CN112615376A - 一种基于内点法的交直流系统优化潮流计算方法 - Google Patents

一种基于内点法的交直流系统优化潮流计算方法 Download PDF

Info

Publication number
CN112615376A
CN112615376A CN202011584356.6A CN202011584356A CN112615376A CN 112615376 A CN112615376 A CN 112615376A CN 202011584356 A CN202011584356 A CN 202011584356A CN 112615376 A CN112615376 A CN 112615376A
Authority
CN
China
Prior art keywords
power
optimization
alternating current
direct current
interior point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011584356.6A
Other languages
English (en)
Inventor
崔皓璞
吕艳玲
张福民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN202011584356.6A priority Critical patent/CN112615376A/zh
Publication of CN112615376A publication Critical patent/CN112615376A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/15Correlation function computation including computation of convolution operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/04Circuit arrangements for ac mains or ac distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/10Power transmission or distribution systems management focussing at grid-level, e.g. load flow analysis, node profile computation, meshed network optimisation, active network management or spinning reserve management
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Economics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Quality & Reliability (AREA)
  • Computing Systems (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及交直流混合配电网的潮流优化领域,尤其涉及一种基于内点法的交直流系统优化潮流计算方法,本发明包括如下步骤:步骤1、计算电网网络损耗和电压偏差的复合目标函数;步骤2、根据配网无功优化基本模型对交直流混合配电网进行分析获得交直流混合配电网增加约束信息;步骤3、基于网络损耗和电压偏差的复合目标函数和约束信息,采用内点法对电网系统进行目标无功优化。本发明具有如下特点:在传统交流系统中加入了直流系统,所述潮流优化算法不需要特定的初始值,解决了对于大规模实际问题寻找可行初始点较困难的问题;达到了简化计算过程,并保证多维度实际问题能够可靠收敛的技术效果。

Description

一种基于内点法的交直流系统优化潮流计算方法
技术领域
本发明涉及大规模交直流混合配电网的潮流优化领域,尤其涉及一种基于内点法的交直流系统优化潮流计算方法。
背景技术
与交流输电系统相比,直流输电系统在减低线路造价成本和减低线路损耗方面有着显著的优势。加之,直流系统更有利于分布式发电系统并入电网,直流配电网成为未来配电网发展的必然趋势。交直流混合配电网作为发展直流配电网过程中的过渡网络,在传统交流输电的基础上加入直流输电,有利于提高供电可靠性,改善电能品质,是目前电力研究工作的热点。
现有技术方案在解决潮流优化问题时一般采用内点法,内点法的基本思路是希望寻优迭代过程始终在可行域内进行,初始点应取在可行域内,并在可行域的边界设置“障碍”使迭代点接近边界时使其目标函数值迅速增大,从而保证迭代点均为可行域的内点。
发明内容
本发明提供了一种基于内点法的交直流系统优化潮流计算方法,解决了对于大规模实际问题,寻找可行初始点通常比较困难,传统内点法难以可靠收敛的技术问题,不需要特定的初始值,解决了对于大规模实际问题寻找可行初始点较困难的问题;达到了简化计算过程,并保证多维度实际问题能够可靠收敛的技术效果。
包括如下步骤:
步骤1、计算电网网络损耗和直流电压偏差率的目标函数;
步骤2、根据配网无功优化基本模型对交直流混合配电网进行计算分析获得交直流混合配电网增加约束条件;
步骤3、基于网络损耗和直流电压偏差的复合目标函数和约束信息,采用内点法对电网系统进行目标无功优化;
进一步的,步骤1具体包括如下步骤:
步骤1.1、确定电网架结构和节点类型,对节点进行编号;
步骤1.2、计算电网中的线路参数,确定PQ节点负荷大小,确定PV节点功率及电压;
步骤1.3、进行初始条件下的潮流计算,判断潮流计算是否收敛。若不收敛则继续进行初始条件下的潮流计算;若收敛,则根据可调参数设置自变量,根据优化目标确定目标函数;
进一步的,所述电网网络损耗和直流电压偏差率的目标函数为:
Figure BDA0002858710860000021
Figure BDA0002858710860000022
Figure BDA0002858710860000023
式中,n—系统节点总数量;ns—公共连接点数量;ndc—直流节点数量;ndcl—直流负载和电源节点数量;△Udc—直流电压偏差率;△Umax—允许最大电压偏差;Pt—交流节点i有功功率;Ploss—系统网络损耗;wloss—网络损耗的权重系数;wdc—电压偏差率的权重系数,wloss+wdc=1。
当wloss较大时,减小网络损耗为主要优化目标;当wdc较大时,减小电压偏差率为主要优化目标。可根据实际需求设定不同的权重值,分别计算每组权重值所对应的目标函数值,从而选择最佳的权重值。
进一步的,步骤2包括:所述交直流潮流优化的等式约束条件有:
交流系统的功率修正方程式为:
Figure BDA0002858710860000024
Figure BDA0002858710860000025
Figure BDA0002858710860000026
Figure BDA0002858710860000027
直流系统的功率修正方程为:
Figure BDA0002858710860000028
Figure BDA0002858710860000031
控制方式修正方程式:
Δd=wps(Ps-Psref)+wudc(Ud-Udcref)+wpdc(Pd-Pdcref)
Δq=wqs(Qs-Qsref)+wus(Us-Usref)
进一步,所述交直流潮流优化的不等式约束条件有:
纯交流系统最优潮流问题的不等式约束条件一般包括有功电源出力约束式、无功源出力约束式和交流节点电压约束式。
Figure BDA0002858710860000032
Figure BDA0002858710860000033
Figure BDA0002858710860000034
相对于纯交流系统最优潮流问题而言,交直流混合系统需要增加的不等式约束有直流节点电压Ud、换流站的调制比M、直流功率或交流有功功率参考值Pref、无功功率参考值Qref和下垂系数K等变量上下限约束:
Udimin≤Udi≤Udimax
Mimin≤Mi≤Mimax
Pimin≤Pi≤Pimax
Qimin≤Qi≤Qimax
Kimin≤Ki≤Kimax
进一步的,采用内点法对电网系统进行多目标网损和电压偏差无功优化。内点法计算流程具体包括:
根据约束条件构造内点惩罚函数,以初始潮流计算结果得到的各状态变量为初值点,包含惩罚项的目标函数成为无约束优化模型,用拉格朗日乘子法计算新的最优值并判断是否满足误差要求,满足则为最优解,否则计算修正方程,对解进行修正,最终得到稳定解;根据稳定解进一步确定优化方案。
与现有技术相比,本发明的有益效果是:
(1)不需要特定的初始值;
(2)对于小阻抗/负阻抗较大的电网仍具有较强的鲁棒性;
(3)适用于通过设置合适的不等式约束找到理想的运行点;
(4)力求最终接近潮流解,避免在局部极小点过早停止。
附图说明
图1是基于内点法的交直流混合配电网优化潮流计算方法的流程示意图;
图2是跟踪内点法计算流程示意图;
图3是交直流配网测试结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施实例仅仅是本发明一部分实施实例,而不是全部的实施例。基于本发明中的实施实例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施实例,都属于本发明保护的范围。
图1是基于内点法的交直流混合配电网优化潮流计算方法的流程示意图;
一种基于内点法的分布式电源并网优化潮流计算方法,所述方法包括:
步骤1:获取电网拓扑结构,线路及负荷参数。
步骤2:计算交直流混合配电网的网损及电网电压偏差的目标函数;
步骤3、根据配网无功优化基本模型对交直流混合配电网进行分析获得交直流混合配电网增加的约束条件;
步骤4、基于网络损耗和电压偏差的复合目标函数和约束条件,采用内点法对电网系统进行目标无功优化。
确定电网架结构和节点类型;对节点进行编号,如附图3;计算电网中的线路参数,确定PQ节点(有功功率和无功功率可知的节点)负荷大小,确定PV节点(有功功率及电压水平可知的节点)功率及电压;进行初始条件下的潮流计算;判断潮流计算是否收敛,若不收敛则继续进行初始条件下的潮流计算;若收敛,则根据可调参数设置自变量,根据优化目标确定因变量,封装目标函数;采用内点法对目标函数进行优化,输出方案结果。
内点法计算流程如附图2所示,具体包括:
根据约束条件构造内点惩罚函数,以初始潮流计算结果得到的各状态变量为初值点,包含惩罚项的目标函数成为无约束优化模型,用拉格朗日乘子法计算新的最优值并判断是否满足误差要求,满足则为最优解,否则,计算修正方程,对解进行修正,最终得出稳定解。根据稳定解进一步确立优化方案。
本发明以一个7节点380kV交流系统和一个5节点400kV直流系统组成的配网测试系统为算例进行仿真分析,电网结构如图所示。系统容量以100MVA为基值,功率、阻抗等参数均采用标幺值表示。系统参数具体见下表。
(1)发电机参数
表1发电机参数
Figure BDA0002858710860000051
(2)系统线路参数
表2交流线路参数
Figure BDA0002858710860000052
表3直流线路编号
Figure BDA0002858710860000053
(3)换流器参数
表4换流器参数
Figure BDA0002858710860000054
Figure BDA0002858710860000061
具体约束条件如下表所示:
表5交流线路功率上限表
Figure BDA0002858710860000062
表6直流线路功率上限
Figure BDA0002858710860000063
表7发电机参数
Figure BDA0002858710860000064
节点电压波动范围取±0.05;VSC换流器角度波动范围取±30°;M波动范围取±0.5,拉格朗日乘子初值取:收敛条件取ε<10-6时,经过25次迭代,计算收敛。最终结果与常规潮流计算对比如下列各表。
表8各有功源及无功源出力
Figure BDA0002858710860000065
Figure BDA0002858710860000071
表9交流节点电压向量
Figure BDA0002858710860000072
表10换流器节点参数
Figure BDA0002858710860000073
由上表可见,通过对交流直流混合系统运用内点法进行最优潮流分析,直流系统电压和功率都有所上升,而整体损耗减小,燃料耗费曲线系数较小的发电机组发电量增加,而燃料耗费曲线系数较大的机组发电量减少,全系统发电费用降低了3912.94万元。结果证明了内点法解决交直流混合系统OPF问题的可行性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种基于内点法的交直流混合配电网优化潮流计算方法,其特征在于,包括如下步骤:
步骤1、获取电网拓扑结构,线路及负荷参数,计算交直流混合电网网络损耗和电压偏差的复合目标函数;
步骤2、根据配网无功优化基本模型对交直流混合配电网进行分析获得交直流混合配电网增加的约束条件;
步骤3、基于网络损耗和电压偏差的复合目标函数和约束条件,采用内点法对电网系统进行目标无功优化。
2.根据权利要求1所述一种基于内点法的交直流系统优化潮流计算方法,步骤1具体包括如下步骤:
步骤1.1、确定电网架结构和节点类型,对节点进行编号;
步骤1.2、计算电网中的线路参数,确定PQ节点负荷大小,确定PV节点功率及电压;
步骤1.3、进行初始条件下的潮流计算,判断潮流计算是否收敛。若不收敛则继续进行初始条件下的潮流计算;若收敛,则根据可调参数设置自变量,根据优化目标确定目标函数;
所述电网网络损耗和电压偏差的复合目标函数为:
Figure FDA0002858710850000011
Figure FDA0002858710850000012
Figure FDA0002858710850000013
式中,n—系统节点总数量;ns—公共连接点数量;ndc—直流节点数量;ndcl—直流负载和电源节点数量;△Udc—直流电压偏差率;△Umax—允许最大电压偏差;Pt—交流节点i有功功率;Ploss—系统网络损耗;wloss—网络损耗的权重系数;wdc—电压偏差率的权重系数,wloss+wdc=1
当wloss较大时,减小网络损耗为主要优化目标;当wdc较大时,减小电压偏差率为主要优化目标。可根据实际需求设定不同的权重值,分别计算每组权重值所对应的目标函数值,从而选择最佳的权重值。
3.根据权利要求1所述基于内点法的交直流混合配电网优化潮流计算方法,其特征在于,所述交直流潮流优化的等式约束条件有:
交流系统的功率修正方程式
Figure FDA0002858710850000021
Figure FDA0002858710850000022
Figure FDA0002858710850000023
Figure FDA0002858710850000024
直流系统的功率修正方程式
Figure FDA0002858710850000025
Figure FDA0002858710850000026
控制方式修正方程式
Δd=wps(Ps-Psref)+wudc(Ud-Udcref)+wpdc(Pd-Pdcref)
Δq=wqs(Qs-Qsref)+wus(Us-Usref)
4.根据权利要求1所述基于内点法的交直流混合配电网优化潮流计算方法,其特征在于,所述交直流潮流优化的不等式约束条件有:
纯交流系统最优潮流问题的不等式约束条件一般包括有功电源出力约束式、无功源出力约束式和交流节点电压约束式。
Figure FDA0002858710850000027
Figure FDA0002858710850000028
Figure FDA0002858710850000029
相对于纯交流系统最优潮流问题而言,交直流混合系统需要增加的不等式约束有直流节点电压Ud、换流站的调制比M、直流功率或交流有功功率参考值Pref、无功功率参考值Qref和下垂系数K等变量上下限约束:
Udimin≤Udi≤Udimax
Mimin≤Mi≤Mimax
Pimin≤Pi≤Pimax
Qimin≤Qi≤Qimax
Kimin≤Ki≤Kimax
5.根据权利要求1所述一种基于内点法的交直流系统优化潮流计算方法,其特征在于:内点法计算流程具体包括:
根据约束条件构造内点惩罚函数,以初始潮流计算结果得到的各状态变量为初值点,包含惩罚项的目标函数成为无约束优化模型,用拉格朗日乘子法计算新的最优值并判断是否满足误差要求,满足则为最优解,否则计算修正方程,对解进行修正,最终得到稳定解;根据稳定解进一步确定优化方案。
6.根据权利要求1所述一种基于内点法的交直流系统优化潮流计算方法,其特征在于:采用内点法对电网系统进行多目标网损和电压偏差无功优化。
CN202011584356.6A 2020-12-25 2020-12-25 一种基于内点法的交直流系统优化潮流计算方法 Pending CN112615376A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011584356.6A CN112615376A (zh) 2020-12-25 2020-12-25 一种基于内点法的交直流系统优化潮流计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011584356.6A CN112615376A (zh) 2020-12-25 2020-12-25 一种基于内点法的交直流系统优化潮流计算方法

Publications (1)

Publication Number Publication Date
CN112615376A true CN112615376A (zh) 2021-04-06

Family

ID=75248597

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011584356.6A Pending CN112615376A (zh) 2020-12-25 2020-12-25 一种基于内点法的交直流系统优化潮流计算方法

Country Status (1)

Country Link
CN (1) CN112615376A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114819281A (zh) * 2022-03-29 2022-07-29 四川大学 一种柔性直流电网站间协同潮流优化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877359A (zh) * 2017-04-25 2017-06-20 国网上海市电力公司 基于二层规划考虑电压稳定性的交直流系统无功优化方法
CN107681664A (zh) * 2017-11-13 2018-02-09 国网四川省电力公司成都供电公司 一种基于内点法的分布式电源并网优化潮流计算方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106877359A (zh) * 2017-04-25 2017-06-20 国网上海市电力公司 基于二层规划考虑电压稳定性的交直流系统无功优化方法
CN107681664A (zh) * 2017-11-13 2018-02-09 国网四川省电力公司成都供电公司 一种基于内点法的分布式电源并网优化潮流计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林毅等: "考虑静态安全约束的含MMC-HVDC交直流混合系统最优潮流计算方法", 《电网技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114819281A (zh) * 2022-03-29 2022-07-29 四川大学 一种柔性直流电网站间协同潮流优化方法
CN114819281B (zh) * 2022-03-29 2023-02-17 四川大学 一种柔性直流电网站间协同潮流优化方法

Similar Documents

Publication Publication Date Title
WO2022016622A1 (zh) 真双极柔性直流输电系统故障下的自适应优化调控方法
CN108039726B (zh) 一种基于多智能体系统的能源局域网分布式协同控制方法
Huang et al. Distributed voltage control based on ADMM for large-scale wind farm cluster connected to VSC-HVDC
CN110970906B (zh) 一种协调控制风电场无功电压的方法和系统
CN110504691A (zh) 一种计及vsc控制方式的交直流配电网最优潮流计算方法
CN105809265A (zh) 含分布式可再生能源配电网柔性互联装置的容量配置方法
CN110867848B (zh) 一种用于直流微电网群落的能量管理预测控制方法
Zeng et al. Hierarchical cooperative control strategy for battery storage system in islanded DC microgrid
CN113541146B (zh) 计及分布式电源的电力系统潮流计算优化方法
CN107681664A (zh) 一种基于内点法的分布式电源并网优化潮流计算方法
CN114928057B (zh) 一种适用于新能源多端柔直系统的多目标潮流优化方法
CN110323979A (zh) 一种考虑电压稳定的发电机励磁调差系数优化整定方法
Fagundes et al. Management and equalization of energy storage devices for DC microgrids using a SoC-sharing function
CN112615376A (zh) 一种基于内点法的交直流系统优化潮流计算方法
Gao et al. Distributed multi‐agent control for combined AC/DC grids with wind power plant clusters
CN114491886A (zh) 含多类型分布式新能源的主动配电网通用建模方法和装置
CN116760109B (zh) 一种分布式光伏电源并网的综合调控系统
CN111478335B (zh) 一种计及分布式光伏的配电网潮流计算方法及系统
CN117578447A (zh) 一种基于一致性算法的园区多柔性资源协同优化控制方法
CN107171336B (zh) 基于非线性反馈的分布式微网无功功率分配控制方法
CN114977405A (zh) 一种串联储能系统荷电状态均衡控制方法及系统
Li et al. Adaptive coordinated control of microgrid under communication interruption scenario
Xia et al. Operation Control Method of the Wind-Solar-Energy Storage Dominated Islanded Microgrid Used for Hydrogen Production
CN118589599A (zh) 一种基于配电网台区集群划分的功率联合优化控制方法
CN118826137A (zh) 一种基于粒子群寻优的功率方向元件运行边界计算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210406