CN112600058A - 一种基于Rb87调制转移光谱稳频光路结构 - Google Patents

一种基于Rb87调制转移光谱稳频光路结构 Download PDF

Info

Publication number
CN112600058A
CN112600058A CN202011430779.2A CN202011430779A CN112600058A CN 112600058 A CN112600058 A CN 112600058A CN 202011430779 A CN202011430779 A CN 202011430779A CN 112600058 A CN112600058 A CN 112600058A
Authority
CN
China
Prior art keywords
light
frequency stabilization
spectrum frequency
modulation transfer
transfer spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011430779.2A
Other languages
English (en)
Other versions
CN112600058B (zh
Inventor
洪毅
陈迪俊
侯霞
周翠芸
宋铁强
黄敏捷
王桂冰
赵剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN202011430779.2A priority Critical patent/CN112600058B/zh
Publication of CN112600058A publication Critical patent/CN112600058A/zh
Application granted granted Critical
Publication of CN112600058B publication Critical patent/CN112600058B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Lasers (AREA)

Abstract

一种基于Rb87调制转移光谱稳频光路结构,包括两块反射镜、一块半透半反镜、两块二分之一波片、两块偏振分光棱镜、两块两个空间光隔离器、两个准直器、一组磁屏蔽铷泡结构、一个光电探测器。本发明装置结构紧凑、体积小,通过二分之一波片和偏振分光棱镜能控制探测光和泵浦光的功率配比和偏振状态,解决了Rb87调制转移光谱稳频(52S1/2→52P3/2跃迁的F=1→F’=0和F’=1的交叉共振峰)饱和吸收峰较弱的问题,得到背景较为干净的误差信号。通过空间光隔离器限制了探测光和泵浦光返回到对方准直器里能有效地避免反馈光对稳频性能的影响。

Description

一种基于Rb87调制转移光谱稳频光路结构
技术领域:
本发明涉及一种基于Rb87调制转移光谱稳频光路结构,特别是应用于冷原子钟Rb87冷却所需的重泵浦光(52S1/2→52P3/2跃迁的F=1→F’=0和F’=1的交叉共振峰)。
背景技术:
冷原子钟以其高度稳定性和准确性为人类的科学技术活动提供了精密的时间频率标准,太空的微重力环境可以使冷原子钟的精度进一步提高,这对于基础科学研究、导航及深空探测等领域具有重要的意义。冷原子钟的一个关键的组成部分是其光源系统,必须具有窄线宽、高频率稳定性等特点。
目前应用于空间冷原子钟的稳频技术大多是以波长调制饱和吸收光谱稳频技术为主,因为其结构简单,且频率稳定性也可以达到较高的水平,也有采用原子双向色性稳频(DAVLL)技术的,这种稳频技术可以实现更大的捕获范围,但他们都有明显的缺点,其中波长调制饱和吸收光谱稳频技术由于直接将调制加到激光器光栅反馈角的PZT上,引入了噪声,导致频率展宽。原子双向色性稳频(DAVLL)技术需要一个产生强磁场的装置,稳频精度受材料的双折射影响。调制转移光谱稳频技术由于调制转移过程中严格发生在多普勒速度为零的分子或原子间,因此解调的误差信号没有多普勒背景,避免了对激光器直接加调制带来的附加噪声,具有高灵敏高分辨率误差信号斜率高等特点,且对温度和功率的抖动不敏感,非常适合用来激光稳频。
国内外文献基于Rb87调制转移光谱稳频技术的报道多以52S1/2→52P3/2跃迁的F=2→F’=3为主,几乎没有对52S1/2→52P3/2跃迁的F=1→F’=0和F’=1的交叉共振峰给出详细的光路结构说明。究其原因,主要是前者是个循环跃迁峰,即“钟跃迁”,具有很高的信噪比和饱和吸收峰强度,而后者的饱和吸收峰强度不及前者的十分之一,误差信号的幅度以及形态与探测光和泵浦光的功率配比、偏振状态、光斑大小都有很大关系。按照目前文献给出的Rb87 52S1/2→52P3/2跃迁的F=2→F’=3的光路图来看,如果照搬运用到52S1/2→52P3/2跃迁的F=1→F’=0和F’=1的交叉共振峰上,这样做的缺点主要有以下几点:一、由于对探测光和泵浦光的偏振状态没有正确选择,大多以P光,S光的组合或者圆偏振光,会造成误差信号的背景不干净,形状不够理想的情况。稳频激光时容易造成失锁或者锁错峰的情况。(笔者研究过只有当泵浦光和探测光的偏振状态都采用P光时才能得到理想的误差信号);二、即便光路中的泵浦光和探测光的偏振状态都采用P光时,也没有对反馈光做隔离措施,造成稳频激光频率的抖动。
发明内容:
本发明要解决的技术问题在于克服上述现有技术的不足,即让探测光和泵浦光的偏振状态都调整为P光方向,又能有效地避免反馈光对稳频性能的影响,使得Rb87调制转移光谱稳频技术能够在52S1/2→52P3/2跃迁的F=1→F’=0和F’=1的交叉共振峰上得到很好地运用。
本发明解决上述技术问题的技术方案如下:
一种基于Rb87调制转移光谱稳频光路结构,其特点在于:包括两个准直器,分别将在光纤传播的探测光和泵浦光耦合到空间光中;两个空间光隔离器,用来限制探测光和泵浦光返回到对方准直器里;铷泡,使探测光和泵浦光发生四波混频反应;半透半反镜,用于将四波混频反应后的探测光输出。
优选的,还包括两块二分之一波片,分别用来控制探测光和泵浦光的功率配比;两块偏振分光棱镜,分别用来控制探测光和泵浦光的和偏振状态。
优选的,所述的铷泡的外壳包裹有磁屏蔽材料,避免外部磁场对铷泡的影响,如坡莫合金。
优选的,还包括两块反射镜,分别使探测光和泵浦光反射到含有铷泡的主光路中,且该反射镜与所述的空间光隔离器的光轴垂直。
与现有技术相比,本发明的有益效果是
本发明规定了探测光与泵浦光的偏振状态,并且可以通过二分之一波片和偏振分光棱镜调节其功率配比,避免了反馈光对最终稳频性能的影响,使得Rb87调制转移光谱稳频技术能够在52S1/2→52P3/2跃迁的F=1→F’=0和F’=1的交叉共振峰上得到很好地运用。
附图说明:
图1本发明结构装置示意图
具体实施方式:
下面结合实施例和附图对本发明作进一步说明。但不应以此限制本发明的保护范围。
请参阅图1,整套光路结构由第一准直器1、第二准直器9、第一空间光隔离器2、第一空间光隔离器10、第一反射镜3、第二反射镜11、第一二分之一波片4、第二二分之一波片12、第一偏振分光棱镜5、第二偏振分光棱镜13、一个坡莫合金材料外壳6、一个铷泡7、一块半透半反镜8、一个光电探测器14构成;由图1可见,探测光由第一准直器1经过第一空间光隔离器2后由第一反射镜3反射后,依次经第一二分之一波片4和第一偏振分光棱镜5后射入铷泡7中;泵浦光由第二准直器9经过第二空间光隔离器10后由第二反射镜11反射后,依次经二二分之一波片12和第二偏振分光棱镜13后射入铷泡7中;探测光和泵浦光在铷泡7中发生四波混频效应后通过半透半反镜8将一半探测光引到光电探测器14中,用于后续稳频电路;另一半探测光经第二偏振分光棱镜13和第二二分之一波片12及第二反射镜11进入第二隔离器10后被第二隔离器10吸收;通过铷泡7的泵浦光经第一偏振分光棱镜5和第一二分之一波片4及第一反射镜3进入第一隔离器2后被第一隔离器2吸收;铷泡7壳外包裹有坡莫合金6,避免第一空间光隔离器2和第二空间光隔离器10对铷泡7的影响且设有通光口,使探测光和泵浦光光束经通光口入射到铷泡7内。
本发明确定了探测光与泵浦光的偏振状态,并且可以通过二分之一波片和偏振分光棱镜调节其功率配比,避免了反馈光对最终稳频性能的影响,使得Rb87调制转移光谱稳频技术能够在52S1/2→52P3/2跃迁的F=1→F’=0和F’=1的交叉共振峰上得到很好地运用,同时装置结构简单,易实现小型化和一体化。

Claims (4)

1.一种基于Rb87调制转移光谱稳频光路结构,其特征在于:包括两个准直器,分别将在光纤传播的探测光和泵浦光耦合到空间光中;两个空间光隔离器,用来限制探测光和泵浦光返回到对方准直器里;铷泡,使探测光和泵浦光发生四波混频反应;半透半反镜,用于将四波混频反应后的探测光输出。
2.根据权利要求1所述的基于Rb87调制转移光谱稳频光路结构,其特征在于:还包括两块二分之一波片,分别用来控制探测光和泵浦光的功率配比;两块偏振分光棱镜,分别用来控制探测光和泵浦光的和偏振状态。
3.根据权利要求1所述的基于Rb87调制转移光谱稳频光路结构,其特征在于:所述的铷泡的外壳包裹有磁屏蔽材料。
4.根据权利要求1所述的基于Rb87调制转移光谱稳频光路结构,其特征在于:还包括两块反射镜,分别使探测光和泵浦光反射到含有铷泡的主光路中,且该反射镜与所述的空间光隔离器的光轴垂直。
CN202011430779.2A 2020-12-07 2020-12-07 一种基于Rb87调制转移光谱稳频光路结构 Active CN112600058B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011430779.2A CN112600058B (zh) 2020-12-07 2020-12-07 一种基于Rb87调制转移光谱稳频光路结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011430779.2A CN112600058B (zh) 2020-12-07 2020-12-07 一种基于Rb87调制转移光谱稳频光路结构

Publications (2)

Publication Number Publication Date
CN112600058A true CN112600058A (zh) 2021-04-02
CN112600058B CN112600058B (zh) 2023-06-09

Family

ID=75191322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011430779.2A Active CN112600058B (zh) 2020-12-07 2020-12-07 一种基于Rb87调制转移光谱稳频光路结构

Country Status (1)

Country Link
CN (1) CN112600058B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115327880A (zh) * 2022-08-19 2022-11-11 浙江法拉第激光科技有限公司 一种基于漫反射冷却的长条形冷原子主动光钟及实现方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794982A (zh) * 2014-01-20 2014-05-14 山西大学 稳定1529nm光纤通信激光频率的方法及装置
CN108539569A (zh) * 2018-03-27 2018-09-14 兰州空间技术物理研究所 一种超窄带原子滤光器及其实现滤光的方法
CN211426973U (zh) * 2019-10-11 2020-09-04 浙江大学城市学院 87RB-795nm-FADOF原子滤光器装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103794982A (zh) * 2014-01-20 2014-05-14 山西大学 稳定1529nm光纤通信激光频率的方法及装置
CN108539569A (zh) * 2018-03-27 2018-09-14 兰州空间技术物理研究所 一种超窄带原子滤光器及其实现滤光的方法
CN211426973U (zh) * 2019-10-11 2020-09-04 浙江大学城市学院 87RB-795nm-FADOF原子滤光器装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115327880A (zh) * 2022-08-19 2022-11-11 浙江法拉第激光科技有限公司 一种基于漫反射冷却的长条形冷原子主动光钟及实现方法
CN115327880B (zh) * 2022-08-19 2024-01-30 浙江法拉第激光科技有限公司 一种基于漫反射冷却的长条形冷原子主动光钟及实现方法

Also Published As

Publication number Publication date
CN112600058B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
US8605282B2 (en) Method and apparatus for high precision spectroscopy
US9001861B2 (en) Device and method for producing coherent bi-color light source
CN109556591B (zh) 一种基于超稳激光的被动式激光陀螺仪
CN109839606B (zh) 一种新型原子磁强计装置及检测方法
CN104698410A (zh) 用于磁力仪的原子磁传感器及消除磁力仪探测盲区的方法
CN109782197B (zh) 芯片原子传感实现方法及其传感器
CN110579724A (zh) 一种多通道脉冲泵浦原子磁力传感装置
CN108539569A (zh) 一种超窄带原子滤光器及其实现滤光的方法
WO2013120334A1 (zh) 一种芯片cpt原子钟物理系统装置
CN113721173B (zh) 一种基于反射式双向泵浦的光纤serf原子磁力仪装置
US6477189B1 (en) Laser oscillation frequency stabilizer
CN105449512A (zh) 一种采用气固界面亚多普勒反射光谱偏频稳频装置及方法
CN112600058A (zh) 一种基于Rb87调制转移光谱稳频光路结构
CN109951187B (zh) 具有高信噪比鉴频信号的铷原子钟
CN111884045A (zh) 高稳定性调制转移光谱稳频光路装置
US3517330A (en) Frequency stabilization of laser system which compares the amplitudes of two beat note signals
Beverini et al. Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell
CN103760135A (zh) V型能级结构原子的速度转移激光光谱测量装置及方法
Dahlquist et al. Zeeman laser interferometer
CN112367080A (zh) 一种高对比度原子钟鉴频信号探测系统
CN113311369A (zh) 基于光纤环形器的微小型原子磁强计及磁成像系统
CN111585168A (zh) 一种基于差分饱和吸收谱的激光器稳频系统及方法
GB1196940A (en) Ring Laser
CN203630039U (zh) V型能级结构原子的速度转移激光光谱测量装置
CN114487945B (zh) 一种无探测盲区且可消除光频移的标量原子磁力仪及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant