路依次顺序连接,所述TEC驱动电路又与DFB激光器模块中的TEC制冷片连接。
温控电路的作用是通过采集DFB激光器腔内温度反馈至处理器,由处理器根据PID算法(在过程控制中,按偏差的比例(P)、积分(I)和微分(D)进行控制的PID控制器(亦称PID调节器)是应用最为广泛的一种自动控制器)对DFB激光器内部的TEC制冷片进行温度控制,实现DFB激光器腔内温度快速调节,保证DFB激光器稳定的25℃工作温度要求。
根据上述说明书的揭示和教导,本发明所属领域的技术人员还可以对上述实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对发明构成任何限制。

Claims (10)

1.一种多路同步输出激光器光源的温控模块,其特征在于,包括多路激光器光源产生电路,温控电路和处理器,其中:
所述多路激光器光源产生电路包括触发信号同步电路、驱动电路和DFB激光器调制电路;
任意一路触发信号同步电路与所述处理器连接,所述处理器控制触发信号同步电路对触发信号进行相应延时调节;
任意一路驱动电路与所述处理器连接,所述处理器控制驱动电路对触发信号进行超窄脉宽调制以及放大处理;
任意一路DFB激光器调制电路与温控电路连接,所述温控电路又与所述处理器连接,所述温控电路采集DFB激光器调制电路腔内温度反馈至处理器,所述处理器根据接收到的温度数据结合PID算法计算出调节的数值,并将调节数值发送给DFB激光器调制电路的TEC制冷片对温度进行调节;
所述温控电路包括温度采集电路、温控ADC电路、温控DAC电路、放大电路以及TEC驱动电路,所述温度采集电路用于采集DFB激光器模块腔内的温度并输入温控ADC电路进行数模转换后发送给处理器;
所述处理器通过SPI总线读取温控ADC电路的实时温度采集数据然后根据PID算法计算出温度调节数据,通过I2C总线将温度调节数据输出至温控DAC电路进行模数转换后发送给放大电路进行信号放大然后输入到TEC驱动电路,所述TEC驱动电路根据接收的数据产生TEC制冷片的驱动电压完成温度调节。
2.如权利要求1所述的一种多路同步输出激光器光源的温控模块,其特征在于,所述触发信号同步电路包括触发信号延时芯片,触发信号延时芯片的调节范围是:实现10ns范围内步进10ps的信号延时调节;
所述触发信号延时芯片采用MC100EP196系列芯片。
3.如权利要求1所述的一种多路同步输出激光器光源的温控模块,其特征在于,所述驱动电路包括窄脉冲产生电路和信号调制及放大电路,所述窄脉冲产生电路用于将触发信号调节为超窄脉宽信号并将对其进行增强驱动后发送给信号调制及放大电路;
所述信号调制及放大电路对接收到的信号进行放大后输送至DFB激光器调制电路。
4.如权利要求3所述的一种多路同步输出激光器光源的温控模块,其特征在于,所述窄脉冲产生电路包括一分为二电平转换芯片、窄脉冲延时芯片、电平驱动芯片;
一路触发信号经过一分为二电平转换芯片后将信号一分为二输出两组差分信号,然后输入到窄脉冲延时芯片,所述处理器通过SPI总线调节窄脉冲延时芯片内部信号延时值,使得两组差分信号之间相差100ps,然后输入到电平驱动芯片将两组差分信号合成一路100ps的超窄脉宽信号并增强驱动后输出至DFB激光器调制电路。
5.如权利要求4所述的一种多路同步输出激光器光源的温控模块,其特征在于,所述信号调制及放大电路包括信号调制DAC芯片和信号放大芯片,所述处理器FPGA芯片通过I2C总线调节信号调制DAC芯片的输出,通过信号放大芯片进行信号放大后输出至DFB激光器调制电路。
6.如权利要求5所述的一种多路同步输出激光器光源的温控模块,其特征在于,所述一分为二电平转换芯片采用NB7L11M系列芯片、窄脉冲延时芯片采用NB6L295系列芯片、电平驱动芯片采用MC100LVEP05系列芯片。
7.如权利要求5所述的一种多路同步输出激光器光源的温控模块,其特征在于,所述信号调制DAC芯片采用AD56655系列芯片,信号放大芯片采用OPA4188系列芯片。
8.如权利要求1所述的一种多路同步输出激光器光源的温控模块,其特征在于,所述温度采集电路包括运算放大器,所述运算放大器将DFB激光器模块腔内的热敏电阻输出的电压信号进行直流偏置与放大后输入到温控ADC电路。
9.如权利要求8所述的一种多路同步输出激光器光源的温控模块,其特征在于,所述运算放大器的芯片采用OPA4350系列芯片。
10.如权利要求8所述的一种多路同步输出激光器光源的温控模块,其特征在于,所述温控ADC电路包括ADC芯片,ADC芯片采用ADS8370系列芯片;所述温控DAC电路包括DAC芯片,DAC芯片采用AD566555系列芯片;所述TEC驱动电路包括TEC驱动芯片,TEC驱动芯片型号采用MAX8520系列芯片。
CN202011586205.4A 2020-12-29 2020-12-29 一种多路同步输出激光器光源的温控模块 Active CN112636165B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011586205.4A CN112636165B (zh) 2020-12-29 2020-12-29 一种多路同步输出激光器光源的温控模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011586205.4A CN112636165B (zh) 2020-12-29 2020-12-29 一种多路同步输出激光器光源的温控模块

Publications (2)

Publication Number Publication Date
CN112636165A true CN112636165A (zh) 2021-04-09
CN112636165B CN112636165B (zh) 2022-12-09

Family

ID=75285867

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011586205.4A Active CN112636165B (zh) 2020-12-29 2020-12-29 一种多路同步输出激光器光源的温控模块

Country Status (1)

Country Link
CN (1) CN112636165B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070114361A1 (en) * 2002-11-13 2007-05-24 David Kunst Automatic control of laser diode current and optical power output
CN203554404U (zh) * 2013-11-20 2014-04-16 中国工程物理研究院流体物理研究所 一种高压光导开关同步触发器
CN104134923A (zh) * 2014-07-24 2014-11-05 安徽问天量子科技股份有限公司 产生高速皮秒窄脉冲激光的装置及方法
CN106027002A (zh) * 2016-05-17 2016-10-12 电子科技大学 一种纳秒级微波窄脉冲调制器
CN108075886A (zh) * 2016-11-15 2018-05-25 上海国盾量子信息技术有限公司 一种用于量子密钥分发系统的自动时序调整方法和装置
CN110940416A (zh) * 2019-11-18 2020-03-31 武汉光谷信息光电子创新中心有限公司 一种多通道并行的光电探测电路结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070114361A1 (en) * 2002-11-13 2007-05-24 David Kunst Automatic control of laser diode current and optical power output
CN203554404U (zh) * 2013-11-20 2014-04-16 中国工程物理研究院流体物理研究所 一种高压光导开关同步触发器
CN104134923A (zh) * 2014-07-24 2014-11-05 安徽问天量子科技股份有限公司 产生高速皮秒窄脉冲激光的装置及方法
CN106027002A (zh) * 2016-05-17 2016-10-12 电子科技大学 一种纳秒级微波窄脉冲调制器
CN108075886A (zh) * 2016-11-15 2018-05-25 上海国盾量子信息技术有限公司 一种用于量子密钥分发系统的自动时序调整方法和装置
CN110940416A (zh) * 2019-11-18 2020-03-31 武汉光谷信息光电子创新中心有限公司 一种多通道并行的光电探测电路结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王超: "《计算机控制技术》", 31 May 2020, 机械工业出版社 *

Also Published As

Publication number Publication date
CN112636165B (zh) 2022-12-09

Similar Documents

Publication Publication Date Title
CN214411759U (zh) 一种多路同步输出激光器光源驱动模块
CN112701562B (zh) 一种多路同步输出激光器光源模块
CN108110612B (zh) 一种基于马赫-增德尔干涉仪的无调制稳频方法和装置
CN103346470B (zh) 一种脉冲泵浦的低重复频率光纤激光相干合成系统
US20130308663A1 (en) Apparatus and method to enable precision and fast laser frequency tuning
US9653879B2 (en) Optical module
US6975448B2 (en) Automatic gain controller of optical fiber amplifier
CN107634804B (zh) 量子通信中的高消光比脉冲激光控制系统及其控制方法
WO2008067746A1 (fr) Procédé et dispositif pour stabiliser la longueur d'onde d'un signal optique multicanal
CN102593715A (zh) 半导体激光器稳频装置及其调整方法
US9882336B2 (en) Optical module
CN112636165B (zh) 一种多路同步输出激光器光源的温控模块
CN106684703B (zh) Twdm onu波长控制方法及其系统与关断深度控制电路
CN214100228U (zh) 一种多路同步输出激光器的温控模块
CN112636167B (zh) 一种多路同步输出激光器光源的驱动模块
CN109617616B (zh) 一种可调谐突发光模块及其实现方法
CN214280423U (zh) 一种多路同步输出激光器光源模块
US20030067947A1 (en) Laser control circuit for maintaining constant power and extinction ratio
CN106712947A (zh) 一种基于量子密钥分配系统的驱动电路
CN103780307B (zh) 一种产生光采样脉冲序列的系统及方法
CN110220509B (zh) 用于高精度光纤陀螺的混合集成窄线宽激光器系统
CN102364770A (zh) 基于并联标准具的激光波长精密控制方法
CN112510477A (zh) 一种提升光纤激光脉冲幅值稳定性的装置及稳定方法
CN111509541B (zh) 一种时延平衡链路及锁相方法
CN219610988U (zh) 一种快速调节脉冲输出功率的光纤激光器装置及激光雷达

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant