CN112611373B - 一种近地空间短波红外星敏感器流场气动热效应分析方法 - Google Patents

一种近地空间短波红外星敏感器流场气动热效应分析方法 Download PDF

Info

Publication number
CN112611373B
CN112611373B CN202011630795.6A CN202011630795A CN112611373B CN 112611373 B CN112611373 B CN 112611373B CN 202011630795 A CN202011630795 A CN 202011630795A CN 112611373 B CN112611373 B CN 112611373B
Authority
CN
China
Prior art keywords
star
flow field
short
wave infrared
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011630795.6A
Other languages
English (en)
Other versions
CN112611373A (zh
Inventor
廖真
汪洪源
王秉文
臧云朝
武少冲
魏政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202011630795.6A priority Critical patent/CN112611373B/zh
Publication of CN112611373A publication Critical patent/CN112611373A/zh
Application granted granted Critical
Publication of CN112611373B publication Critical patent/CN112611373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/02Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means
    • G01C21/025Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by astronomical means with the use of startrackers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Astronomy & Astrophysics (AREA)
  • Automation & Control Theory (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

一种近地空间短波红外星敏感器流场气动热效应分析方法,本发明属于气动光学领域,涉及星敏感器在气动条件下的辐射分析。本发明是为了解决目前的星敏感器气动光学效应分析未考虑流场气动热效应对星敏感器的影响导致的分析星敏感器是否能探测到恒星时的准确率低的问题。本发明包括:判断恒星是否在短波红外星敏感器视场范围内;获取在视场范围内的恒星在2MASS星表内的星等信息;利用短波红外色指数计算视场范围内恒星光谱;根据流场物理特性逐层计算流场吸收系数;根据流场吸收系数逐层迭代计算衰减的星光光谱辐射亮度和流场背景光谱辐射亮度;计算视场内恒星信噪比;将获取的信噪比与短波红外星敏感器的探测极限信噪比进行比较,并判断是否能探测到。

Description

一种近地空间短波红外星敏感器流场气动热效应分析方法
技术领域
本发明属于气动光学领域,涉及星敏感器在气动条件下的辐射分析,具体是一种近地空间短波红外星敏感器流场气动热效应分析方法。
背景技术
星敏感器是以天球坐标系为参照系,以恒星为探测目标的高精度姿态测量仪器,主要由光学系统、图像传感器电路和控制与数据处理电路构成。通过图像传感器拍摄恒星图像,由数据处理电路对所拍摄的图像进行处理,提取出所需的星点位置和亮度信息,进行星图匹配,计算出星敏感器的三轴姿态,完成飞行器在空间惯性坐标系的姿态测量,为卫星、深空探测器等各类航天器提供高精度的姿态信息。由于作为光测设备的星敏感器受背景杂光的影响较大,所以以往星敏感器仅用于卫星、宇宙飞船、火箭等空间航天器的导航。传统星敏感器一般为可见光波段,在近地空间工作时受天空杂散光影响,难以满足全天时的应用需求,因此,越来越多的人开始研究全天时短波红外星敏感器。
目前的全天时短波红外星敏感器波长比传统的红外星敏感器更长,但是更易受热辐射影响,当应用于飞机、导弹等高速运动平台时,流场温度迅速升高,产生强烈的流场气动热辐射效应,会影响短波红外星敏感器正常工作。目前的星敏感器气动光学效应分析大多是针对可见光波段,可见光波段星敏感器波段短,受流场气动热辐射影响较小,但是分析气动光学效应时大多未考虑流场热效应的影响,导致分析星敏感器是否能探测到恒星时的准确率低。
发明内容
本发明目的是为了解决目前的星敏感器气动光学效应分析未考虑流场气动热效应对星敏感器的影响导致的分析星敏感器是否能探测到恒星时的准确率低的问题,而提出了一种近地空间短波红外星敏感器流场气动热效应分析方法,具体过程为:
步骤一、根据恒星的坐标判断恒星是否在短波红外星敏感器视场范围内;
步骤二、获取在短波红外星敏感器视场范围内的恒星在2MASS星表内的星等信息;
步骤三、利用短波红外色指数计算视场范围内恒星光谱;
步骤四、根据流场物理特性逐层计算流场吸收系数;
步骤五、根据流场吸收系数逐层迭代计算衰减的星光光谱辐射亮度和流场背景光谱辐射亮度;
步骤六、根据步骤三获得恒星光谱和步骤五获得的光谱辐射亮度和流场背景光谱辐射亮度计算视场内恒星信噪比;
步骤七、将获取的信噪比与短波红外星敏感器的探测极限信噪比进行比较,若获取的信噪比大于探测极限信噪比,则能够探测到该恒星,否则不能探测到该恒星。
本发明的有益效果为:
本发明考虑了气动光学效应时大多未考虑流场热效应对星敏感器的成像影响,基于2MASS星表相关信息,结合逐线积分法计算流场光谱特性,并逐层迭代计算星光衰减能量与背景热辐射能量,进而分析全天时短波红外星敏感器在气动条件下的探测能力,增加了分析星敏感器是否能探测到恒星的准确率。
附图说明
图1为一种近地空间短波红外星敏感器流场气动热效应分析方法的流程图;
图2为2MASS星表光谱响应曲线;
图3为建立的恒星短波红外色指数与恒星有效温度关系曲线;
图4为逐线积分法示意图。
具体实施方式
具体实施方式一:本实施方式一种近地空间短波红外星敏感器流场气动热效应分析方法具体过程为:
步骤一、根据恒星的坐标判断恒星是否在短波红外星敏感器视场范围内:
αi∈(αg-FOVx/2cosδgg+FOVx/2cosδg)
δi∈(δg-FOVy/2,δg+FOVy/2)
其中,(αii)为第i颗恒星在天体坐标系下的坐标,(αgg)为星敏感器光轴指向;FOVx和FOVy分别表示x轴和y轴方向视场大小;
所述恒星的位置通过查阅星表获得;
步骤二、获取在短波红外星敏感器视场范围内的恒星在2MASS星表内的星等信息:
步骤三、利用短波红外色指数计算视场范围内恒星光谱,具体过程为:
步骤三一、将恒星短波红外色指数信息转化为恒星有效温度,恒星短波红外色指数和恒星有效温度函数关系为:
Figure BDA0002876381100000021
其中,
Figure BDA0002876381100000031
其中,m1、m2为两个不同波段恒星星等,m1-m2是短波红外色指数,B(λ,T')为黑体光谱辐射亮度,T0_vega为织女星恒星有效温度,Tstar恒星有效温度,S(λ)为2MASS星表响应曲线,λ1是恒星波段上限,λ2是恒星波段下限,k取1、2,分别对应m1、m2星等所在波段,Lk(T)为黑体光谱辐射亮度B(λ,T)与2MASS星响应曲线S(λ)乘积对波长的积分,T'取T0_vega或Tstar
步骤三二、基于普朗克黑体辐射公式计算恒星光谱:
Figure BDA0002876381100000032
其中,Em(λ)为该星的光谱辐射照度,m是星等,E0(λ)是0星等时光谱辐照度,m是恒星星等;
其中,
Figure BDA0002876381100000033
其中,M(λ,Tstar)为恒星光谱辐射出射度,λ1波段上限,λ2波段下限,β是对应波段0星等恒星2MASS星表的辐照度;
其中,
Figure BDA0002876381100000034
其中,h为普朗克常数,c为光速,k为玻尔兹曼常数,Tstar为恒星有效温度,λ是恒星波段;
步骤四、根据流场物理特性逐层计算流场吸收系数,具体过程为:
步骤四一、建立近地空间全天时短波红外星敏感器工作平台的有限元分析模型,输入气动条件下流场的物理特性,获取每层流场温度场T、压强场信息P;
步骤四二、按视轴方向将流场划分为n层,每层长度为Δs,根据每层流场温度T,计算温度T下的谱线强度积分:
Figure BDA0002876381100000041
Si,j(T)为第i层介质第j条谱线分子的谱线积分强度,h为普朗克常数,k为玻尔兹曼常数,η0为谱线中心位置,E"为低态谱项,QV(T)为振动配分函数,QR(T)为转动配分函数,S(T0)是P0=1.01325×105Pa、T0=296K条件下的谱线强度,QV(T0)是P0=1.01325×105Pa、T0=296K条件下的振动配分函数,QR(T0)是P0=1.01325×105Pa、T0=296K条件下的转动配分函数,c为光速,P0是标准态的压强,T0是标准态的温度。
步骤四三、根据谱线积分强度逐线积分,计算水和二氧化碳吸收系数:
Figure BDA0002876381100000042
式中,κi,η为第i层介质吸收系数,F(η-ηj)为谱线线型函数,ηj为第j条谱线中心波数,N为分子数密度:
其中,
Figure BDA0002876381100000043
步骤五、逐层迭代计算衰减的星光光谱辐射亮度和流场背景光谱辐射亮度,具体过程为:
Li,λ=τi,λLi-1,λ+(1-τi,λ)Bi,λ
Figure BDA0002876381100000044
其中,Li,λ是第i层流场背景光谱辐射亮度,
Figure BDA0002876381100000045
是星光光谱辐射亮度,Bi,λ为黑体辐射亮度,τi,λ为第i层流场气体透过率,Li-1,λ第i-1层流场背景光谱辐射亮度,
Figure BDA0002876381100000046
第i-1层星光光谱辐射亮度。
其中,τi,λ=exp(-Δsκi,η)
其中,Δs为该层流场长度。
步骤六、计算视场内恒星信噪比大小:
Figure BDA0002876381100000051
其中,K0为星点中心像元占星点总能量的比值;
Figure BDA0002876381100000052
为读出噪声;Idark为暗电流;tint为曝光时间;Sm是恒星星信号电子数,Sbgk是背景辐射电子数。
其中,
Figure BDA0002876381100000053
Figure BDA0002876381100000054
式中,D为光学系统孔径;τopt(λ)为光学系统透过率;tint为曝光时间;Wph为单个光子能量;Q0为量子效率,Ω是单位项元所占立体角,
Figure BDA0002876381100000055
是第n层星光光谱辐射亮度,Ln,λ是第n层流场背景光谱辐射亮度。
步骤七、将获取的信噪比与短波红外星敏感器的探测极限信噪比进行比较,若获取的信噪比大于探测极限信噪比,则能够探测到该恒星,否则不能探测到该恒星。

Claims (6)

1.一种近地空间短波红外星敏感器流场气动热效应分析方法,其特征在于所述方法具体过程为:
步骤一、根据恒星的坐标判断恒星是否在短波红外星敏感器视场范围内;
步骤二、获取在短波红外星敏感器视场范围内的恒星在2MASS星表内的星等信息;
步骤三、利用短波红外色指数计算视场范围内恒星光谱,具体过程为:
步骤三一、将恒星短波红外色指数信息转化为恒星有效温度,恒星短波红外色指数和恒星有效温度函数关系为:
Figure FDA0003559150160000011
其中,
Figure FDA0003559150160000012
其中,m1、m2为两个不同波段恒星星等,m1-m2是短波红外色指数,B(λ,T')为黑体光谱辐射亮度,T0_vega为织女星恒星有效温度,Tstar恒星有效温度,S(λ)为2MASS星表响应曲线,λ1是恒星波段上限,λ2是恒星波段下限,k取1或2,分别对应m1、m2星等所在波段,Lk(T)为黑体光谱辐射亮度B(λ,T)与2MASS星响应曲线S(λ)乘积对波长的积分,T'取T0_vega或Tstar
步骤三二、基于普朗克黑体辐射公式计算恒星光谱:
Figure FDA0003559150160000013
其中,Em(λ)为该星的光谱辐射照度,m是星等,E0(λ)是0星等时光谱辐照度,m是恒星星等;
步骤四、根据流场物理特性逐层计算流场吸收系数,具体过程为:
步骤四一、建立近地空间全天时短波红外星敏感器工作平台的有限元分析模型,输入气动条件下流场的物理特性,获取流场温度场T、压强场信息P;
步骤四二、按视轴方向将流场划分为n层,每层长度为Δs,根据每层流场温度T,计算温度T下的谱线强度积分:
Figure FDA0003559150160000021
Si,j(T)为第i层介质第j条谱线分子的谱线积分强度,h为普朗克常数,k为玻尔兹曼常数,η0为谱线中心位置,E"为低态谱项,QV(T)为振动配分函数,QR(T)为转动配分函数,S(T0)是P0=1.01325×105Pa、T0=296K条件下的谱线强度,QV(T0)是P0=1.01325×105Pa、T0=296K条件下的振动配分函数,QR(T0)是P0=1.01325×105Pa、T0=296K条件下的转动配分函数,c为光速,P0是标准态的压强,T0是标准态的温度;
步骤四三、根据谱线积分强度逐线积分,计算水和二氧化碳吸收系数:
Figure FDA0003559150160000022
其中,
Figure FDA0003559150160000023
式中,κi,η为第i层介质吸收系数,F(η-ηj)为谱线线型函数,ηj为第j条谱线中心波数,N为分子数密度;
步骤五、根据流场吸收系数逐层迭代计算衰减的星光光谱辐射亮度和流场背景光谱辐射亮度,具体过程为:
Li,λ=τi,λLi-1,λ+(1-τi,λ)Bi,λ
Figure FDA0003559150160000024
其中,Li,λ是第i层流场背景光谱辐射亮度,
Figure FDA0003559150160000025
是第i层星光光谱辐射亮度,Bi,λ为黑体辐射亮度,τi,λ为第i层流场气体透过率,Li-1,λ第i-1层流场背景光谱辐射亮度,
Figure FDA0003559150160000026
第i-1层星光光谱辐射亮度;
步骤六、根据步骤三获得恒星光谱和步骤五获得的光谱辐射亮度和流场背景光谱辐射亮度计算视场内恒星信噪比,具体过程为:
Figure FDA0003559150160000027
其中,K0为星点中心像元占星点总能量的比值;
Figure FDA0003559150160000028
为读出噪声;Idark为暗电流;tint为曝光时间;Sm是恒星星信号电子数,Sbgk是背景辐射电子数;
步骤七、将获取的信噪比与短波红外星敏感器的探测极限信噪比进行比较,若获取的信噪比大于探测极限信噪比,则能够探测到该恒星,否则不能探测到该恒星。
2.根据权利要求1所述的一种近地空间短波红外星敏感器流场气动热效应分析方法,其特征在于:所述步骤一中的根据恒星的坐标判断恒星是否在短波红外星敏感器视场范围内,具体过程为:
αi∈(αg-FOVx/2cosδgg+FOVx/2cosδg)
δi∈(δg-FOVy/2,δg+FOVy/2)
其中,(αii)为第i颗恒星在天体坐标系下的坐标,(αgg)为星敏感器光轴指向;FOVx和FOVy分别表示x轴和y轴方向视场大小;
所述恒星的坐标通过查阅星表获得。
3.根据权利要求2所述的一种近地空间短波红外星敏感器流场气动热效应分析方法,其特征在于:
Figure FDA0003559150160000031
其中,M(λ,Tstar)为恒星光谱辐射出射度,λ1波段上限,λ2波段下限,β是对应波段0星等恒星2MASS星表的辐照度。
4.根据权利要求3所述的一种近地空间短波红外星敏感器流场气动热效应分析方法,其特征在于:
Figure FDA0003559150160000032
其中,h为普朗克常数,c为光速,k为玻尔兹曼常数,Tstar为恒星有效温度,λ是恒星波段。
5.根据权利要求4所述的一种近地空间短波红外星敏感器流场气动热效应分析方法,其特征在于:τi,λ=exp(-Δsκi,η)
其中,Δs为该层流场长度。
6.根据权利要求5所述的一种近地空间短波红外星敏感器流场气动热效应分析方法,其特征在于:
Figure FDA0003559150160000033
Figure FDA0003559150160000041
式中,D为光学系统孔径;τopt(λ)为光学系统透过率;tint为曝光时间;Wph为单个光子能量;Q0为量子效率,Ω是单位项元所占立体角,
Figure FDA0003559150160000042
是第n层星光光谱辐射亮度,Ln,λ是第n层流场背景光谱辐射亮度。
CN202011630795.6A 2020-12-30 2020-12-30 一种近地空间短波红外星敏感器流场气动热效应分析方法 Active CN112611373B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011630795.6A CN112611373B (zh) 2020-12-30 2020-12-30 一种近地空间短波红外星敏感器流场气动热效应分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011630795.6A CN112611373B (zh) 2020-12-30 2020-12-30 一种近地空间短波红外星敏感器流场气动热效应分析方法

Publications (2)

Publication Number Publication Date
CN112611373A CN112611373A (zh) 2021-04-06
CN112611373B true CN112611373B (zh) 2022-05-20

Family

ID=75253082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011630795.6A Active CN112611373B (zh) 2020-12-30 2020-12-30 一种近地空间短波红外星敏感器流场气动热效应分析方法

Country Status (1)

Country Link
CN (1) CN112611373B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114993476B (zh) * 2022-08-03 2022-11-04 成都众享天地网络科技有限公司 一种烟雾干扰的红外辐射亮度计算方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7447591B2 (en) * 2004-10-18 2008-11-04 Trex Enterprises Corp. Daytime stellar imager for attitude determination
CN101487692B (zh) * 2009-01-16 2011-02-09 中国人民解放军国防科学技术大学 轻小型星敏感器光学成像装置
US9927510B2 (en) * 2014-08-06 2018-03-27 The Charles Stark Draper Laboratory, Inc. Star tracker
JP6630944B2 (ja) * 2016-01-19 2020-01-15 国立大学法人島根大学 ラマン散乱光の観測方法、ラマン散乱光の観測装置及びプログラム
CN107832532A (zh) * 2017-11-14 2018-03-23 哈尔滨工业大学 一种气动光传输效应对高速飞行器成像质量数值计算方法
CN108181916B (zh) * 2017-12-29 2020-04-24 清华大学 小卫星相对姿态的控制方法及装置
CN108645399B (zh) * 2018-04-20 2019-10-22 北京控制工程研究所 一种星敏感器导航星表筛选方法
CN110285808B (zh) * 2019-07-10 2021-04-27 北京航空航天大学 一种基于无限维空间的用于星敏感器的仪器星等转换方法

Also Published As

Publication number Publication date
CN112611373A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
Barnes et al. Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1
Fujisada et al. Design and preflight performance of ASTER instrument protoflight model
Wolfe Introduction to infrared system design
CN112611373B (zh) 一种近地空间短波红外星敏感器流场气动热效应分析方法
Miles et al. High-Resolution Mid-Infrared Imaging of Infrared-luminous Galaxies
Klindžić et al. LOUPE: observing Earth from the Moon to prepare for detecting life on Earth-like exoplanets
Žilková et al. Space debris spectroscopy: Specular reflections at LEO regime
US20240044715A1 (en) Method and system for building short-wave, medium-wave and long-wave infrared spectrum dictionary
Xu et al. Stellar radiation modeling and image simulation for airborne daytime star sensor
Hailong et al. Designing considerations for airborne star tracker during daytime
Liao et al. Analysis of flow field aero-optical effects on the imaging by near-earth space all-time short-wave infrared star sensors
Wang et al. Near-earth space star map simulation method of short-wave infrared star sensor
CN113701886B (zh) 一种复杂天气下偏振光成像系统能量计算方法
Kervin et al. Small satellite characterization technologies applied to orbital debris
CN104655129A (zh) 一种确定ccd星敏感器光学系统主要参数的方法
Alvarez-Ríos et al. Optical modeling and simulation of subpixel target infrared detection
Jenniskens et al. Surface heating from remote sensing of the hypervelocity entry of the NASA Genesis Sample Return Capsule
Mathew et al. Methane sensor for Mars
Eichmann et al. Radiometric temperature analysis of the Hayabusa spacecraft re-entry
Ballard et al. Recent developments in infrared technology
Murphy-Morris et al. GOES Sounder overview
Fialho Improved star identification algorithms and techniques for monochrome and color star trackers
Qiao et al. Investigation of factors affecting the reflectance spectra of GEO Satellites
Xu et al. Star Image Simulation for Starlight Refraction Sensor
Rieken et al. Aftbody Aeroheating Wind Tunnel Measurements on a Hypersonic Inflatable Aerodynamic Decelerator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant