CN111585168A - 一种基于差分饱和吸收谱的激光器稳频系统及方法 - Google Patents

一种基于差分饱和吸收谱的激光器稳频系统及方法 Download PDF

Info

Publication number
CN111585168A
CN111585168A CN202010398047.3A CN202010398047A CN111585168A CN 111585168 A CN111585168 A CN 111585168A CN 202010398047 A CN202010398047 A CN 202010398047A CN 111585168 A CN111585168 A CN 111585168A
Authority
CN
China
Prior art keywords
light beam
laser
beam splitter
differential
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010398047.3A
Other languages
English (en)
Inventor
孟红玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke Qidi Optoelectronic Technology Guangzhou Co ltd
Original Assignee
Zhongke Qidi Optoelectronic Technology Guangzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongke Qidi Optoelectronic Technology Guangzhou Co ltd filed Critical Zhongke Qidi Optoelectronic Technology Guangzhou Co ltd
Priority to CN202010398047.3A priority Critical patent/CN111585168A/zh
Publication of CN111585168A publication Critical patent/CN111585168A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明公开了一种基于差分饱和吸收谱的激光器稳频系统及方法,系统包括半导体激光器、第一半波片、第一偏振分束器、第二半波片、第二偏振分束器、分束器、铷泡、第三偏振分束器、光电差分探测器和控制电路。本发明的有益效果:系统科学合理,简单方便,较之现有的激光器稳频系统,本系统模块化清晰,结构更简单,性能更优良,成本更低,由于稳频光工作波段位于近红外所在波段,因此可以为精密测量提供硬件基础,为近红外光的应用起到了推动作用。

Description

一种基于差分饱和吸收谱的激光器稳频系统及方法
技术领域
本发明涉及激光器稳频系统的技术领域,具体来说,涉及一种基于差分饱和吸收谱的激光器稳频系统及方法。
背景技术
现在随着窄线宽半导体激光二极管制造技术的飞速发展,半导体激光器成为精密测量技术的首选激光光源。但是自由运转的二极管激光器的频率稳定性很差,在采取了温度、电流稳定控制后,其频率仍然存在漂移,这就不能满足精密测量对激光频率的要求,需要采取更进一步的稳频措施。
现有的激光器稳频系统,如传输腔稳频系统是利用一台稳定度高的激光器做参考(例如碘稳频的氦氖激光器),将参考激光器的激光和待稳激光器(半导体激光器)的激光同时入射到一台扫描的法布里-玻罗干涉仪(传输腔)中,利用光电探测器探测参考激光器的激光经过传输腔后的透射信号及待稳激光器的激光经过传输腔后的透射信号,再采用数据采集卡转换成数字信号后输入到计算机中,通过计算并锁定透射信号中透射峰间距来提高待稳激光器的稳定度。其中,传输腔的腔长由压电陶瓷进行调节,具体可以通过压电陶瓷驱动源输出的锯齿波电压信号调节压电陶瓷的伸缩,由此改变传输腔的长度,达到改变传输腔的谐振频率的目的。这种激光器稳频系统结构复杂,性能也较差,并不能很好的满足激光器的稳频需求
针对相关技术中的问题,目前尚未提出有效的解决方案。
发明内容
针对相关技术中的上述技术问题,本发明提出一种基于差分饱和吸收谱的激光器稳频系统,可解决目前半导体激光二极管的激光频谱宽,频率漂移等一系列问题,并且系统的结构简单、成本较低、性能优良。
为实现上述技术目的,本发明的技术方案是这样实现的:
一种基于差分饱和吸收谱的激光器稳频系统,包括半导体激光器、第一半波片、第一偏振分束器、第二半波片、第二偏振分束器、分束器、铷泡、第三偏振分束器、光电差分探测器和控制电路;
所述半导体激光器在控制电路控制下发出的激光束经过所述第一半波片后进入到所述第一偏振分束器中,经所述第一偏振分束器分束后得到第一光束和第二光束,所述第二光束经过所述第二半波片后进入到所述第二偏振分束器中,经所述第二偏振分束器分束后得到第三光束和第四光束,所述第三光束进入到所述第三偏振分束器中,经所述第三偏振分束器分束后得到第五光束,所述第四光束进入到所述分束器中,经所述分束器分束后得到第六光束和第七光束,所述第五光束与所述第六光束方向相反且二者均进入到所述铷泡中,经所述铷泡叠加后进入到所述光电差分探测器中,所述第七光束经过所述铷泡后进入到所述光电差分探测器中,所述光电差分探测器输出信号至所述控制电路。
进一步地,所述半导体激光器与所述第一半波片之间的光路上设置有准直器。
进一步地,所述准直器与所述第一半波片之间的光路上设置有光隔离器。
进一步地,所述第三光束依次经过第一反射镜和第三反射镜后进入到所述第三偏振分束器。
进一步地,所述第七光束经过所述第二反射镜后进入到所述铷泡中。
本发明还提供了一种基于差分饱和吸收谱的激光器稳频方法,包括以下步骤:
S1将半导体激光器在控制电路控制下发出的激光束经过第一半波片后射入到第一偏振分束器中,以分束成第一光束和第二光束;
S2将所述第一光束用于与原子相互作用,将所述第二光束经过第二半波片后射入到第二偏振分束器中,以分束成第三光束和第四光束;
S3将所述第三光束射入到第三偏振分束器中,以分束成第五光束,将所述第四光束射入到分束器中,以分束成第六光束和第七光束;
S4将所述第五光束与所述第六光束以方向相反的方式射入到铷泡中进行叠加,以得到第一探测光束,将所述第七光束射入到铷泡中,以得到第二探测光束;
S5将所述第一探测光束与所述第二探测光束射入到光电差分探测器中进行差分处理,以得到无噪音的原子饱和吸收谱线;
S6所述控制电路根据所述原子饱和吸收谱线控制所述半导体激光器以使其发出的所述激光束的频率锁定在所述原子饱和吸收谱线的峰值处。
进一步地,在S1中,将所述半导体激光器发出的光依次经过准直器和光隔离器的处理后再传输给所述第一半波片。
进一步地,在S3中,将所述第三光束依次经过第一反射镜和第三反射镜的反射后再射入到所述第三偏振分束器中。
进一步地,在S4中,将所述第七光束经过第二反射镜的反射后再射入到所述铷泡中。
本发明的有益效果:系统科学合理,简单方便,较之现有的激光器稳频系统,本系统模块化清晰,结构更简单,性能更优良,成本更低,由于稳频光工作波段位于近红外所在波段,因此可以为精密测量提供硬件基础,为近红外光的应用起到了推动作用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例所述的基于差分饱和吸收谱的激光器稳频系统的示意图。
图中:
1、半导体激光器;2、准直器;3、光隔离器;4、第一半波片;5、第一偏振分束器;6、第二半波片;7、第二偏振分束器;8、第一反射镜;9、分束器;10、第二反射镜;11、铷泡;12、第三反射镜;13、第三偏振分束器;14、光电差分探测器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,根据本发明实施例所述的一种基于差分饱和吸收谱的激光器稳频系统,包括半导体激光器1、第一半波片4、第一偏振分束器5、第二半波片6、第二偏振分束器7、分束器9、铷泡11、第三偏振分束器13、光电差分探测器14和控制电路;
所述半导体激光器1在控制电路控制下发出的激光束经过所述第一半波片4后进入到所述第一偏振分束器5中,经所述第一偏振分束器5分束后得到第一光束和第二光束,所述第二光束经过所述第二半波片6后进入到所述第二偏振分束器7中,经所述第二偏振分束器7分束后得到第三光束和第四光束,所述第三光束进入到所述第三偏振分束器13中,经所述第三偏振分束器13分束后得到第五光束,所述第四光束进入到所述分束器9中,经所述分束器9分束后得到第六光束和第七光束,所述第五光束与所述第六光束方向相反且二者均进入到所述铷泡11中,经所述铷泡11叠加后进入到所述光电差分探测器14中,所述第七光束经过所述铷泡11后进入到所述光电差分探测器14中,所述光电差分探测器14输出信号至所述控制电路。
在本发明的一个具体实施例中,所述半导体激光器1与所述第一半波片4之间的光路上设置有准直器2。
在本发明的一个具体实施例中,所述准直器2与所述第一半波片4之间的光路上设置有光隔离器3。
在本发明的一个具体实施例中,所述第三光束依次经过第一反射镜8和第三反射镜12后进入到所述第三偏振分束器13。
在本发明的一个具体实施例中,所述第七光束经过所述第二反射镜10后进入到所述铷泡11中。
本发明还提供了一种基于差分饱和吸收谱的激光器稳频方法,包括以下步骤:
S1将半导体激光器1在控制电路控制下发出的激光束经过第一半波片4后射入到第一偏振分束器5中,以分束成第一光束和第二光束;
S2将所述第一光束用于与原子相互作用,将所述第二光束经过第二半波片6后射入到第二偏振分束器7中,以分束成第三光束和第四光束;
S3将所述第三光束射入到第三偏振分束器13中,以分束成第五光束,将所述第四光束射入到分束器9中,以分束成第六光束和第七光束;
S4将所述第五光束与所述第六光束以方向相反的方式射入到铷泡11中进行叠加,以得到第一探测光束,将所述第七光束射入到铷泡11中,以得到第二探测光束;
S5将所述第一探测光束与所述第二探测光束射入到光电差分探测器14中进行差分处理,以得到无噪音的原子饱和吸收谱线;
S6所述控制电路根据所述原子饱和吸收谱线控制所述半导体激光器1以使其发出的所述激光束的频率锁定在所述原子饱和吸收谱线的峰值处。
在本发明的一个具体实施例中,在S1中,将所述半导体激光器1发出的光依次经过准直器2和光隔离器3的处理后再传输给所述第一半波片4。
在本发明的一个具体实施例中,在S3中,将所述第三光束依次经过第一反射镜8和第三反射镜12的反射后再射入到所述第三偏振分束器13中。
在本发明的一个具体实施例中,在S4中,将所述第七光束经过第二反射镜10的反射后再射入到所述铷泡11中。
为了方便理解本发明的上述技术方案,以下通过具体使用方式上对本发明的上述技术方案进行详细说明。
本发明一种紧凑型基于差分饱和吸收谱的激光器稳频系统,包括半导体激光器1、准直器2、光隔离器3、半波片、偏振分束器(PBS)、反射镜、分束器(BS)9、铷泡11、光电差分探测器(PD)14和控制电路。
半导体激光器1用于发射激光束,其型号为Photodigm PH795DBR080T8。
准直器2的型号为Thorlabs C230TMD-8。光隔离器3的型号为Thorlabs IOT-5-780-VLP。光电探测器的型号为Thorlabs PDB210A/M。
半波片包括第一半波片4和第二半波片6。偏振分束器包括第一偏振分束器5、第二偏振分束器7和第三偏振分束器13。反射镜包括第一反射镜8、第二反射镜10和第三反射镜12。
控制电路包括MCU模块、无源滤波器和驱动电路;MCU模块用于输出PWM信号,并通过调节PWM信号的占空比控制输出电压值,无源滤波器用于将PWM信号转化为直流电压,无源滤波器的输出端连接驱动电路,驱动电路用于驱动半导体激光器1发光,光电差分探测器14将采集到光信号转化为电信号,MCU模块根据该电信号调节PWM信号的占空比。
所谓饱和吸收光谱,就是用单色光作光抽运,将激光频率调谐在原子跃迁频率上,处于基态的原子将吸收光子跃迁到激发态。激光强度增大时,激发态的原子数增多。但当激光强度进一步增大以至饱和时,上下能级的原子数目达到平衡,基态的原子不再因吸收光子跃迁到激发态而减少。从而使原子的一个跃迁达到饱和以引起能级布局的非线性变化,使吸收不再比例于入射光的强度,从而实现高分辨光谱。
具体使用时,半导体激光器1发出的激光束经过准直器2校准之后,输入到光隔离器3中,以防止激光束返回到半导体激光器1中,从而有效避免了半导体激光器1的损坏。从光隔离器3中输出的激光束在经过第一半波片4之后进入第一偏振分束器5中。激光束经过第一偏振分束器5后分成第一光束和第二光束射出,第一光束(即图1中水平向左的光束)用于与原子相互作用,第二光束(即图1中竖直向下的光束)用于稳频。第二光束经过第二半波片6之后进入第二偏振分束器7中,第二光束经过第二偏振分束器7后分成第三光束和第四光束射出,第三光束被反射镜1和反射镜3反射后进入第三偏振分束器13中。第三光束经过第三偏振分束器13后形成第五光束射出,第五光束进入铷泡11中。该第五光束被称为泵浦光且强度较高。第四光束经过分束器9后分成第六光束和第七光束射出,该第六光束和第七光束都被称为探测光且强度较弱。第六光束进入到铷泡11中,第七光束经过反射镜2反射后沿另一光路进入到铷泡11中。该铷泡11被设置在分束器9和第三偏振分束器13之间,使得第六光束和第五光束以相反的两个方向射入到铷泡11中,从而使铷泡11中的处于基态的原子吸收光子后跃迁到激发态。当第五光束的激光强度增大时,激发态的原子数增多,但当激光强度进一步增大以至饱和时,上下能级的原子数目达到平衡,基态的原子不再因吸收光子跃迁到激发态。第六光束将不再被吸收而出现饱和吸收谱线,该谱线反应了原子精细结构能级的位置。
原子谱线原本是多普勒加宽的谱线,是由于各种不同速度的原子的吸收或发射的大量很窄谱线的集合。当光场与原子系统作用时,光波只与和它谐振的那部分原子相互作用。如果此时光场是由相反方向传播的两个激光束组成,激光束在两个方向上传输的分量将同时和轴向速度为零的原子相互作用,从而可以得到无多普勒饱和吸收光谱。
在本实施例中,第五光束和第六光束是相反方向传播的两束激光,从而第五光束和第六光束在各自方向上传输的分量将同时和轴向速度为零的原子相互作用,从而得到无多普勒饱和吸收光谱。
第六光束与第五光束在铷泡11叠加后获得第一探测光束,第一探测光束射入到光电差分探测器14中,第七光束经过铷泡11后获得第二探测光束,第二探测光束也射入到光电差分探测器14中。由于进入光电差分探测器14中的第一探测光束和第二探测光束都具有噪音成分,因此光电差分探测器14在对第一探测光束和第二探测光束进行差分之后,能够消除第一探测光束和第二探测光束中的噪音成分,从而得到无噪音的原子饱和吸收谱线。
经过光电差分探测器14之后能够显示原子饱和吸收谱线。当激光频率偏离原子的中心频率时,在原子的速度分布中分别出现与谱线中心对称的两个吸收谱。当激光的频率调谐至原子的中心频率时,两个吸收谱将重叠。光电差分探测器14输出的信号被反馈到半导体激光器1的控制电路中(未示出),控制电路将半导体激光器1的频率锁定在原子饱和吸收谱线的峰值上,也就是将激光的频率调节至原子的中心频率。
综上,借助于本发明的上述技术方案,系统科学合理,简单方便,较之现有的激光器稳频系统,本系统模块化清晰,结构更简单,性能更优良,成本更低,由于稳频光工作波段位于近红外所在波段,因此可以为精密测量提供硬件基础,为近红外光的应用起到了推动作用,本系统将半导体激光器、准直器、光隔离器、半波片、偏振分束器、反射镜、分束器、铷泡、光电差分探测器等器件集成在一个装置中,使用方便、器件紧凑、体积小。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于差分饱和吸收谱的激光器稳频系统,其特征在于,包括半导体激光器(1)、第一半波片(4)、第一偏振分束器(5)、第二半波片(6)、第二偏振分束器(7)、分束器(9)、铷泡(11)、第三偏振分束器(13)、光电差分探测器(14)和控制电路;
所述半导体激光器(1)在控制电路控制下发出的激光束经过所述第一半波片(4)后进入到所述第一偏振分束器(5)中,经所述第一偏振分束器(5)分束后得到第一光束和第二光束,所述第二光束经过所述第二半波片(6)后进入到所述第二偏振分束器(7)中,经所述第二偏振分束器(7)分束后得到第三光束和第四光束,所述第三光束进入到所述第三偏振分束器(13)中,经所述第三偏振分束器(13)分束后得到第五光束,所述第四光束进入到所述分束器(9)中,经所述分束器(9)分束后得到第六光束和第七光束,所述第五光束与所述第六光束方向相反且二者均进入到所述铷泡(11)中,经所述铷泡(11)叠加后进入到所述光电差分探测器(14)中,所述第七光束经过所述铷泡(11)后进入到所述光电差分探测器(14)中,所述光电差分探测器(14)输出信号至所述控制电路。
2.根据权利要求1所述的基于差分饱和吸收谱的激光器稳频系统,其特征在于,所述半导体激光器(1)与所述第一半波片(4)之间的光路上设置有准直器(2)。
3.根据权利要求2所述的基于差分饱和吸收谱的激光器稳频系统,其特征在于,所述准直器(2)与所述第一半波片(4)之间的光路上设置有光隔离器(3)。
4.根据权利要求1所述的基于差分饱和吸收谱的激光器稳频系统,其特征在于,所述第三光束依次经过第一反射镜(8)和第三反射镜(12)后进入到所述第三偏振分束器(13)。
5.根据权利要求1所述的基于差分饱和吸收谱的激光器稳频系统,其特征在于,所述第七光束经过所述第二反射镜(10)后进入到所述铷泡(11)中。
6.一种基于差分饱和吸收谱的激光器稳频方法,其特征在于,包括以下步骤:
S1将半导体激光器(1)在控制电路控制下发出的激光束经过第一半波片(4)后射入到第一偏振分束器(5)中,以分束成第一光束和第二光束;
S2将所述第一光束用于与原子相互作用,将所述第二光束经过第二半波片(6)后射入到第二偏振分束器(7)中,以分束成第三光束和第四光束;
S3将所述第三光束射入到第三偏振分束器(13)中,以分束成第五光束,将所述第四光束射入到分束器(9)中,以分束成第六光束和第七光束;
S4将所述第五光束与所述第六光束以方向相反的方式射入到铷泡(11)中进行叠加,以得到第一探测光束,将所述第七光束射入到铷泡(11)中,以得到第二探测光束;
S5将所述第一探测光束与所述第二探测光束射入到光电差分探测器(14)中进行差分处理,以得到无噪音的原子饱和吸收谱线;
S6所述控制电路根据所述原子饱和吸收谱线控制所述半导体激光器(1)以使其发出的所述激光束的频率锁定在所述原子饱和吸收谱线的峰值处。
7.根据权利要求6所述的基于差分饱和吸收谱的激光器稳频方法,其特征在于,在S1中,将所述半导体激光器(1)发出的光依次经过准直器(2)和光隔离器(3)的处理后再传输给所述第一半波片(4)。
8.根据权利要求6所述的基于差分饱和吸收谱的激光器稳频方法,其特征在于,在S3中,将所述第三光束依次经过第一反射镜(8)和第三反射镜(12)的反射后再射入到所述第三偏振分束器(13)中。
9.根据权利要求6所述的基于差分饱和吸收谱的激光器稳频方法,其特征在于,在S4中,将所述第七光束经过第二反射镜(10)的反射后再射入到所述铷泡(11)中。
CN202010398047.3A 2020-05-12 2020-05-12 一种基于差分饱和吸收谱的激光器稳频系统及方法 Pending CN111585168A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010398047.3A CN111585168A (zh) 2020-05-12 2020-05-12 一种基于差分饱和吸收谱的激光器稳频系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010398047.3A CN111585168A (zh) 2020-05-12 2020-05-12 一种基于差分饱和吸收谱的激光器稳频系统及方法

Publications (1)

Publication Number Publication Date
CN111585168A true CN111585168A (zh) 2020-08-25

Family

ID=72112177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010398047.3A Pending CN111585168A (zh) 2020-05-12 2020-05-12 一种基于差分饱和吸收谱的激光器稳频系统及方法

Country Status (1)

Country Link
CN (1) CN111585168A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117192815A (zh) * 2023-09-18 2023-12-08 上海频准激光科技有限公司 一种基于内调制的光束相位控制系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117192815A (zh) * 2023-09-18 2023-12-08 上海频准激光科技有限公司 一种基于内调制的光束相位控制系统及方法
CN117192815B (zh) * 2023-09-18 2024-05-17 上海频准激光科技有限公司 一种基于内调制的光束相位控制系统及方法

Similar Documents

Publication Publication Date Title
CN109270825B (zh) 一种基于二次锁腔技术的双波长好坏腔主动光钟及其实现方法
CN111900618B (zh) 基于拍频锁定的高稳定度双频法拉第激光器及其实现方法
WO2015015628A1 (ja) 磁場計測装置
CN102916335B (zh) 双腔双频固体激光器Pound-Drever-Hall稳频系统
CN108933379B (zh) 激光器偏频锁定系统
CN112542757B (zh) 利用谐振腔腔膜锁定的法拉第激光器及其制备方法
CN112054795B (zh) 一种用于原子干涉仪的紧凑型拍频锁频锁相装置
CN109449742B (zh) 一种用于serf原子惯性测量装置激光双稳频光路系统
CN112117636A (zh) 一种基于光学频率梳的双反馈半导体激光器稳频系统
CN110911963B (zh) 一种高稳定性的偏振光谱稳频装置
CN112366515A (zh) 一种用于冷原子干涉仪的双向扩束稳频方法及装置
CN110927096A (zh) 一种基于四镜光反馈的中红外气体测量系统
CN111585168A (zh) 一种基于差分饱和吸收谱的激光器稳频系统及方法
CN114899702A (zh) 一种基于光纤环形谐振腔的激光器偏频稳频装置及方法
CN114361931A (zh) 超低噪声电光频率梳产生装置
CN212435035U (zh) 一种基于差分饱和吸收谱的激光器稳频系统
CN115021050A (zh) 一种THz辐射源及THz间隔双波长法拉第激光器
CN114336277B (zh) 一种eom边带调制的激光器大失谐稳频装置及方法
CN112600058B (zh) 一种基于Rb87调制转移光谱稳频光路结构
CN115102031A (zh) 一种基于原子跃迁调节激光器输出频率的装置及其方法
Yu et al. An integrated laser system for the cold atom clock
CN102829866B (zh) 分布反馈式光纤激光器无源光谱测量系统
CN207116907U (zh) 锁模激光器及光学系统
CN111509557A (zh) 基于超稳腔直接光生微波系统的装置与方法
CN113078552B (zh) 基于腔内自参考的单频激光器频率稳定装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination