CN112628098A - 一种具有下沉式空心内磁极结构的霍尔加速器 - Google Patents

一种具有下沉式空心内磁极结构的霍尔加速器 Download PDF

Info

Publication number
CN112628098A
CN112628098A CN202011407572.3A CN202011407572A CN112628098A CN 112628098 A CN112628098 A CN 112628098A CN 202011407572 A CN202011407572 A CN 202011407572A CN 112628098 A CN112628098 A CN 112628098A
Authority
CN
China
Prior art keywords
magnetic pole
inner magnetic
air inlet
outlet water
shielding cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011407572.3A
Other languages
English (en)
Other versions
CN112628098B (zh
Inventor
唐德礼
张帆
赵杰
李平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwestern Institute of Physics
Original Assignee
Southwestern Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwestern Institute of Physics filed Critical Southwestern Institute of Physics
Priority to CN202011407572.3A priority Critical patent/CN112628098B/zh
Publication of CN112628098A publication Critical patent/CN112628098A/zh
Application granted granted Critical
Publication of CN112628098B publication Critical patent/CN112628098B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0081Electromagnetic plasma thrusters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)

Abstract

本发明属于霍尔推力器技术领域,具体涉及一种具有下沉式空心内磁极结构的霍尔加速器,包括:阳极环、若干个进出口水嘴、内磁极、外磁极、进气板、进气挡板、支撑法兰、内屏蔽罩、外屏蔽罩、永磁体;本发明采用下沉式内磁极结构设计,使装置具有完全开放的引出通道,有利于装置结构进行尺寸上的缩放;调节永磁体放置数量,通过调节放电区域磁场可以大幅度提升阳极电压工作范围。

Description

一种具有下沉式空心内磁极结构的霍尔加速器
技术领域
本发明属于霍尔推力器技术领域,具体涉及一种具有下沉式空心内磁极结构的霍尔加速器。
背景技术
推进技术开始受到人们越来越多的关注。与传统化学推进系统相比,这种利用电能处理和加速工质,通过使电离的工质形成高速射流,从而产生推力的技术,可以很大程度地节省工质,大幅度提升推进效率。在各类不同的电推力器当中,应用范围较广的是霍尔推力器,应用于航天领域的霍尔推力器主要有两种类型:延长加速区的等离子体加速器(PAEZA)和带有阳极层的加速器(AAL)。其中霍尔加速器加速通道较短并且加速通道内壁采用的是具有导电性质的金属,具有很少的二次电子发射,这也有利于延长推力器工作寿命。该类型推力器利用电磁场综合作用,使工作气体在较低工作气压(0.01~1Pa)和放电电压(~300V)的放电条件下能够被有效电离,产生等离子体。其中,磁场起到的主要作用是约束电子,使电子在内外磁极之间振荡,使电子在其振荡区域内的密度上升,增加了电子与工作气体中性粒子发生电离碰撞的几率,从而能够有效地电离工作气体;电场主要起到的作用是为带电粒子赋能,使电子以较高能量与中性粒子碰撞,增加电离概率,另一方面,电场还起到了对离子进行加速的作用,使离子在气体放电过程中能够得到有效加速,从而以较高的动能被引出装置形成推力。
常见的同类霍尔加速器具有以下缺陷:1)常规霍尔加速器具有环形引出截面,由于与外磁极平齐的中心磁极和中心工作气体输送结构的存在,所以具有该结构特点的装置并不适宜于尺寸上较大比例的缩放;2)使用更高阳极电压将导致放电不稳定,其原因在于放电区域内电子密度不足以维持中性粒子的有效电离,而阴极材料是二次电子发射系数很低的金属,产生的电子数量也不能维持电子密度;3)阴极表面发生离子溅射,造成阴极表面的刻蚀现象,随着运行时间增加,阴极刻蚀程度不断加深,最终改变了放电区域磁场分布,导致装置不能正常放电。
因此,针对上述问题,需要设计一种具有下沉式空心内磁极结构的霍尔加速器装置,用于优化霍尔加速器结构和磁路设计,以便能大幅度提升阳极电压工作范围,并且降低阴极离子溅射造成阴极表面刻蚀的影响。
发明内容
本发明针对现有技术的不足,提出一种具有下沉式空心内磁极结构的霍尔加速器,用于解决现有霍尔加速器不适宜于尺寸上较大比例的缩放、高阳极电压将导致放电不稳定、阴极离子溅射易造成阴极表面刻蚀的技术问题。
本发明技术方案:
一种具有下沉式空心内磁极结构的霍尔加速器具有下沉式空心内磁极结构的霍尔加速器,包括:阳极环、若干个进出口水嘴、内磁极、外磁极、进气板、进气挡板、支撑法兰、内屏蔽罩、外屏蔽罩、永磁体;
内磁极的下部与支撑法兰通过若干个进出口水嘴固定连接;所述支撑法兰上表面设置有外屏蔽罩;所述外屏蔽罩内部放置有内磁极和内屏蔽罩;所述内屏蔽罩环套在外磁极的卡槽中;
所述外屏蔽罩和内屏蔽罩之间设置有若干个永磁体;所述永磁体的上端面与外磁极的下表面接触;所述永磁体的下端面与内磁极上表面接触;所述外磁极通过螺栓与永磁体的一端连接,永磁体的另一端与内磁极也通过螺栓固定连接;
即外磁极、永磁体以及内磁极均通过螺栓实现各自相对位置的固定;
所述支撑法兰上还设置有进气板;所述进出口水嘴的顶部安装有阳极环;
所述进气挡板设置在内磁极的下表面并通过螺栓固定,所述进气板位于进气挡板下方,通过螺栓与内磁极固定。
所述永磁体在外屏蔽罩和内屏蔽罩之间呈周向阵列方式放置;所述阳极环与内磁极的上表面不接触。
所述内磁极为中空结构,整体呈倒“T”型结构设置在外屏蔽罩内;所述内磁极下部和支撑法兰上表面对应开有若干个螺纹通孔;所述进出口水嘴上端的外壁均环套有内绝缘环并与内磁极下部螺纹连接;所述进出口水嘴下端的外壁均环套有引线绝缘环并与支撑法兰通过螺母固定。
所述进出口水嘴上端外壁还设置有环形凸台,所述内绝缘环与进出口水嘴上端外壁环形凸台之间还设置有阳极垫片。
所述进气板内设置有主进气管,主进气管数量根据气体要求设计;所述进气挡板为圆盘型结构,所述进气挡板的表面上均布有若干个通气孔。
所述内磁极也可以采用可拆换结构,所述内磁极和外磁极材料必须为导磁材料,磁极自身不能为永磁体;所述内磁极表面设置有高溅射阈值、低溅射产额材料的镀膜。
所述支撑法兰与进出口水嘴下端外壁之间设置有氟橡胶密封圈,支撑法兰与进气板外壁之间也设置有氟橡胶密封圈。
所述阳极环为中空环形结构,所述阳极环中空区域为冷却水循环区域。
本发明的有益效果:
本发明采用下沉式内磁极结构设计,使装置具有完全开放的引出通道,有利于装置结构进行尺寸上的缩放;调节永磁体放置数量,通过调节放电区域磁场可以大幅度提升阳极电压工作范围;本发明还可采用可拆换内磁极结构,可以降低离子溅射造成阴极刻蚀的影响,同时换装时间大幅降低。换装内磁极只需要通过旋转和按压两个动作,就可实现不同内磁极的拆卸、安装,不需要拆装整个装置,从而提升了装置的使用效率。
附图说明
图1为本发明设计的一种具有下沉式空心内磁极结构的霍尔加速器的结构示意图;
其中:1-阳极环、2-屏蔽环、3-阳极进出水嘴、4-阳极垫片、5-内绝缘环、7-内磁极、9-进气板、10-进气挡板、11-线绝缘环、12-支撑法兰、13-内屏蔽罩、14-磁钢、15-外磁极、16-外屏蔽罩
图2为本发明装置中轴线上的磁感强度轴向分布图;
图3为本发明装置放电区域的磁场位形图。
图4为实施例中所述的可拆换内磁极的装配示意图
图5为实施例中所述的内磁极底座结构示意图
图6为实施例中所述的可拆换内磁极结构示意图
具体实施方式
下面结合附图和实施例对本发明的一种具有下沉式空心内磁极结构的霍尔加速器进行详细说明。
一种具有下沉式空心内磁极结构的霍尔加速器,包括:阳极环1、若干个进出口水嘴3、内磁极7、外磁极15、进气板9、进气挡板10、支撑法兰12、内屏蔽罩13、外屏蔽罩16、永磁体14;
内磁极7的下部与支撑法兰12通过若干个进出口水嘴3固定连接;所述支撑法兰12上表面设置有外屏蔽罩16;所述外屏蔽罩16内部放置有内磁极7和内屏蔽罩13;所述内屏蔽罩13环套在外磁极7的卡槽中;
所述外屏蔽罩16和内屏蔽罩13之间设置有若干个永磁体14;所述永磁体14的上端面与外磁极15的下表面接触;所述永磁体14的下端面与内磁极7上表面接触;所述外磁极15、永磁体14以及内磁极7通过螺栓实现各自相对位置的固定;
所述支撑法兰12上还设置有进气板9;所述进出口水嘴3的顶部安
装有阳极环1;
所述进气挡板10设置在内磁极7的下表面并通过螺栓固定,所述进气板9位于进气挡板10下方,通过螺栓与内磁极7固定。
所述永磁体14在外屏蔽罩16和内屏蔽罩13之间呈周向阵列方式放置;所述阳极环2与内磁极7的上表面不接触。
所述内磁极7为中空结构,整体呈倒“T”型结构设置在外屏蔽罩13内;
所述内磁极7下部和支撑法兰12上表面对应开有若干个螺纹通孔;所述进出口水嘴3上端的外壁均环套有内绝缘环5并与内磁极7下部螺纹连接;所述进出口水嘴3下端的外壁均环套有引线绝缘环11并与支撑法兰12通过螺母固定。
所述进出口水嘴3上端外壁还设置有环形凸台,所述内绝缘环5与进出口水嘴3上端外壁环形凸台之间还设置有阳极垫片4。
所述进气板9内设置有主进气管,主进气管数量根据气体要求设计;所述进气挡板10为圆盘型结构,所述进气挡板10的表面上均布有若干个通气孔。
所述内磁极7也可以采用可拆换结构,所述内磁极7和外磁极15材料必须为导磁材料,磁极自身不能为永磁体;所述内磁极7表面设置有高溅射阈值、低溅射产额材料的镀膜。
内磁极7、外磁极15结构决定了整个装置内部的磁场位形,即磁场的分布形貌。同时,内、外磁极在放电过程中处于接地状态,所以内磁极7和外磁极15也是本发明装置的阴极,这也是电子在放电过程中能够在内、外磁极之间来回振荡的原因。还可以将内磁极7采用拆分结构设置,即分为内磁极底座和内磁极两部分,两部分之间通过内磁极底座的螺杆和内磁极下部的L形卡槽进行固定,可以实现可拆卸内磁极结构的快速换装。
所述支撑法兰12与进出口水嘴3下端外壁之间设置有氟橡胶密封圈,支撑法兰12与进气板9外壁之间也设置有氟橡胶密封圈。
所述阳极环1为中空环形结构,具有的轴对称结构特点;所述阳极环中空区域为冷却水循环区域,其目的在于防止阳极在放电过程中过热,导致放电区域内温度过高,进而出现装置整体发热严重使磁极出现退磁的情况。
所述内屏蔽罩13、外屏蔽罩16主要起到的作用是将放电区域与永磁体放置区域进行隔离,防止热量传递到永磁体14;此外,内屏蔽罩、外屏蔽罩还可以保护永磁体14免受带电粒子的轰击,提升装置放电的稳定性。
所述永磁体14用于产生本发明装置内部所需的磁场,也可根据需要将永磁体置换为电磁线圈。所有永磁体磁极方向或电磁线圈绕向必须一致,根据装置具体运行要求,可以通过增减永磁体数量或改变线圈电流对所产生的磁场强度进行调节。
所述中间绝缘环6设置在内绝缘环5下方的进出口水嘴3与支撑法兰12之间位置,所述内绝缘环5、中间绝缘环6以及引线绝缘环11接触面之间采用嵌套形式进行紧密贴合,采用该结构设计主要目的是有效延长带有正电位的阳极进出水嘴与接地的支撑法兰和内磁极之间的沿面路径,保证绝缘效果,使阳极电压较高时不会发生水嘴与支撑法兰和内磁极之间的电击穿。内绝缘环5、中间绝缘环以及引线绝缘环11采用聚四氟乙烯材料,也可根据需要选择其他绝缘材料进行代替。其中,进出口水嘴3下端外壁与支撑法兰12之间缝隙由引线绝缘环11进行填充,引线绝缘环11起到了密封作用,通过在引线绝缘环11上下表面挖槽,放置密封圈,可以保证放电过程中工作气体无泄漏。
所述支撑法兰12是保证装置能够顺利安装在推进系统中的主要部件,主要起到的作用是支撑装置和保证密封效果的作用,支撑法兰的尺寸可根据系统中具体法兰口或连接部位尺寸进行设计,其结构可以进行调整,与标准法兰不同的是,支撑法兰12需要根据离子源进出口水嘴3和进气板9中的主进气管位置进行钻孔,并加工密封槽,保证密封效果。
所述进气板9和进气挡板10是保证工作气体能够有效输送至放电区域内的主要部件。其中,进气板9的主进气管可以定位在本发明装置中轴线上,也可根据需要设计在偏离中轴线的任意位置,可以采用单根进气管,也可根据混合气体需要采用多根进气管的设计,需要注意的是支撑法兰12的钻孔位置必须与主进气管位置进行配合设计。进气挡板10的主要作用是分配进气孔,保证工作气体进入放电区域的空间分布更加均匀。进气挡板10的进气孔位置和数量可根据具体需要进行设计,既可以从内磁极7四周进行供气,也可以内磁极7中心进行供气。进气板和进气挡板均采用沉头孔和沉头螺钉方式进行安装固定。
另外,对于绝缘设计,本发明装置在放电过程中阳极带正电势,内磁极7、外磁极15(即装置阴极)电势与接地端相同,而阳极所带的正电势需要通过外接电源输出端与连接片相接,通过连接片→进出口水嘴3→阳极环2的方式供电。因此,在进出口水嘴3与支撑法兰12之间、进出口水嘴3与内磁极7之间均需要进行绝缘设计。进出口水嘴3下端外壁与支撑法兰12之间缝隙由引线绝缘环11进行填充,而进出口水嘴3上端外壁与内磁极7之间由内绝缘环5进行填充,其中,引线绝缘环还起到了密封作用,通过在其上下表面挖槽,放置密封氟橡胶圈,再通过螺母与水嘴压环压实,可以保证放电过程中工作气体无泄漏。
在装置放电期间,工作气体通过进气板9的主进气管进入,通过进气挡板10分配至内磁极底座的进气孔,最后均匀地送至装置放电区域。工作气体中存在的本底电子在装置放电区域交叉电磁场的综合作用下,以螺旋线式运动轨迹在内外磁极之间振荡,通过与中性气体分子碰撞电离产生等离子体。放电过程中,部分电子会在装置阳极沉积,为避免装置阳极发生过热影响装置放电,阳极环2中空结构;装置阳极采用水冷方式冷却,也可以直接通入工作气体;这样可有效保证装置稳定放电。
所述内磁极7也可为可拆换结构,对于可拆换内磁极7结构,其主要优势在于可以大幅度提升阳极电压工作范围,并且降低离子溅射造成阴极刻蚀的影响,同时换装时间大幅降低。具体实施方式为:根据具体工艺要求,加工不同结构尺寸和表面处理的内磁极。对于提升装置放电电压,需要缩小装置内磁极7口径,增加阳极与内磁极7之间的宽度;对于降低阴极刻蚀造成的影响,需要对内磁极7表面进行高溅射阈值、低溅射产额材料的镀膜处理,这样,即使装置内磁极表面存在离子溅射,内磁极抗离子溅射能力也可以大大增强,进而延长装置整体使用寿命。
可拆换内磁极的优势体现在,解决上述问题主要通过换装内磁极实现,换装内磁极只需要通过旋转和按压两个动作,就可实现不同内磁极的拆卸、安装,不需要拆装整个装置,从而提升了装置的使用效率。
上面对本发明的实施例作了详细说明,本发明并不限于上述实例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (8)

1.一种具有下沉式空心内磁极结构的霍尔加速器,其特征在于,包括:
阳极环(1)、若干个进出口水嘴(3)、内磁极(7)、外磁极(15)、进气板(9)、进气挡板(10)、引线绝缘环(11)、支撑法兰(12)、内屏蔽罩(13)、外屏蔽罩(16)、永磁体(14);
内磁极(7)的下部与支撑法兰(12)通过若干个进出口水嘴(3)固定连接;所述支撑法兰(12)上表面设置有外屏蔽罩(16);所述外屏蔽罩(16)内部放置有内磁极(7)和内屏蔽罩(13);所述内屏蔽罩(13)环套在外磁极(7)的卡槽中;
所述外屏蔽罩(16)和内屏蔽罩(13)之间设置有若干个永磁体(14);所述永磁体(14)的上端面与外磁极(15)的下表面接触;所述永磁体(14)的下端面与内磁极(7)上表面接触;所述外磁极(15)通过螺栓与永磁体(14)的一端连接,永磁体(14)的另一端与内磁极(7)也通过螺栓固定连接;
所述支撑法兰(12)上还设置有进气板(9);所述进出口水嘴(3)的顶部安装有阳极环(1);
所述进气挡板(10)设置在内磁极(7)的下表面并通过螺栓固定,所述进气板(9)位于进气挡板(10)下方,通过螺栓与内磁极(7)固定。
2.根据权利要求1所述的一种具有下沉式空心内磁极结构的霍尔加速器,其特征在于:所述永磁体(14)在外屏蔽罩(16)和内屏蔽罩(13)之间呈周向阵列方式放置;所述阳极环(1)与内磁极(7)的上表面不接触。
3.根据权利要求2所述的一种具有下沉式空心内磁极结构的霍尔加速器,其特征在于:所述内磁极(7)为中空结构,整体呈倒“T”型结构设置在外屏蔽罩(13)内;所述内磁极(7)下部和支撑法兰(12)上表面对应开有若干个螺纹通孔;所述进出口水嘴(3)上端的外壁均环套有内绝缘环(5)并与内磁极(7)下部螺纹连接;所述进出口水嘴(3)下端的外壁均环套有引线绝缘环(11)并与支撑法兰(12)通过螺母固定。
4.根据权利要求3所述的一种具有下沉式空心内磁极结构的霍尔加速器,其特征在于:所述进出口水嘴(3)上端外壁还设置有环形凸台,所述内绝缘环(5)与进出口水嘴(3)上端外壁环形凸台之间还设置有阳极垫片(4)。
5.根据权利要求4所述的一种具有下沉式空心内磁极结构的霍尔加速器,其特征在于:所述进气板(9)内设置有主进气管,主进气管数量根据气体要求设计;所述进气挡板(10)为圆盘型结构,所述进气挡板(10)的表面上均布有若干个通气孔。
6.根据权利要求5所述的一种具有下沉式空心内磁极结构的霍尔加速器,其特征在于:所述内磁极(7)采用可拆换结构,所述内磁极(7)和外磁极(15)材料必须为导磁材料,磁极自身不能为永磁体;所述内磁极(7)表面设置有高溅射阈值、低溅射产额材料的镀膜。
7.根据权利要求6所述的一种具有下沉式空心内磁极结构的霍尔加速器,其特征在于:所述支撑法兰(12)与进出口水嘴(3)下端外壁之间设置有氟橡胶密封圈,支撑法兰(12)与进气板(9)外壁之间也设置有氟橡胶密封圈。
8.根据权利要求7所述的一种具有下沉式空心内磁极结构的霍尔加速器,其特征在于:所述阳极环(2)为中空环形结构,所述阳极环(2)中空区域为冷却水循环区域。
CN202011407572.3A 2020-12-03 2020-12-03 一种具有下沉式空心内磁极结构的霍尔加速器 Active CN112628098B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011407572.3A CN112628098B (zh) 2020-12-03 2020-12-03 一种具有下沉式空心内磁极结构的霍尔加速器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011407572.3A CN112628098B (zh) 2020-12-03 2020-12-03 一种具有下沉式空心内磁极结构的霍尔加速器

Publications (2)

Publication Number Publication Date
CN112628098A true CN112628098A (zh) 2021-04-09
CN112628098B CN112628098B (zh) 2023-01-24

Family

ID=75308165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011407572.3A Active CN112628098B (zh) 2020-12-03 2020-12-03 一种具有下沉式空心内磁极结构的霍尔加速器

Country Status (1)

Country Link
CN (1) CN112628098B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115681059A (zh) * 2023-01-03 2023-02-03 国科大杭州高等研究院 反向进气的电推力器、空间设备及其推进方法
CN115681056A (zh) * 2023-01-03 2023-02-03 国科大杭州高等研究院 反向注入的气体分配器
CN115681052A (zh) * 2023-01-03 2023-02-03 国科大杭州高等研究院 霍尔推力器、具有其的设备及其使用方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037517A2 (en) * 1996-04-01 1997-10-09 International Scientific Products A hall effect plasma accelerator
US20050237000A1 (en) * 2004-04-23 2005-10-27 Zhurin Viacheslav V High-efficient ion source with improved magnetic field
US20060076872A1 (en) * 2001-09-10 2006-04-13 Aerojet-General Corporation Hall effect thruster with anode having magnetic field barrier
CN201409253Y (zh) * 2009-05-05 2010-02-17 核工业西南物理研究院 一种阳极层线性离子源
US20120025710A1 (en) * 2010-07-29 2012-02-02 Evgeny Vitalievich Klyuev Hall-current ion source with improved ion beam energy distribution
JP2012027051A (ja) * 2010-07-20 2012-02-09 Panasonic Corp 駆動装置及び撮像装置
US20140053531A1 (en) * 2012-02-15 2014-02-27 California Institute Of Technology Metallic wall hall thrusters
CN105736273A (zh) * 2016-04-11 2016-07-06 哈尔滨工业大学 一种大高径比霍尔推力器的磁路结构
CN107165794A (zh) * 2017-06-12 2017-09-15 北京航空航天大学 一种磁场可调的带磁屏蔽效应的低功率霍尔推力器
US20170284380A1 (en) * 2016-03-30 2017-10-05 California Institute Of Technology Hall effect thruster electrical configuration
CN107725296A (zh) * 2017-09-01 2018-02-23 兰州空间技术物理研究所 一种磁感应强度可调的永磁霍尔推力器磁路结构
US9934929B1 (en) * 2017-02-03 2018-04-03 Colorado State University Research Foundation Hall current plasma source having a center-mounted or a surface-mounted cathode
CN108307576A (zh) * 2018-03-14 2018-07-20 哈尔滨工业大学 一种磁聚焦霍尔推力器长寿命设计下的磁路结构设计方法
CN109209804A (zh) * 2018-10-23 2019-01-15 哈尔滨工业大学 一种霍尔推力器的磁屏/放电通道一体化结构
JP2019065703A (ja) * 2017-09-28 2019-04-25 株式会社Ihi ホールスラスタ
US20190168895A1 (en) * 2017-12-06 2019-06-06 California Institute Of Technology Low-power hall thruster with an internally mounted low-current hollow cathode
CN110851939A (zh) * 2018-07-27 2020-02-28 核工业西南物理研究院 圆柱形阳极层霍尔推力器寿命评估的仿真计算方法
CN111219306A (zh) * 2019-03-21 2020-06-02 哈尔滨工业大学 一种双磁屏的霍尔推力器
CN111622912A (zh) * 2020-05-22 2020-09-04 哈尔滨工业大学 一种调节导磁柱霍尔推力器磁分界面形态的磁路设计方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997037517A2 (en) * 1996-04-01 1997-10-09 International Scientific Products A hall effect plasma accelerator
US20060076872A1 (en) * 2001-09-10 2006-04-13 Aerojet-General Corporation Hall effect thruster with anode having magnetic field barrier
US20050237000A1 (en) * 2004-04-23 2005-10-27 Zhurin Viacheslav V High-efficient ion source with improved magnetic field
CN201409253Y (zh) * 2009-05-05 2010-02-17 核工业西南物理研究院 一种阳极层线性离子源
JP2012027051A (ja) * 2010-07-20 2012-02-09 Panasonic Corp 駆動装置及び撮像装置
US20120025710A1 (en) * 2010-07-29 2012-02-02 Evgeny Vitalievich Klyuev Hall-current ion source with improved ion beam energy distribution
US20140053531A1 (en) * 2012-02-15 2014-02-27 California Institute Of Technology Metallic wall hall thrusters
US20170284380A1 (en) * 2016-03-30 2017-10-05 California Institute Of Technology Hall effect thruster electrical configuration
CN105736273A (zh) * 2016-04-11 2016-07-06 哈尔滨工业大学 一种大高径比霍尔推力器的磁路结构
US9934929B1 (en) * 2017-02-03 2018-04-03 Colorado State University Research Foundation Hall current plasma source having a center-mounted or a surface-mounted cathode
CN107165794A (zh) * 2017-06-12 2017-09-15 北京航空航天大学 一种磁场可调的带磁屏蔽效应的低功率霍尔推力器
CN107725296A (zh) * 2017-09-01 2018-02-23 兰州空间技术物理研究所 一种磁感应强度可调的永磁霍尔推力器磁路结构
JP2019065703A (ja) * 2017-09-28 2019-04-25 株式会社Ihi ホールスラスタ
US20190168895A1 (en) * 2017-12-06 2019-06-06 California Institute Of Technology Low-power hall thruster with an internally mounted low-current hollow cathode
CN108307576A (zh) * 2018-03-14 2018-07-20 哈尔滨工业大学 一种磁聚焦霍尔推力器长寿命设计下的磁路结构设计方法
CN110851939A (zh) * 2018-07-27 2020-02-28 核工业西南物理研究院 圆柱形阳极层霍尔推力器寿命评估的仿真计算方法
CN109209804A (zh) * 2018-10-23 2019-01-15 哈尔滨工业大学 一种霍尔推力器的磁屏/放电通道一体化结构
CN111219306A (zh) * 2019-03-21 2020-06-02 哈尔滨工业大学 一种双磁屏的霍尔推力器
CN111622912A (zh) * 2020-05-22 2020-09-04 哈尔滨工业大学 一种调节导磁柱霍尔推力器磁分界面形态的磁路设计方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
孙明明等: "30cm口径离子推力器磁场设计", 《强激光与粒子束》 *
张帆等: "阳极层霍尔推进器磁极刻蚀的实验研究", 《推进技术》 *
李平川等: "空心内磁极圆柱形阳极层霍尔推进器溅射仿真", 《真空科学与技术学报》 *
赵杰等: "圆柱形阳极层霍尔推力器的内磁极刻蚀研究", 《真空科学与技术学报》 *
赵杰等: "阳极磁屏蔽霍尔离子源磁场的数值模拟", 《真空》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115681059A (zh) * 2023-01-03 2023-02-03 国科大杭州高等研究院 反向进气的电推力器、空间设备及其推进方法
CN115681056A (zh) * 2023-01-03 2023-02-03 国科大杭州高等研究院 反向注入的气体分配器
CN115681052A (zh) * 2023-01-03 2023-02-03 国科大杭州高等研究院 霍尔推力器、具有其的设备及其使用方法

Also Published As

Publication number Publication date
CN112628098B (zh) 2023-01-24

Similar Documents

Publication Publication Date Title
CN112628098B (zh) 一种具有下沉式空心内磁极结构的霍尔加速器
US5763989A (en) Closed drift ion source with improved magnetic field
US4778561A (en) Electron cyclotron resonance plasma source
US6849854B2 (en) Ion source
CN111385956B (zh) 一种射频粒子源
US4810347A (en) Penning type cathode for sputter coating
CN110594115B (zh) 一种无放电阴极的环型离子推力器
JPS5944387B2 (ja) 磁気的に増大させたスパツタ源
CN111852802B (zh) 一种霍尔效应环型离子推力器
CN110566424B (zh) 一种长寿命霍尔推力器的磁路
CN110985323B (zh) 一种圆板天线交叉磁场微波电子回旋共振离子推进器
CN111852803B (zh) 一种基于分段阳极的混合效应环型离子推力器
CN112635287A (zh) 一种新型离子源等离子体中和器
CN105390357B (zh) 一种环型离子推力器放电室
CN114302546A (zh) 一种高效率低污染等离子体源
CN101308754A (zh) 一种新型磁路结构考夫曼型离子源
US20050116653A1 (en) Plasma electron-emitting source
CN114753981A (zh) 一种基于环形轰击阴极的微推进器
CN113316302B (zh) 一种级联弧放电等离子体推进器
JP3225283B2 (ja) 表面処理装置
WO2001093293A1 (en) Plasma ion source and method
CN114724907A (zh) 一种等离子密度可调的离子源装置
RU2371803C1 (ru) Плазменный источник ионов
CN214012896U (zh) 一种新型离子源等离子体中和器
CN109860008B (zh) 基于热电子放电的潘宁离子源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant