CN112614910A - 一种基于pin型氮化镓微米线的紫外光电探测器及其制备方法 - Google Patents

一种基于pin型氮化镓微米线的紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN112614910A
CN112614910A CN202011494811.3A CN202011494811A CN112614910A CN 112614910 A CN112614910 A CN 112614910A CN 202011494811 A CN202011494811 A CN 202011494811A CN 112614910 A CN112614910 A CN 112614910A
Authority
CN
China
Prior art keywords
gallium nitride
type gallium
layer
microwire
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011494811.3A
Other languages
English (en)
Other versions
CN112614910B (zh
Inventor
李述体
吴国辉
邓琮匆
陈飞
杜林远
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202011494811.3A priority Critical patent/CN112614910B/zh
Publication of CN112614910A publication Critical patent/CN112614910A/zh
Application granted granted Critical
Publication of CN112614910B publication Critical patent/CN112614910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种基于PIN型氮化镓微米线的紫外光电探测器及其制备方法,其采用n型氮化镓微米线核和依次覆盖n型氮化镓微米线核表面的i型氮化镓及p型氮化镓构成了PIN型同质结微米线,并通过n型氮化镓微米线核与下电极接触,p型氮化镓与上电极接触构建了垂直结构的微型化紫外光电探测器。该探测器结构中,沿其微米线直径方向的PIN同质结增加了结的接触面积,增加了空间电荷区的面积,保证光吸收主要发生在空间电荷区,能够有效抑制光生载流子的复合,提高紫外探测器响应度,和更低的暗电流。且同质外延生长的氮化镓,大大提高了材料的晶体质量,降低了缺陷密度,保障了紫外光电探测器的性能。

Description

一种基于PIN型氮化镓微米线的紫外光电探测器及其制备 方法
技术领域
本发明涉及紫外光电探测器技术领域,尤其涉及一种基于PIN型氮化镓微米线的紫外光电探测器及其制备方法。
背景技术
可见盲和日盲紫外光电探测器可用于许多领域,例如工业(火灾探测,化学火焰感应),国防(导弹跟踪,枪击探测),科学研究(紫外天文学,生物和医学应用),健康护理等。薄膜形式的氮化镓已成功用于紫外光电探测器。与广泛用于紫外成像的碳化硅相比,氮化镓具有更高的吸收系数。氮化镓作为宽禁带半导体的代表,因为它的禁带宽度为3.4eV,可吸收365纳米的紫外光、在没有掺杂任何杂质时氮化镓为n型半导体以及非常稳定的化学性质被国内外学者认为是一种非常理想的探测器材料从而被广泛应用。但如何进一步提高紫外光探测器的性能,减小探测器的尺寸依然是该领域面临的问题。
发明内容
本发明提供一种暗电流小、响应度高和工作稳定性好的微型化紫外光电探测器及其制备方法,该探测器以n型氮化镓微米线为基础,构建了沿微米线直径方向的PIN同质结,该同质结中i型氮化镓覆盖n型氮化镓微米线核的表面,p型氮化镓覆盖i型氮化镓的表面,n型氮化镓微米线核与下电极接触,p型氮化镓与上电极接触构成了垂直结构。该垂直结构的紫外光电探测器有效的增加了结的接触面积,增加了空间电荷区的面积,保证光吸收主要发生在空间电荷区,能够有效抑制光生载流子的复合,提高紫外探测器响应度,相较于薄膜紫外探测器具有更低的暗电流。具体的,本发明至少提供如下技术方案:
一种基于PIN型氮化镓微米线的紫外光电探测器,包括基底,下电极层,设置于所述基底表面;
单根PIN型氮化镓微米线,沿长度方向设置于所述下电极层表面,其包括截面呈梯形的n型氮化镓微米线核,和依次附着于所述n型氮化镓微米线核表面的i型氮化镓层及p型氮化镓层,其中所述n型氮化镓微米线核与所述下电极层接触,所述i型氮化镓层设置于所述n型氮化镓微米线上远离所述下电极层的表面,所述p型氮化镓层设置于所述i型氮化镓层的表面;
绝缘层,设置于所述下电极层表面,包裹所述单根PIN型氮化镓微米线,并暴露所述单根PIN型氮化镓微米线远离所述下电极层表面的表面;
上电极层,设置于所述绝缘层表面,并覆盖所述单根PIN型氮化镓微米线的表面。
进一步地,所述单根PIN型氮化镓微米线经选择性外延生长获得。
进一步地,所述单根PIN型氮化镓微米线中,所述n型氮化镓微米线核的厚度为3~5μm,所述i型氮化镓层的厚度为200~400nm,所述p型氮化镓层的厚度为50~150nm。
进一步地,所述单根PIN型氮化镓微米线的长度优选为200~500μm。
进一步地,所述绝缘层为二氧化硅或光刻胶。
进一步地,所述绝缘层优选光刻胶,其厚度为5~6μm。
进一步地,所述n型氮化镓微米线核的厚度优选约4μm,所述i型氮化镓层的厚度优选约300nm,所述p型氮化镓层的厚度优选约100nm。
进一步地,所述上电极层优选透明导电ITO层,厚度为100~200nm;所述下电极层优选Au或ITO层,厚度为60~200nm。
一种基于PIN型氮化镓微米线的紫外光电探测器的制备方法,其包括以下步骤:
以表面设置有条状凹槽的硅<100>基底作为生长衬底,沿所述凹槽侧壁依次外延生长氮化铝缓冲层、n型氮化镓微米线核、i型氮化镓层和p型氮化镓层;
剥离带有所述氮化铝缓冲层的n型氮化镓微米线核,之后去除所述氮化铝缓冲层获得PIN型氮化镓微米线;
转移单根所述PIN型氮化镓微米线至带有下电极层的目标基底上,所述n型氮化镓微米线与所述下电极层接触;
在所述目标基底上沉积绝缘层覆盖所述PIN型氮化镓微米线;
刻蚀所述绝缘层形成窗口,所述窗口暴露所述PIN型氮化镓微米线远离所述下电极层的表面;
沉积上电极层,所述上电极层通过所述窗口与所述p型氮化镓层接触。
进一步地,将所述带有氮化铝缓冲层的n型氮化镓微米线核,浸泡在优选120℃的磷酸溶液中去除所述氮化铝缓冲层。
进一步地,将单根所述PIN型氮化镓微米线转移至所述目标基底上之后,在所述目标基底上沉积绝缘层之前,还包括加热所述目标基底。
进一步地,所述凹槽的截面呈倒梯形,所述倒梯形上开口宽度为9~16μm,深度为5.5~7.5μm,底部宽度为5.5~9μm,相邻梯形凹槽的边界距离为5.5~9μm。
本发明至少具有如下有益效果:
本发明采用n型氮化镓微米线核和依次覆盖n型氮化镓微米线核表面的i型氮化镓及p型氮化镓构成了PIN型同质结微米线,并通过n型氮化镓微米线核与下电极接触,p型氮化镓与上电极接触构建了垂直结构的微型化紫外光电探测器。该探测器结构中,沿其微米线直径方向的PIN同质结增加了结的接触面积,增加了空间电荷区的面积,保证光吸收主要发生在空间电荷区,能够有效抑制光生载流子的复合,提高紫外探测器响应度,相较于薄膜紫外探测器具有更低的暗电流。
另外,本发明通过在硅<100>基底上刻蚀形成截面呈倒梯形的凹槽,在凹槽的侧壁上选择性外延生长n型氮化镓微米线,在n型氮化镓微米线的基础上同质外延生长i型氮化镓和p型氮化镓,大大提高了材料的晶体质量,降低了缺陷密度,保障了紫外光电探测器的性能。
另一方面,本发明的紫外光电探测器采用一维微米线结构,该器件结构更加小型化,其具机械柔性好和可集成度高,在更高精度、更低能耗和更小型化的新型紫外光电探测器领域具有广阔的应用前景。
附图说明
图1是本发明紫外光电探测器结构的剖面示意图。
图2是本发明一实施例中设置有条状凹槽的图案化Si基底的结构示意图。
图3是本发明一实施例中在凹槽侧壁生长的PIN型氮化镓微米线阵列的结构示意图。
图4是本发明一实施例中剥离后的单根PIN型氮化镓微米线的结构示意图。
图5是本发明一实施例中单根PIN型氮化镓微米线的剖面结构示意图。
具体实施方式
接下来将结合本发明的附图对本发明实施例中的技术方案进行清楚、完整地描述,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它实施例,均属于本发明保护的范围。
下面来结合附图对本发明做进一步详细的说明。本发明提供一种基于PIN型氮化镓微米线的紫外光电探测器,其包括基底1,基底1可以选用玻璃基底。设置于基底1上的下电极层2,下电极层2选用Au或ITO,厚度为100~200nm。在一优选实施例中,下电极层选用ITO,厚度优选100nm。
单根PIN型氮化镓微米线沿长度方向设置于下电极层2的表面,单根PIN型氮化镓微米线的长度优选为200~500μm。如图1示,在一优选实施例中,PIN型氮化镓微米线的截面呈梯形,由n型氮化镓微米线核3、i型氮化镓层4和p型氮化镓微米线5构成同质结,n型氮化镓微米线核3的一侧表面与下电极层2接触,i型氮化镓层4设置于n型氮化镓微米线核3上远离下电极层2的表面,p型氮化镓层5设置于i型氮化镓层4的表面。n型氮化镓微米线核3的掺杂杂质优选Si,厚度为3~5μm。i型氮化镓层无掺杂,厚度为200~400nm。p型氮化镓层的掺杂杂质优选Mg,厚度为50~150nm。在一优选实施例中,n型氮化镓微米线核3的厚度为4μm。i型氮化镓层的厚度为300nm。p型氮化镓层的厚度为100nm。
n型氮化镓微米线核3、i型氮化镓层4和p型氮化镓微米线5构成的同质p-i-n结能够利用同质结中的内建电场将光生载流子在无偏压的条件下快速有效的分离,具有响应度大,暗电流低等特点。硅<100>基底表面设置有截面呈倒梯形的条状凹槽,该同质结氮化镓微米线沿凹槽的侧壁选择性外延生长,保障了氮化镓的晶体质量,有利于探测器的工作稳定性。
绝缘层6设置于下电极层2的表面,包裹单根PIN型氮化镓微米线。绝缘层6上设置有窗口区域暴露单根PIN型氮化镓微米线远离下电极层2表面的表面。绝缘层6为二氧化硅或光刻胶,优选光刻胶,厚度为5~6μm。在一优选实施例中绝缘层选用二氧化硅绝缘层,在二氧化硅绝缘层上设置窗口图案掩膜层后,经BOE刻蚀液刻蚀在该二氧化硅绝缘层上形成窗口区域。
上电极层7设置于绝缘层6的表面,通过窗口区域与单根PIN型氮化镓微米线的表面接触。上电极层7优选透明导电ITO层,厚度为100~200nm。上电极层与下电极层之间通过绝缘层电隔离,经pin同质结形成导电通道,得到垂直结构的紫外光电探测器。该紫外光电探测器的结构简单,同质外延生长的i型氮化镓和p型氮化镓缺陷密度低,单根PIN型氮化镓微米线形成同质p-i-n结,利用同质结中的内建电场将光生载流子在无偏压的条件下快速有效的分离,使得该紫外探测器具有暗电流小、响应度高和工作稳定性好等优点。
基于上述PIN型氮化镓微米线的紫外光电探测器,本发明还提供了该紫外光探测器的制备方法。
首先,选用硅<100>基底1-1,硅基底的厚度优选为300~900微米,更优选为300~600微米。本发明中氮化镓微米线的制作方法对Si基底的来源没有特殊要求,只要使用成熟的商业产品即可。接着在硅基底上设置掩膜层,掩膜层的材料优选二氧化硅,厚度优选200~300nm。优选地,采用等离子体增强化学沉积(PECVD)工艺形成薄二氧化硅掩膜层。通过光刻工艺在掩膜层上形成条纹状图案。在一优选实施例中,在二氧化硅掩膜层上旋涂上光刻胶,软烘之后经曝光和显影后,在光刻胶层上形成周期性条纹图案。接着采用氟化铵配成的刻蚀液(BOE)对二氧化硅掩膜层进行选择性腐蚀,也就是对没有光刻胶保护的二氧化硅层进行刻蚀,在使用BOE刻蚀之后用丙酮浸泡数次至完全去掉光刻胶层,即可在Si<100>基底上形成条纹状的二氧化硅掩膜层1-2。接着配置碱性刻蚀液,碱性溶液主要为氢氧化钾和异丙醇组成的刻蚀液,在一优选实施例中,氢氧化钾选用40g,异丙醇选用10mL,水选用100mL,混合而成。对Si<100>衬底进行湿法刻蚀,刻蚀之后用去离子水清洗去除基底表面的碱溶液,进而在Si<100>基底表面刻蚀形成多个平行排列的条状凹槽,形成图案化硅基底。在一具体实施例中,如图2所示,条状凹槽的截面优选倒梯形,倒梯形凹槽的上开口宽度为9~14微米,深度为6~8微米,底部宽度为5~9微米,相邻梯形凹槽的相邻距离为5~9微米。在一些实施例中,部分掩膜层1-2在刻蚀的过程中会被刻蚀,相邻梯形凹槽间隔部分仍然保留有掩膜层。
接着以表面设置有条状凹槽的硅<100>基底作为生长衬底,沿凹槽侧壁依次外延生长氮化铝缓冲层、n型氮化镓微米线核、i型氮化镓层和p型氮化镓层,形成PIN型氮化镓微米线阵列。在一优选实施例中,选用金属有机化学气相沉积(MOCVD)工艺生长氮化镓微米线。取出泡在去离子水中的图案化Si基底迅速用氮气吹干,尽快转移到MOCVD系统中,避免硅基底在空气中暴露太长时间使得硅氧化成二氧化硅。本发明利用晶体表面各向异性的特点,选择性地在图案化Si<100>基底的各梯形凹槽侧壁上优先外延生长一层掺杂Si的氮化铝缓冲层,然后在氮化铝缓冲层上依次外延生长掺杂硅的n型氮化镓微米线核、未掺杂的i型氮化镓层和掺杂Mg的p型氮化镓层,得到PIN型氮化镓微米线阵列。反应气体中采用三甲基镓作为镓源,氨气为氮源。如图3所示,外延生长获得的微米线的截面为梯形。在一优选实施例中,n型氮化镓微米线核的截面呈梯形,厚度为4μm,未掺杂的i型氮化镓层覆盖于n型氮化镓微米线核远离硅基底的表面,厚度为300nm,掺杂Mg的p型氮化镓层覆盖于i型氮化镓层的表面,厚度为100nm。
本发明通过利用晶体表面各向异性的特点生长出PIN型氮化镓微米线阵列,以该微米线为基础的探测器相对于薄膜型的探测器,主要避免了制备材料层时出现的大面积晶格不匹配和出现的大量位错等缺陷,从而使微米线具有更好的晶体质量,提升了微米线探测器的性能。
接着剥离n型氮化镓微米线核,获得PIN型氮化镓微米线。在一优选实施例中,选用氢氟酸和硝酸混合而成的剥离液剥离得到单根的PIN型氮化镓微米线。具体地,剥离液以氢氟酸、硝酸和水按照比例混合配制而成。硝酸、氢氟酸和水的体积比为5:(2~1):1。优选地,硝酸、氢氟酸和水的体积比为5:1:1。该优选比例配制而成的混合溶液反应速率更加适中。所用氢氟酸的浓度为30%,硝酸的浓度为70%。将上述生长有PIN型氮化镓微米线阵列的Si基底浸泡在剥离液中,反应5分钟后得到剥离后带有n型氮化铝缓冲层的PIN型氮化镓微米线,接着,将剥离的微米线浸泡在优选120℃的磷酸溶液中去除氮化铝缓冲层,获得PIN型氮化镓微米线,如图4-5。
接着,转移单根PIN型氮化镓微米线至带有下电极层的目标基底上,n型氮化镓微米线与下电极层接触。在一具体实施例中,单根PIN型氮化镓微米线的长度优选200~500μm,目标基底优选玻璃衬底。目标基底的表面设置有下电极层,下电极层优选金或ITO,厚度为60~200nm。具体地,可以选择毛细管挑单根氮化镓微米线至目标基底上。接着,加热该目标基底,优选地,在120℃下加热该目标基底以使得微米线与下电极更好地接触。
之后在所述目标基底上沉积绝缘层覆盖该单根PIN型氮化镓微米线。在一实施例中,选用蒸镀工艺沉积二氧化硅绝缘层覆盖该氮化镓微米线。接着,刻蚀绝缘层形成窗口,该窗口暴露PIN型氮化镓微米线远离下电极层的表面。具体地,在绝缘层上形成掩膜图案,选用BOE溶液刻蚀二氧化硅绝缘层形成窗口。在另一优选实施例中,选择光刻胶作为绝缘层,旋涂5~6μm厚度的光刻胶层,同时光刻出窗口,该窗口暴露PIN型氮化镓微米线远离下电极层的表面。
接着沉积上电极层,上电极层通过窗口与p型氮化镓层接触。优选地,采用磁控溅射ITO作为上电极层,上电极层的厚度优选100~200nm。由于二氧化硅绝缘层的存在,使得上电极层与下电极层之间隔离,通过n型氮化镓-i型氮化镓-p型氮化镓构成的同质结形成导电通道,得到垂直结构的PIN型氮化镓微米线紫外光电探测器。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种基于PIN型氮化镓微米线的紫外光电探测器,包括基底,其特征在于:
下电极层,设置于所述基底表面;
单根PIN型氮化镓微米线,沿长度方向设置于所述下电极层表面,其包括截面呈梯形的n型氮化镓微米线核,和依次附着于所述n型氮化镓微米线核表面的i型氮化镓层及p型氮化镓层,其中所述n型氮化镓微米线核与所述下电极层接触,所述i型氮化镓层设置于所述n型氮化镓微米线上远离所述下电极层的表面,所述p型氮化镓层设置于所述i型氮化镓层的表面;
绝缘层,设置于所述下电极层表面,包裹所述单根PIN型氮化镓微米线,并暴露所述单根PIN型氮化镓微米线远离所述下电极层表面的表面;
上电极层,设置于所述绝缘层表面,并覆盖所述单根PIN型氮化镓微米线的表面。
2.根据权利要求1的所述紫外光电探测器,其特征在于,所述单根PIN型氮化镓微米线中,所述n型氮化镓微米线核的厚度为3~5μm,所述i型氮化镓层的厚度为200~400nm,所述p型氮化镓层的厚度为50~150nm。
3.根据权利要求1或2的所述紫外光电探测器,其特征在于,所述绝缘层为二氧化硅或光刻胶。
4.根据权利要求3的所述紫外光电探测器,其特征在于,所述绝缘层优选光刻胶,其厚度为5~6μm;所述单根PIN型氮化镓微米线的长度优选为200~500μm。
5.根据权利要求2的所述紫外光电探测器,其特征在于,所述n型氮化镓微米线核的厚度优选约4μm,所述i型氮化镓层的厚度优选约300nm,所述p型氮化镓层的厚度优选约100nm。
6.根据权利要求1或2的所述紫外光电探测器,其特征在于,所述上电极层优选透明导电ITO层,厚度为100~200nm;所述下电极层优选Au或ITO层,厚度为60~200nm。
7.一种基于PIN型氮化镓微米线的紫外光电探测器的制备方法,其特征在于,其包括以下步骤:
以表面设置有条状凹槽的硅<100>基底作为生长衬底,沿所述凹槽侧壁依次外延生长氮化铝缓冲层、n型氮化镓微米线核、i型氮化镓层和p型氮化镓层;
剥离带有所述氮化铝缓冲层的n型氮化镓微米线核,之后去除所述氮化铝缓冲层获得PIN型氮化镓微米线;
转移单根所述PIN型氮化镓微米线至带有下电极层的目标基底上,所述n型氮化镓微米线与所述下电极层接触;
在所述目标基底上沉积绝缘层覆盖所述PIN型氮化镓微米线;
刻蚀所述绝缘层形成窗口,所述窗口暴露所述PIN型氮化镓微米线远离所述下电极层的表面;
沉积上电极层,所述上电极层通过所述窗口与所述p型氮化镓层接触。
8.根据权利要求7的所述制备方法,其特征在于,将所述带有氮化铝缓冲层的n型氮化镓微米线核,浸泡在优选120℃的磷酸溶液中去除所述氮化铝缓冲层。
9.根据权利要求7或8的所述制备方法,其特征在于,将单根所述PIN型氮化镓微米线转移至所述目标基底上之后,在所述目标基底上沉积绝缘层之前,还包括加热所述目标基底。
10.根据权利要求7或8的所述制备方法,其特征在于,所述凹槽的截面呈倒梯形,所述倒梯形上开口宽度为9~16μm,深度为5.5~7.5μm,底部宽度为5.5~9μm,相邻梯形凹槽的边界距离为5.5~9μm。
CN202011494811.3A 2020-12-17 2020-12-17 一种基于pin型氮化镓微米线的紫外光电探测器及其制备方法 Active CN112614910B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011494811.3A CN112614910B (zh) 2020-12-17 2020-12-17 一种基于pin型氮化镓微米线的紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011494811.3A CN112614910B (zh) 2020-12-17 2020-12-17 一种基于pin型氮化镓微米线的紫外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112614910A true CN112614910A (zh) 2021-04-06
CN112614910B CN112614910B (zh) 2023-07-21

Family

ID=75240089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011494811.3A Active CN112614910B (zh) 2020-12-17 2020-12-17 一种基于pin型氮化镓微米线的紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112614910B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809191A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 一种碳化硅基氮化镓微米线阵列光电探测器及制备方法
CN113809153A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 碳化硅基铝镓氮/氮化镓微米线hemt功率器件及制备方法
CN113809192A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 一种梯形氮化镓微米线阵列光电探测器及其制备方法
CN114024209A (zh) * 2021-10-13 2022-02-08 华南师范大学 一种氮化镓基微米线激光器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110036396A1 (en) * 2008-04-30 2011-02-17 The Regents Of The University Of California Method and apparatus for fabricating optoelectromechanical devices by structural transfer using re-usable substrate
US20110101419A1 (en) * 2009-10-30 2011-05-05 Sanyo Electric Co., Ltd. Semiconductor device, method of manufacturing semiconductor device and optical apparatus
US20110240959A1 (en) * 2008-12-19 2011-10-06 Glo Ab Nanostructured device
CN108156828A (zh) * 2015-07-31 2018-06-12 科莱约纳诺公司 用于在石墨基板上生长纳米线或纳米角锥体的方法
CN108987545A (zh) * 2018-07-23 2018-12-11 华南师范大学 一种基于GaN微米线阵列发光二极管及制备方法
CN110416414A (zh) * 2019-08-02 2019-11-05 华南师范大学 一种紫外探测器及其制备方法
CN111725338A (zh) * 2019-03-19 2020-09-29 华南师范大学 一种微米线阵列异质结紫外光探测器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110036396A1 (en) * 2008-04-30 2011-02-17 The Regents Of The University Of California Method and apparatus for fabricating optoelectromechanical devices by structural transfer using re-usable substrate
US20110240959A1 (en) * 2008-12-19 2011-10-06 Glo Ab Nanostructured device
US20110101419A1 (en) * 2009-10-30 2011-05-05 Sanyo Electric Co., Ltd. Semiconductor device, method of manufacturing semiconductor device and optical apparatus
CN108156828A (zh) * 2015-07-31 2018-06-12 科莱约纳诺公司 用于在石墨基板上生长纳米线或纳米角锥体的方法
CN108987545A (zh) * 2018-07-23 2018-12-11 华南师范大学 一种基于GaN微米线阵列发光二极管及制备方法
CN111725338A (zh) * 2019-03-19 2020-09-29 华南师范大学 一种微米线阵列异质结紫外光探测器及其制备方法
CN110416414A (zh) * 2019-08-02 2019-11-05 华南师范大学 一种紫外探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU WANG 等: ""Optimization of All Figure-of-Merits in Well-Aligned GaN Microwire Array Based Schottky UV Photodetectors by Si Doping"", 《ACS PHOTONICS》, vol. 6, no. 8 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113809191A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 一种碳化硅基氮化镓微米线阵列光电探测器及制备方法
CN113809153A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 碳化硅基铝镓氮/氮化镓微米线hemt功率器件及制备方法
CN113809192A (zh) * 2021-08-11 2021-12-17 浙江芯国半导体有限公司 一种梯形氮化镓微米线阵列光电探测器及其制备方法
CN113809153B (zh) * 2021-08-11 2024-04-16 浙江芯科半导体有限公司 碳化硅基铝镓氮/氮化镓微米线hemt功率器件及制备方法
CN114024209A (zh) * 2021-10-13 2022-02-08 华南师范大学 一种氮化镓基微米线激光器及其制备方法
CN114024209B (zh) * 2021-10-13 2023-12-22 华南师范大学 一种氮化镓基微米线激光器及其制备方法

Also Published As

Publication number Publication date
CN112614910B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
CN112614910B (zh) 一种基于pin型氮化镓微米线的紫外光电探测器及其制备方法
KR101948206B1 (ko) 태양 전지와, 이의 제조 방법
US8203072B2 (en) Solar cell and method of manufacturing the same
CN110416414B (zh) 一种紫外探测器及其制备方法
CN106098836B (zh) 通讯用雪崩光电二极管及其制备方法
US10854764B2 (en) Solar cell and method for manufacturing the same
CN111725338B (zh) 一种微米线阵列异质结紫外光探测器及其制备方法
US20160284899A1 (en) Solar cell and method of manufacturing the same
US4818337A (en) Thin active-layer solar cell with multiple internal reflections
KR101110825B1 (ko) 이면 접합형 태양 전지 및 그 제조 방법
KR101897723B1 (ko) 광기전력소자 및 그 제조 방법
CN105118886A (zh) 一种高响应度雪崩光电二极管制备方法
CN110707218A (zh) 一种氮化镓微米线阵列光电探测器及其制备方法
KR101086074B1 (ko) 실리콘 나노 와이어 제조 방법, 실리콘 나노 와이어를 포함하는 태양전지 및 태양전지의 제조 방법
CN112382688B (zh) 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法
CN109273561A (zh) 一种msm光电探测器的制备方法
KR100908711B1 (ko) 박막형 실리콘 태양 전지
KR102244840B1 (ko) 태양 전지 및 이의 제조 방법
KR101128838B1 (ko) 태양 전지 및 그 제조 방법
CN113809192A (zh) 一种梯形氮化镓微米线阵列光电探测器及其制备方法
CN210866245U (zh) 一种氮化镓微米线阵列光电探测器
CN112909109B (zh) 一种基于横向桥接pn结的自供电纳米紫外探测器
CN113054048A (zh) 一种蓝绿光增强型的硅基雪崩光电二极管
CN112614943B (zh) 一种微米级的核壳异质结自驱动紫外探测器及其制备方法
KR101658677B1 (ko) 태양 전지 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant