CN112600243B - 一种混合电网发电装置 - Google Patents
一种混合电网发电装置 Download PDFInfo
- Publication number
- CN112600243B CN112600243B CN202011431801.5A CN202011431801A CN112600243B CN 112600243 B CN112600243 B CN 112600243B CN 202011431801 A CN202011431801 A CN 202011431801A CN 112600243 B CN112600243 B CN 112600243B
- Authority
- CN
- China
- Prior art keywords
- power generation
- generation system
- energy
- power
- controllable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00022—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
- H02J3/48—Controlling the sharing of the in-phase component
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/28—The renewable source being wind energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/40—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/242—Home appliances
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S40/00—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
- Y04S40/12—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
- Y04S40/126—Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wireless data transmission
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明提出一种混合电网发电装置,所述发电装置包括第一发电系统和第二发电系统以及中央控制装置,所述第一发电系统和第二发电系统均连接至电能存储装置;所述第一发电系统、第二发电系统、电能存储装置均与可控用电设备连接;基于所述电能存储装置的存储状态、所述第二发电系统的运行状态和所述可控用电设备的控制参数,调节所述第一发电系统的运行状态;中央控制装置连接所述可控用电设备和所述第二发电系统,获取所述可控用电设备的控制参数和所述第二发电系统的运行状态,调节所述第一发电系统的运行状态。本发明的技术方案能够使得混合微电网系统中节能发电和耗能发电的协调统一,在最大程度的实现资源节能的同时确保设备正常用电。
Description
技术领域
本发明属于混合电网运营技术领域,尤其涉及一种混合电网发电装置。
背景技术
对于无法接入强大公用电网的社区和工业或商业设施而言,经济型电力一直是一项挑战。因此,必须依赖于发动机或涡轮驱动的发电机组,而此类发电机组虽然可靠性高,但发电成本通常以比大型电站更高。
为了降低成本,将风能或太阳能源等新的经济型可再生能源与传统柴油或燃气发电相结合。此类装置称为混合型微电网,还采用了储能装置以提高电力系统的稳定性并进一步降低能源成本。相对于燃料价格而言,风能和太阳能成本极低,而且储能成本更低,因此混合型微电网适合多种应用,包括单个建筑物、度假村、矿场、偏远村庄、小岛屿和其他区域。最具有发展前景的应用为总功率需求从100kW至20MW的应用。风能或太阳能降低了对于发电机组发电的依赖,节约了燃料,并且节省了一小部分维护成本。在大型电力公用基础设施无法覆盖的区域,混合型微电网概念正迅速成为提供可靠的低成本电力的首选方案。
中国发明公开文本CN111884253A公开一种风光储充校园微电网系统,包括分布式发电单元和混合储能单元,所述分布式发电单元与所述混合储能单元相连;所述分布式发电单元包括光伏系统和风力发电机组,所述混合储能单元包括超级电容和锂电池组。该发明还公开了一种如上所述的微电网系统的控制方法,控制风光储充校园微电网系统在并网模式与离网模式之间切换,以及基于增强学习对混合储能单元进行能源的优化管理。
申请号为CN202010852598.2的中国发明专利申请提出一种微电网发电设备自动启停重组运行方法,通过启停重组控制装置可以对微电网发电设备进行控制,并可以将微电网发电设备的运行状态进行自动控制,运行效率高,控制模块可以根据实时状况对将微电网发电设备运行状态进行调整,能够在能量管理优化调度下得到最优设备启停重组运行方案,实现对整个系统进行启停重组调度,通过实时获取系统监控信息;根据系统监控信息进行状态估计,以确定系统调度量;根据系统监控信息和系统调度量,建立以系统运行成本最小为目标函数的设备启停重组数学模型;根据系统约束条件,对设备启停重组数学模型采用混合整数线性优化算法计算得到设备启停重组方案。
然而,随着物联网技术的发展,以住宅为平台,利用综合布线技术、网络通信技术、智能家居-系统设计方案安全防范技术、自动控制技术、音视频技术将家居生活有关的设施集成,逐步可构建高效的住宅设施与家庭日程事务的管理系统,实现环保节能的居住环境。在这其中,智能家居设备本身就具备一定的节能属性。如何使得微电网范围的智能家居设备既能够正常工作,又能够保证原有的节能属性,并使得微电网本身能够实现系统能量最优调度,现有技术并未注意到此类问题,更未提出有效的技术方案。
发明内容
为解决上述技术问题,本发明提出一种混合电网发电装置,所述发电装置包括第一发电系统和第二发电系统以及中央控制装置,所述第一发电系统和第二发电系统均连接至电能存储装置;所述第一发电系统、第二发电系统、电能存储装置均与可控用电设备连接;基于所述电能存储装置的存储状态、所述第二发电系统的运行状态和所述可控用电设备的控制参数,调节所述第一发电系统的运行状态;中央控制装置连接所述可控用电设备和所述第二发电系统,获取所述可控用电设备的控制参数和所述第二发电系统的运行状态,调节所述第一发电系统的运行状态。
本发明的技术方案能够使得混合微电网系统中节能发电和耗能发电的协调统一,在最大程度的实现资源节能的同时确保设备正常用电。
具体而言,本发明提出一种混合电网发电装置,所述发电装置包括第一发电系统、第二发电系统、电能存储装置以及中央控制装置。
所述第一发电系统和第二发电系统均连接至电能存储装置;
所述第一发电系统、第二发电系统、电能存储装置均与可控用电设备连接;
基于所述电能存储装置的存储状态、所述第二发电系统的运行状态和所述可控用电设备的控制参数,所述中央控制装置调节所述第一发电系统的运行状态。
所述中央控制装置还包括预测引擎;
所述预测引擎获取所述第二发电系统当前的第二发电输出功率、第二发电时段和当前第一环境参数之后,预测所述第二发电系统在未来预定时间段的第二预测输出功率;
基于所述第二预测输出功率,所述中央控制装置调节所述第一发电系统的运行状态。
其中,所述第一发电系统为耗能发电系统;所述第二发电系统为节能发电系统。
所述可控用电设备的控制参数包括启停时段、以及对应于开启时段的运行功率;
所述可控用电设备包括用电设备主体和至少一个可控智能开关,所述控制参数由所述可控智能开关设置。
所述可控智能开关通过无线网络与移动终端进行数据通信,通过所述移动终端设置所述可控智能开关的启停时段。
所述第一发电系统为耗油发电系统、耗气发电系统之一或者其组合。
所述第二发电系统为风能发电系统或者太阳能发电系统。
本发明的技术方案能够实现混合微电网系统中节能发电和耗能发电的协调统一,在最大程度的实现资源节能的同时确保设备正常用电。
尤其是在微电网范围内存在智能家居设备时,既能够使得智能家居设备正常工作,又能够保证原有的节能属性,并使得微电网本身能够实现系统能量最优调度。
本发明的进一步优点将结合说明书附图在具体实施例部分进一步详细体现。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的一种混合电网发电装置的主体架构图。
图2是图1所述实施例中可控用电设备与其他设备之间的控制状态示意图。
图3是图1所述实施例中所述第二发电系统的输出功率变化示意图。
图4是图1所述实施例中电能存储装置的存储状态与中央控制装置的状态反馈示意图。
具体实施方式
下面,结合附图以及具体实施方式,对发明做出进一步的描述。
参见图1,本发明一个实施例的一种混合电网发电装置的主体架构图。
在图1中,所述混合电网发电装置包括第一发电系统和第二发电系统以及中央控制装置,所述第一发电系统和第二发电系统均连接至电能存储装置;所述第一发电系统、第二发电系统、电能存储装置均与可控用电设备连接。
作为所述电能存储装置的进一步实施例,虽然未示出,但是在本发明的各个实施例中,所述电能存储装置预先设置有剩余电量比例值上限与下限。
如图1所示出的,电能存储装置包含三组蓄电池,每组均配置电池管理系统(BMS)和双向能量转换系统(Power Conversion System,PCS),BMS 对系统内每个电池的运行状态进行有效的检查、控制和维护,并与后台中央控制系统实现远程通信。
为了有效延长储能电池组的运行寿命,避免其频繁地进行深度充放电,需要合理地设定储能电池组SOC变化区间。按照储能系统的功能定位要求,选定四个关键节点来定义SOC的变化区间,分别为SOCmin、SOClow、SOChigh与SOCmax。这样设置主要是为了避免过度充放电对储能电池组带来的伤害,由储能自身物理特性所决定。
SOC是控制策略执行的关键参数,其正确与否关系着微电网系统的稳定性。三组PCS根据其自身控制策略实现电池组间的充放电均流。由于三组 PCS电压、电流采样误差不能完全均流,蓄电池组间SOC允许存在一定偏差,即MAXSOC-MINSOC≤S。
S为电池组间SOC允许的最大差异。当系统检测到三组蓄电池不能满足上述条件时,若MAXSOC>SOChigh,SOC最小的电池组退出运行,反之,SOC 最大的电池组退出运行。同时,由于系统不能保证三组电池SOC在长期运行条件下完全一致,因此系统将根据三组电池的SOC对储能系统SOC所属区间进行判断。
在图1基础上,参见图2。
所述可控用电设备的控制参数包括启停时段、以及对应于开启时段的运行功率;
所述可控用电设备包括用电设备主体和至少一个可控智能开关,所述控制参数由所述可控智能开关设置。
在图2的实施例中,可控用电设备可以是前述提到的智能家居设备。
所述可控用电设备还可以为智能家居设备或者配置智能控制电路的普通家居设备;
对于智能家居设备,其通常配置可编程的逻辑智能控制电路,通过交互式的软件,可以实现家居设备的可编程控制,例如分时段定时开启和关闭;
对于普通家居设备,其可以外置一个智能插座,将所述智能插座插在通用供电电源上,然后再将所述普通家居设备通过所述智能插座接入通用电源。智能开关插座本身的开启和关闭时段可以通过交互式软件设置,从而实现普通家居设备的分时段定时开启和关闭。
在图2所述的例子中,所述第二发电系统为节能发电系统,例如风能发电或者太阳能发电系统。
其运行状态包括第二发电输出功率和第二发电时段;
所述第一发电系统为耗能发电系统,例如耗油或者耗气发电装置;
所述第一发电系统的运行状态包括关闭和开启,在开启状态下所述第一发电系统的第一发电输出功率可调节;
所述中央控制装置连接所述可控用电设备和所述第二发电系统,获取所述可控用电设备的控制参数和所述第二发电系统的运行状态,调节所述第一发电系统的运行状态。
作为更具体的节能发电的输出功率的例子,参见图3。
在图3上部分,作为一个示意性的例子,所述第二发电系统为风能发电系统,所述风能发电系统的启停状态和输出功率基于当前第一环境参数确定;
所述第一环境参数包括当前环境风速和多个阶梯递增的风速阈值;
所述风能发电系统的所述输出功率随所述当前环境风速和多个阶梯递增的风速阈值的第一相对比较关系而阶梯型变化。
在图3下半部分,作为一个示意性例子,所述第二发电系统为太阳能发电系统,所述太阳能发电系统的启停时段和输出功率基于当前第二环境参数确定;
所述第二环境参数包括当前光强和多个随时间线性变化的光强阈值;
当所述当前光强超过所述多个光强阈值中最小阈值后,所述太阳能发电系统启动,并且输出功率随所述当前光强和所述多个随时间线性变化的光强阈值的第二相对比较关系而对数型变化。
在图1-图3基础上,参见图4。
所述中央控制装置首先获取所述电能存储装置的存储状态;
如果所述电能存储装置的存储状态满足预定条件,则获取所述第二发电系统的运行状态和所述可控用电设备的控制参数,调节所述第一发电系统的运行状态。
更具体的,图4中,中央控制装置获取电能存储装置的存储状态。
如果所述电能存储装置的剩余电量大于上限值,则关闭耗能发电系统;
否则,判断所述电能存储装置的剩余电量是否大于下限值;
如果是,则获取第二发电系统的运行状态;
否则,开启耗能发电系统。
作为进一步的优选,所述中央控制装置还包括预测引擎;
所述预测引擎获取所述第二发电系统当前的第二发电输出功率、第二发电时段和当前第一环境参数之后,预测所述第二发电系统在未来预定时间段的第二预测输出功率;
基于所述第二预测输出功率,所述中央控制装置调节所述第一发电系统的运行状态。
作为更具体的例子,所述预测引擎模型结合在线云数据库提供的光强预测数据、风能预测数据以及现场测控单元测定的光强信号值和风速信号值,预测出未来预定时间段的多个不同太阳光电转换装置(太阳能发电系统的组成部分)所在位置的光强预测信号和风机(风能发电系统的组成部分) 所在位置的风速预测信号;
基于所述光强预测信号,预测出未来预定时间段的所述多个不同太阳光电转换装置的光电转换效率;
基于所述光电转换效率的加权值,预测所述太阳能发电子系统的发电输出功率;
基于所述风速预测信号,预测出未来预定时间段的所述风机的机械效率;
基于所述机械效率的加权值,预测所述风能发电系统的发电输出功率。
由此,不仅基于当前已有参数,还基于预测参数,进行运行状态控制。
进一步的,在本发明的各个实施例中,上述预测引擎还包括多时间尺度能量管理及优化算法,可以实现需求侧的实时和预测响应。
作为更一般的例子,所述第二发电系统可以是分布式可再生能源发电装置,所述第一发电系统可以是分布式可控分布式电源。
更具体的,针对可再生能源具有间歇性和不确定性的问题,上述预测引擎包括多时间尺度滚动优化优化方法,从长短两个时间尺度分别对微电网进行能量优化管理。
其中,短时间尺度以长时间尺度优化结果为参考,基于模型预测控制算法对未来有限时域内的滚动优化求解,采用滚动优化方法对比长时间尺度优化结果与实际值,能有效消除超前下发的可控分布式电源有功出力与实际有功出力间的偏差。
而为了减小可控分布式电源的调度压力和降低调度成本,长时间尺度下则进行分步优化:第一步为需求侧调度策略,在供需差额较大时,优先调度需求侧,使其跟随可再生能源发电,提高可再生能源利用率的同时,减少对可控分布式电源的频繁调度;第二步运用珊瑚礁优化算法对分布式电源进行优化调度。
本发明的技术方案能够实现混合微电网系统中节能发电和耗能发电的协调统一,在最大程度的实现资源节能的同时确保设备正常用电。
尤其是在微电网范围内存在智能家居设备时,既能够使得智能家居设备正常工作,又能够保证原有的节能属性,并使得微电网本身能够实现系统能量最优调度。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (8)
1.一种混合电网发电装置,所述发电装置包括耗能发电系统、节能发电系统以及中央控制装置,其特征在于:
耗能发电系统、节能发电系统均连接至电能存储装置;
耗能发电系统、节能发电系统、电能存储装置均与可控用电设备连接;
所述耗能发电系统的运行状态包括关闭和开启,在开启状态下所述耗能发电系统的运行状态的发电输出功率可调节;
所述可控用电设备包括用电设备主体和至少一个可控智能开关,所述可控用电设备的控制参数由所述可控智能开关设置;
所述中央控制装置获取所述电能存储装置的存储状态;如果所述电能存储装置的存储状态满足预定条件,则获取节能发电系统的发电输出功率和发电时段以及所述可控用电设备的控制参数,调节耗能发电系统的运行状态。
2.如权利要求1所述的一种混合电网发电装置,其特征在于:
所述可控用电设备的控制参数包括启停时段、以及对应于开启时段的运行功率。
3.如权利要求1所述的一种混合电网发电装置,其特征在于:
所述节能发电系统为风能发电系统,所述风能发电系统的启停状态和输出功率基于当前第一环境参数确定;
所述第一环境参数包括当前环境风速和多个阶梯递增的风速阈值;
所述风能发电系统的所述输出功率随所述当前环境风速和多个阶梯递增的风速阈值的第一相对比较关系而阶梯型变化。
4.如权利要求1所述的一种混合电网发电装置,其特征在于:
所述节能发电系统为太阳能发电系统,所述太阳能发电系统的启停时段和输出功率基于当前第二环境参数确定;
所述第二环境参数包括当前光强和多个随时间线性变化的光强阈值;
当所述当前光强超过所述多个光强阈值中最小阈值后,所述太阳能发电系统启动,并且输出功率随所述当前光强和所述多个随时间线性变化的光强阈值的第二相对比较关系而对数型变化。
5.如权利要求1-4任一项所述的一种混合电网发电装置,其特征在于:
所述耗能发电系统为耗油发电系统、耗气发电系统之一或者其组合。
6.如权利要求2所述的一种混合电网发电装置,其特征在于:
所述可控智能开关通过无线网络与移动终端进行数据通信,通过所述移动终端设置所述可控智能开关的启停时段。
8.如权利要求1所述的一种混合电网发电装置,其特征在于:
所述中央控制装置还包括预测引擎;
所述预测引擎获取所述节能发电系统当前的发电输出功率、发电时段和当前第一环境参数之后,预测所述节能发电系统在未来预定时间段的预测输出功率;
基于所述预测输出功率,所述中央控制装置调节所述耗能发电系统的运行状态。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011431801.5A CN112600243B (zh) | 2020-12-10 | 2020-12-10 | 一种混合电网发电装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011431801.5A CN112600243B (zh) | 2020-12-10 | 2020-12-10 | 一种混合电网发电装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112600243A CN112600243A (zh) | 2021-04-02 |
CN112600243B true CN112600243B (zh) | 2021-10-26 |
Family
ID=75191328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011431801.5A Active CN112600243B (zh) | 2020-12-10 | 2020-12-10 | 一种混合电网发电装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112600243B (zh) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7925387B2 (en) * | 2009-07-14 | 2011-04-12 | General Electric Company | Method and systems for utilizing excess energy generated by a renewable power generation system to treat organic waste material |
CN104767263A (zh) * | 2015-01-23 | 2015-07-08 | 曹进 | 一种节能式电动汽车充电站 |
CN111756065A (zh) * | 2020-06-29 | 2020-10-09 | 深圳市富兰瓦时技术有限公司 | 一种混合供电储能系统 |
-
2020
- 2020-12-10 CN CN202011431801.5A patent/CN112600243B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN112600243A (zh) | 2021-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Palma-Behnke et al. | A microgrid energy management system based on the rolling horizon strategy | |
KR101298500B1 (ko) | 마이크로그리드 시뮬레이션 장치 및 전력 관리 시스템 | |
KR102088532B1 (ko) | 에너지 관리 시스템과 그의 에너지 관리 방법 및 에너지 운영 시스템 | |
KR101379343B1 (ko) | 에너지 저장 시스템,및 에너지 저장 시스템의 제어 방법 | |
CN102449873A (zh) | 混合能量存储系统、包括该存储系统的可再生能量系统及其使用方法 | |
CN106786625B (zh) | 基于分布式供能系统互动能力的配电网电压协调控制方法 | |
Li et al. | Smart hybrid AC/DC microgrids: power management, energy management, and power quality control | |
Rossi et al. | Real-time optimization of the battery banks lifetime in hybrid residential electrical systems | |
KR20190000992A (ko) | 배터리의 모듈식 관리 및 제어가 가능한 에너지 저장 시스템 | |
CN215419614U (zh) | 一种基于需求侧负荷的家用太阳能分布光伏并网发电系统 | |
Abdubannaev et al. | Investigate networked microgrids to enhance distribution network system resilience | |
Yu et al. | Research on the construction of new energy microgrids for wind power generation based on green and low carbon | |
Xv et al. | Day-ahead scheduling with renewable generation considering shared energy storage | |
Penangsang et al. | Operation optimization stand-alone microgrid using firefly algorithm considering lifetime characteristics of battery | |
CN112600243B (zh) | 一种混合电网发电装置 | |
CN112600241B (zh) | 一种微电网ems能量管理系统 | |
Wu et al. | Research on optimal storage capacity of DC micro‐grid system in PV station | |
KR102562761B1 (ko) | 스마트 그리드에서 p2p 프로슈머 커뮤니티의 지능형 사전 에너지 공유 스케줄링 방법 | |
Shi et al. | Multi-dispatch for grid-connected microgrid with robust optimization algorithm | |
Slama et al. | Green Hydrogen Microgrid: Household Energy Management System Dedicated to a Hydrogen Storage-based Renewable-Energy-System | |
Seifi et al. | An innovative demand side management for vulnerable hybrid microgrid | |
Azami et al. | Optimal Smart Home Scheduling with Considering Hybrid Resource Management | |
Dixit et al. | Micro Grid Integration of Distributed Power Generation Optimal Operating Methods | |
US20240291278A1 (en) | Systems and methods for microgrid energy management | |
CN117691685B (zh) | 一种光伏逆变器智能调控系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |