CN112575023B - A method for highly expressing phospholipase D in Streptomyces and recombinant Streptomyces - Google Patents
A method for highly expressing phospholipase D in Streptomyces and recombinant Streptomyces Download PDFInfo
- Publication number
- CN112575023B CN112575023B CN202011640261.1A CN202011640261A CN112575023B CN 112575023 B CN112575023 B CN 112575023B CN 202011640261 A CN202011640261 A CN 202011640261A CN 112575023 B CN112575023 B CN 112575023B
- Authority
- CN
- China
- Prior art keywords
- streptomyces
- phospholipase
- recombinant
- gene
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000553 Phospholipase D Proteins 0.000 title claims abstract description 95
- 241000187747 Streptomyces Species 0.000 title claims abstract description 93
- 102000011420 Phospholipase D Human genes 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000013612 plasmid Substances 0.000 claims abstract description 37
- 230000000694 effects Effects 0.000 claims abstract description 33
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 30
- 241000894006 Bacteria Species 0.000 claims abstract description 13
- 102000004190 Enzymes Human genes 0.000 claims abstract description 12
- 108090000790 Enzymes Proteins 0.000 claims abstract description 12
- 241000187398 Streptomyces lividans Species 0.000 claims abstract description 12
- 108020004705 Codon Proteins 0.000 claims abstract description 10
- 239000012634 fragment Substances 0.000 claims abstract description 9
- 238000010353 genetic engineering Methods 0.000 claims abstract description 7
- 239000013604 expression vector Substances 0.000 claims description 20
- 241000186988 Streptomyces antibioticus Species 0.000 claims description 16
- 230000003115 biocidal effect Effects 0.000 claims description 16
- 241000147083 Streptomyces chromofuscus Species 0.000 claims description 13
- 238000012546 transfer Methods 0.000 claims description 10
- 238000000855 fermentation Methods 0.000 claims description 8
- 230000004151 fermentation Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 238000002474 experimental method Methods 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 238000012408 PCR amplification Methods 0.000 claims description 4
- 230000000052 comparative effect Effects 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- 238000001952 enzyme assay Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 2
- 230000021615 conjugation Effects 0.000 claims 1
- 230000028327 secretion Effects 0.000 abstract description 6
- 238000012216 screening Methods 0.000 abstract description 4
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 abstract description 3
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 abstract description 3
- 108700005078 Synthetic Genes Proteins 0.000 abstract description 3
- 241001655322 Streptomycetales Species 0.000 abstract 3
- 238000012258 culturing Methods 0.000 abstract 1
- 229940088598 enzyme Drugs 0.000 description 9
- 241000588724 Escherichia coli Species 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000003242 anti bacterial agent Substances 0.000 description 5
- 229940088710 antibiotic agent Drugs 0.000 description 5
- 239000006228 supernatant Substances 0.000 description 5
- 244000063299 Bacillus subtilis Species 0.000 description 4
- 235000014469 Bacillus subtilis Nutrition 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- TZCPCKNHXULUIY-RGULYWFUSA-N 1,2-distearoyl-sn-glycero-3-phosphoserine Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(O)(=O)OC[C@H](N)C(O)=O)OC(=O)CCCCCCCCCCCCCCCCC TZCPCKNHXULUIY-RGULYWFUSA-N 0.000 description 3
- 108700010070 Codon Usage Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 3
- ZWZWYGMENQVNFU-UHFFFAOYSA-N Glycerophosphorylserin Natural products OC(=O)C(N)COP(O)(=O)OCC(O)CO ZWZWYGMENQVNFU-UHFFFAOYSA-N 0.000 description 3
- 108010076504 Protein Sorting Signals Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 101150063416 add gene Proteins 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 241000235058 Komagataella pastoris Species 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 229920000855 Fucoidan Polymers 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 102000003867 Phospholipid Transfer Proteins Human genes 0.000 description 1
- 108090000216 Phospholipid Transfer Proteins Proteins 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 241000995615 Streptomyces luteus Species 0.000 description 1
- 241000235015 Yarrowia lipolytica Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- SIHHLZPXQLFPMC-UHFFFAOYSA-N chloroform;methanol;hydrate Chemical compound O.OC.ClC(Cl)Cl SIHHLZPXQLFPMC-UHFFFAOYSA-N 0.000 description 1
- 230000001268 conjugating effect Effects 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 108091008053 gene clusters Proteins 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000006870 ms-medium Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- -1 phosphatidyl p-nitrophenol Chemical compound 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000024053 secondary metabolic process Effects 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 229960001153 serine Drugs 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/76—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Actinomyces; for Streptomyces
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/04—Phosphoric diester hydrolases (3.1.4)
- C12Y301/04004—Phospholipase D (3.1.4.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2800/00—Nucleic acids vectors
- C12N2800/22—Vectors comprising a coding region that has been codon optimised for expression in a respective host
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Medicinal Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于基因工程领域,涉及一种在链霉菌中高效表达磷脂酶D的方法及重组链霉菌。The invention belongs to the field of genetic engineering and relates to a method for highly expressing phospholipase D in streptomyces and recombinant streptomyces.
背景技术Background technique
近年来,人们开始关注酶转化法制备磷脂酰丝氨酸,即通过磷脂酶D催化底物磷脂酰胆碱和L-丝氨酸合成;微生物来源的磷脂酰丝氨酸合成酶D,以下简称磷脂酶D或者磷脂酶D,具有转磷脂酰的活力,能在水相环境中催化合成磷脂酰丝氨酸,反应条件温和、副产物少、产品得率高、质量好,将会成为未来工业化的主要生产方法;但直接从环境中筛选的野生菌催化活性较低,磷脂酶D分泌量远低于工业生产标准,严重影响到磷脂酶D在合成磷脂酰丝氨酸产业化的应用。In recent years, people have begun to pay attention to the preparation of phosphatidylserine by enzymatic conversion, that is, the synthesis of substrates phosphatidylcholine and L-serine catalyzed by phospholipase D; D, has the activity of transphosphatidyl, can catalyze the synthesis of phosphatidylserine in an aqueous environment, the reaction conditions are mild, the by-products are few, the product yield is high, and the quality is good, it will become the main production method of industrialization in the future; but directly from The catalytic activity of wild bacteria screened in the environment is low, and the secretion of phospholipase D is far below the industrial production standard, which seriously affects the industrial application of phospholipase D in the synthesis of phosphatidylserine.
那么为了获取高产量的磷脂酶D就希望通过基因工程手段进行基因构建和基因改造,以获取能高效表达磷脂酶D的工程菌株,然后使用菌株进行发酵提取磷脂酶D,那么构建一种能够高效表达磷脂酶D的菌株就变得十分关键,并且如何让新构建重组质粒能够在异源宿主中良好表达,也是构建重组质粒的思考方向。Then in order to obtain high-yield phospholipase D, it is hoped to carry out gene construction and genetic modification by genetic engineering means to obtain an engineering strain that can efficiently express phospholipase D, and then use the strain to ferment and extract phospholipase D, then construct a kind that can efficiently express phospholipase D. The strain expressing phospholipase D becomes very critical, and how to make the newly constructed recombinant plasmid express well in a heterologous host is also the direction of thinking for constructing a recombinant plasmid.
目前,不少学者尝试对磷脂酶D进行了异源表达,较常使用的宿主是大肠杆菌,其次有链霉菌、酵母以及枯草芽孢杆菌。为了调查影响磷脂酶D热稳定的氨基酸残基,有学者将Streptomyces来源的磷脂酶D基因转入大肠杆菌进行了表达,并对酶学性质进行了研究;而枯草芽孢杆菌具有成熟的遗产操作系统,且为食品级菌株,有学者将E.coliK12来源的磷脂酶D基因导入B.subtilis104中进行了异源表达,检测到细胞外酶活仅为0.15u/mL;还有学者构建了两个组成型穿梭质粒,实现了磷脂酶D在链霉菌中的高效表达,发酵3天后,酶活达到58u/mL,而原始链霉菌磷脂酶D的分泌量仅为1.1u/mL;另有学者将链霉菌来源的磷脂酶D基因分别在毕赤酵母和解脂耶氏酵母中进行了表达,构建了携带目的基因内源性信号肽的pIC9K表达载体并转入毕赤酵母中,发酵三天后,测定其酶活。At present, many scholars have tried to express phospholipase D heterologously. The most commonly used host is Escherichia coli, followed by Streptomyces, yeast and Bacillus subtilis. In order to investigate the amino acid residues that affect the thermal stability of phospholipase D, some scholars transformed the phospholipase D gene from Streptomyces into E. coli for expression, and studied the enzymatic properties; and Bacillus subtilis has a mature heritage operating system , and it is a food-grade strain. Some scholars introduced the phospholipase D gene derived from E.coliK12 into B.subtilis104 for heterologous expression, and detected that the extracellular enzyme activity was only 0.15u/mL; some scholars constructed two The constitutive shuttle plasmid realizes the high-efficiency expression of phospholipase D in Streptomyces, and after 3 days of fermentation, the enzyme activity reaches 58u/mL, while the secretion of phospholipase D in Streptomyces protozoa is only 1.1u/mL; another scholar will The phospholipase D gene derived from Streptomyces was expressed in Pichia pastoris and Yarrowia lipolytica respectively, and the pIC9K expression vector carrying the endogenous signal peptide of the target gene was constructed and transferred into Pichia pastoris. After three days of fermentation, the its enzyme activity.
通过基因实验发现携带目的基因的常用的异源宿主,例如大肠杆菌、枯草芽孢杆菌等体内表达效果不好,或者分泌效果不佳,那么寻找更为适合的异源宿主,并使得重组质粒能够良好表达也成为了研究方向。Through genetic experiments, it is found that commonly used heterologous hosts carrying the target gene, such as Escherichia coli and Bacillus subtilis, have poor in vivo expression or secretion, then find a more suitable heterologous host and make the recombinant plasmid work well Expression has also become a research direction.
发明内容Contents of the invention
本发明的目的在于找到一种在链霉菌中高效表达磷脂酶D的方法,以确定高效表达重组菌株,以应用在工业生产中进行磷脂酶D酶生产。The purpose of the present invention is to find a method for highly expressing phospholipase D in Streptomyces, so as to determine the high-efficiency expression recombinant strains for the production of phospholipase D in industrial production.
本发明采用的技术方案如下:The technical scheme that the present invention adopts is as follows:
一种在链霉菌中高效表达磷脂酶D的方法,包括如下步骤:A method for highly expressing phospholipase D in streptomyces, comprising the steps of:
步骤一,选择磷脂酶D的异源高效表达宿主,选用链霉菌作为宿主,同时选用链霉菌来源的磷脂酶D基因作为目的基因作为基因工程的改造对象;Step 1, select a heterologous high-efficiency expression host of phospholipase D, select Streptomyces as the host, and select the phospholipase D gene derived from Streptomyces as the target gene as the transformation object of genetic engineering;
步骤二,筛选磷脂酶D合成基因的最佳来源,通过酶活测定进行对比实验,选用S.antibioticus抗菌素链霉菌和S.chromofuscus色褐链霉菌作为获得目的基因的目标菌株;Step 2, screening the best source of phospholipase D synthetic gene, carrying out comparative experiments by measuring enzyme activity, selecting S.antibioticus Streptomyces antibioticus and S.chromofuscus Streptomyces fuvidus as the target strains for obtaining the target gene;
步骤三,获取链霉菌来源的磷脂酶D基因片段,通过PCR扩增技术得到抗菌素链霉菌来源的磷脂酶D基因和色褐链霉菌来源的磷脂酶D基因;Step 3, obtaining the phospholipase D gene fragment derived from Streptomyces, and obtaining the phospholipase D gene derived from the antibiotic Streptomyces and the phospholipase D gene derived from Streptomyces fusceus by PCR amplification technology;
步骤四,连接目的基因形成磷脂酶D重组质粒,将抗菌素链霉菌来源的磷脂酶D基因分别连接链霉菌常用表达载体和链霉菌高效表达载体,形成第一重组质粒和第三重组质粒,再将色褐链霉菌来源的磷脂酶D基因分别连接链霉菌常用表达载体和链霉菌高效表达载体,形成第二重组质粒和第四重组质粒;Step 4, connecting the target gene to form a phospholipase D recombinant plasmid, connecting the phospholipase D gene from the antibiotic Streptomyces to the commonly used expression vector of Streptomyces and the high-efficiency expression vector of Streptomyces to form the first recombinant plasmid and the third recombinant plasmid, and then The phospholipase D gene derived from Streptomyces fusceus is respectively connected to the common expression vector of Streptomyces and the high-efficiency expression vector of Streptomyces to form the second recombinant plasmid and the fourth recombinant plasmid;
步骤五,重组质粒接合转移至宿主菌,通过接合转移手段,进而得到与第一重组质粒、第二重组质粒、第三重组质粒、第四重组质粒依次对应的第一重组菌株、第二重组菌株、第三重组菌株、第四重组菌株;Step 5: Conjugate and transfer the recombinant plasmid to the host bacterium, and then obtain the first recombinant strain and the second recombinant strain corresponding to the first recombinant plasmid, the second recombinant plasmid, the third recombinant plasmid, and the fourth recombinant plasmid in sequence by means of conjugative transfer , the third recombinant strain, the fourth recombinant strain;
步骤六,重组菌株的发酵培养及磷脂酶D酶活检测,通过对原始菌株和重组菌株的酶活检测,进而找到表达效果最好的菌株,其中原始菌株为S.lividans变铅青链霉菌、S.antibioticus抗菌素链霉菌以及S.chromofuscus色褐链霉菌;而重组菌株为步骤五所得的第一重组菌株、第二重组菌株、第三重组菌株、第四重组菌株。Step 6, the fermentation culture of the recombinant strain and the detection of phospholipase D enzyme activity, and then find the strain with the best expression effect through the detection of the enzyme activity of the original strain and the recombinant strain, wherein the original strain is S.lividans Streptomyces lividans, Streptomyces lividans, S.antibioticus Streptomyces antibioticus and S.chromofuscus Streptomyces fuvidus; and the recombinant strains are the first recombinant strain, the second recombinant strain, the third recombinant strain and the fourth recombinant strain obtained in Step 5.
具体的,步骤三中所述的PCR扩增技术包括:(1)将S.antibioticus抗菌素链霉菌和S.chromofuscus色褐链霉菌的基因组DNA分别进行提取,(2)分别以S.antibioticus抗菌素链霉菌和S.chromofuscus色褐链霉菌基因组DNA为模板,设计引物PCR得到目的基因并测序验证,(3)对获得的目的片段进行密码子优化,进而得到抗菌素链霉菌来源的磷脂酶D基因和色褐链霉菌来源的磷脂酶D基因。Specifically, the PCR amplification technique described in step 3 includes: (1) extracting the genomic DNAs of S.antibioticus antibiotic Streptomyces and S.chromofuscus chromofuscus respectively; Genomic DNA of mold and S.chromofuscus streptomyces fuvidus was used as templates, primers were designed for PCR to obtain the target gene and sequenced for verification, (3) Codon optimization was performed on the obtained target fragment, and then the phospholipase D gene and color Phospholipase D gene of Streptomyces fucoidans origin.
优选的,步骤四中的链霉菌常用表达载体为pSET152。Preferably, the commonly used expression vector of Streptomyces in step 4 is pSET152.
优选的,步骤四中的链霉菌高效表达载体为pMS82。Preferably, the Streptomyces high-efficiency expression vector in step 4 is pMS82.
优选的,步骤五中的宿主菌为链霉菌SBT5。Preferably, the host bacteria in step five is Streptomyces SBT5.
一种高效表达磷脂酶D的重组链霉菌,采用上述的方法,得到重组质粒pMS82-PLDAnti,再将重组质粒pMS82-PLDAnti接合转移到链霉菌SBT5内形成的重组菌株。A recombinant Streptomyces expressing phospholipase D efficiently, using the above method to obtain recombinant plasmid pMS82-PLD Anti, and then conjugating and transferring the recombinant plasmid pMS82-PLD Anti to Streptomyces SBT5 to form a recombinant strain.
综上所述,由于采用了上述技术方案,本发明的有益效果是:In summary, owing to adopting above-mentioned technical scheme, the beneficial effect of the present invention is:
1.选取链霉菌来源的磷脂酶D合成基因作为目的基因,提高磷脂酶D的表达效率;通过多个菌种对比试验,结果显示链霉菌自身产生磷脂酶D的效果突出,并且水解活性最好,因此,选用链霉菌来源的磷脂酶D进行重组蛋白异源表达,具有天然优势。1. Select the phospholipase D synthesis gene derived from Streptomyces as the target gene to improve the expression efficiency of phospholipase D; through the comparative experiments of multiple strains, the results show that Streptomyces itself produces phospholipase D with outstanding effect and the best hydrolysis activity , Therefore, the choice of Streptomyces-derived phospholipase D for heterologous expression of recombinant proteins has natural advantages.
2.通过将链霉菌高效表达载体作为合成基因的上游原件,其中包含了链霉菌强启动子及分泌型信号肽,大幅度提高了磷脂酶D的表达效率;组成型强启动子对目的基因的高效表达至关重要,同时分泌效果良好的信号肽的加入使得目的蛋白形成后能直接分泌至胞外,简化了生产工艺,降低了生产成本。2. By using the Streptomyces high-efficiency expression vector as the upstream element of the synthetic gene, which contains the Streptomyces strong promoter and secreted signal peptide, the expression efficiency of phospholipase D is greatly improved; the constitutive strong promoter has a strong effect on the target gene High-efficiency expression is very important, and the addition of a signal peptide with good secretion effect enables the target protein to be directly secreted to the outside of the cell after formation, which simplifies the production process and reduces production costs.
3.选取变铅青链霉菌SBT5作为异源表达宿主,进一步提高了磷脂酶D的表达效率;通过研究发现链霉菌作为宿主具有创新和突出的优异性,其优点为:该宿主菌敲除了三个内源抗生素的生物合成基因簇,次级代谢背景清晰;同时自主构建的高效表达载体在该宿主菌中表现优异,使得磷脂酶D的异源表达效率远高于其他宿主。3. Select Streptomyces lividans SBT5 as the heterologous expression host, which further improves the expression efficiency of phospholipase D; through research, it is found that Streptomyces has innovative and outstanding advantages as a host, and its advantages are: the host strain has knocked out three A biosynthetic gene cluster of endogenous antibiotics, with a clear background of secondary metabolism; meanwhile, the self-constructed high-efficiency expression vector performed well in this host bacteria, making the heterologous expression efficiency of phospholipase D much higher than other hosts.
4.根据宿主菌的密码子偏好性,对磷脂酶D合成基因进行了密码子优化,这使得目的基因与宿主的密码子匹配性更强,目的基因在宿主中的复制和指导蛋白质合成的过程更加高效;优异的异源表达效果加上良好的胞外活性分泌表达效果,使得该重组菌株具有极高的创新性和实用性。4. According to the codon preference of the host bacteria, the codon optimization of the phospholipase D synthesis gene is carried out, which makes the codon matching between the target gene and the host stronger, and the replication of the target gene in the host and the process of directing protein synthesis More efficient; excellent heterologous expression effect plus good extracellular active secretion expression effect, making this recombinant strain highly innovative and practical.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。In order to make the object, technical solution and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with the examples.
一种在链霉菌中高效表达磷脂酶D的方法,包括如下步骤:A method for highly expressing phospholipase D in streptomyces, comprising the steps of:
步骤一,选择磷脂酶D的异源高效表达宿主Step 1: Select a host for heterologous and high-efficiency expression of phospholipase D
通过资料查询,不少学者尝试对磷脂酶D进行了异源表达,较常使用的宿主是大肠杆菌,其次有链霉菌、酵母以及枯草芽孢杆菌,并将其中测定磷脂酶D酶活的数据汇总表格如下:Through data query, many scholars have tried to express phospholipase D heterologously. The most commonly used host is Escherichia coli, followed by Streptomyces, yeast and Bacillus subtilis, and the data of phospholipase D enzyme activity are summarized. The form is as follows:
根据上述表格内容发现,可确定选用链霉菌作为宿主,同时选用链霉菌来源的磷脂酶D基因作为基因工程的改造对象,以得到相对磷脂酶D酶活较高的工程菌株。According to the content of the above table, it can be determined that Streptomyces is selected as the host, and the phospholipase D gene derived from Streptomyces is selected as the transformation object of genetic engineering, so as to obtain an engineering strain with relatively high phospholipase D enzyme activity.
步骤二,筛选磷脂酶D合成基因的最佳来源Step two, screening the best source of phospholipase D synthesis gene
选取不同来源的链霉菌,分别以自身为宿主检测其磷脂酶D的酶活水平,然后对比三种不同链霉菌自身的磷脂酶D表达水平。Streptomyces from different sources were selected, and the enzyme activity levels of phospholipase D were detected with themselves as hosts, and then the expression levels of phospholipase D in three different Streptomyces were compared.
具体方法是:选用S.lividans变铅青链霉菌、S.antibioticus抗菌素链霉菌以及S.chromofuscus色褐链霉菌的菌株通过3天发酵培养,取培养液上清,硫酸铵沉淀离心后,经过简单的粗纯化,分别取100μg总蛋白做催化活性实验,以S.lividans变铅青链霉菌来源的磷脂酶D催化活性为标准,比较发现抗菌素链霉菌S.antibioticus产生的磷脂酶D蛋白催化活性较高,结果如下表所示。The specific method is: select the bacterial strains of S.lividans lividans lividans, S.antibioticus antibiotic streptomyces and S.chromofuscus viridans streptomyces to ferment and cultivate for 3 days, take the culture supernatant, after ammonium sulfate precipitation and centrifugation, after simple 100 μg of total protein was used for the catalytic activity experiment, and the catalytic activity of the phospholipase D protein derived from S.lividans lividans Streptomyces lividans was compared and found that the catalytic activity of the phospholipase D protein produced by the antibiotic Streptomyces S.antibioticus was higher than high, the results are shown in the table below.
其中S.lividans变铅青链霉菌、S.antibioticus抗菌素链霉菌以及S.chromofuscus色褐链霉菌的菌株均购于上海生工。The strains of S.lividans lividans, S.antibioticus and S.chromofuscus were purchased from Shanghai Shenggong.
结果显示抗菌素链霉菌和色褐链霉菌来源的磷脂酶D都具有较高的酶活性,考虑目的基因异源表达的未知性以及基因突变等因素,同时选用S.antibioticus抗菌素链霉菌和S.chromofuscus色褐链霉菌作为获得目的基因的目标菌株。The results showed that the phospholipase D derived from Streptomyces antibioticus and Streptomyces fusceus both had high enzymatic activity. Considering the unknown of heterologous expression of the target gene and gene mutation and other factors, S.antibioticus antibiotic Streptomyces and S.chromofuscus were selected at the same time. Streptomyces luteus was used as the target strain to obtain the target gene.
步骤三,获取链霉菌来源的磷脂酶D基因片段Step 3, obtaining the phospholipase D gene fragment derived from Streptomyces
(1)不同来源链霉菌基因组DNA的分别提取,具体是将S.antibioticus抗菌素链霉菌和S.chromofuscus色褐链霉菌按照如下方法进行:(1) Extraction of Streptomyces genomic DNA from different sources, specifically, S.antibioticus Streptomyces antibioticus and S.chromofuscus Streptomyces chromofuscus were carried out according to the following method:
将适量的菌体悬浮于500μl溶菌酶溶液(2%)中,37℃温育1hr左右至完全溶菌,加入500μl碱性SDS溶液(0.3mol/L NaOH,2%SDS),立即振荡混合完全,打开管盖,在70℃放置15min(对大于20kb的质粒则最好放在55℃,30min),然后于水浴中冷却至室温,加入100μl酸性苯酚/氯仿溶液,用混合器振荡至液体彻底混合均匀,12000rpm离心5min,移取上清液,弃去白色中间层;用中性苯酚/氯仿重复抽提直至看不见(或非常少)中间层为止;在上清液中加入1/10体积的3M NaAc溶液和1倍体积的异丙醇沉淀5分钟(或2.2倍体积的无水乙醇沉淀1h),12000rpm离心8min,用70%乙醇洗涤沉淀两次;干燥后加一定量的TE(ddH2O)缓冲液溶解。Suspend an appropriate amount of bacteria in 500 μl lysozyme solution (2%), incubate at 37°C for about 1 hour until the bacteria are completely lysed, add 500 μl alkaline SDS solution (0.3mol/L NaOH, 2% SDS), shake and mix completely, Open the cap of the tube and place it at 70°C for 15 minutes (for plasmids larger than 20kb, it is best to place it at 55°C for 30 minutes), then cool it to room temperature in a water bath, add 100 μl of acidic phenol/chloroform solution, and shake it with a mixer until the liquid is thoroughly mixed Evenly, centrifuge at 12000rpm for 5min, remove the supernatant, discard the white middle layer; repeat extraction with neutral phenol/chloroform until the middle layer is invisible (or very little); add 1/10 volume of Precipitate with 3M NaAc solution and 1 volume of isopropanol for 5 minutes (or 2.2 volumes of absolute ethanol for 1 h), centrifuge at 12000 rpm for 8 min, wash the precipitate twice with 70% ethanol; add a certain amount of TE (ddH2O) after drying The buffer dissolves.
(2)以链霉菌基因组DNA为模板,设计引物PCR得到目的基因并测序验证,具体引物如下所示:(2) Using Streptomyces genomic DNA as a template, design primers for PCR to obtain the target gene and verify it by sequencing. The specific primers are as follows:
抗菌素链霉菌上下游引物Antimicrobial Streptomyces Upstream and Downstream Primers
然后使用Primer STAR mix聚合酶对目的片段进行扩增,获得目的片段。Then use Primer STAR mix polymerase to amplify the target fragment to obtain the target fragment.
(3)对获得的目的片段进行密码子优化,采用Codon Usage Analyzer在线密码子统计表处理软件(http://bioinformatics.org/codon/cgi-bin/codon.cgi)进行优化设计,它使得对密码子的统计用图表的形式显示出来,进而分别使得抗菌素链霉菌和色褐链霉菌来源的磷脂酶D基因更符合宿主菌的密码子偏好性;(3) Carry out codon optimization to the target fragment obtained, adopt Codon Usage Analyzer online codon statistical table processing software (http://bioinformatics.org/codon/cgi-bin/codon.cgi) to carry out optimization design, it makes to The statistics of the codons are displayed in the form of graphs, which makes the phospholipase D genes derived from the antibiotic Streptomyces and Streptomyces fusceus more in line with the codon preference of the host bacteria;
最终得到的抗菌素链霉菌来源的磷脂酶D基因序列如SEQ ID NO.1所示;The finally obtained phospholipase D gene sequence derived from the antibiotic Streptomyces is shown in SEQ ID NO.1;
最终得到的色褐链霉菌来源的磷脂酶D基因序列为如SEQ ID NO.2所示。The finally obtained phospholipase D gene sequence derived from Streptomyces fusceus is shown in SEQ ID NO.2.
步骤四,连接目的基因形成磷脂酶D重组质粒Step 4, connecting the target gene to form a phospholipase D recombinant plasmid
具体方法是:选用链霉菌常用表达载体pSET152(来源于ADDGENE库经中源生物公司购入)和链霉菌高效表达载体pMS82(来源于ADDGENE库经中源生物公司购入),分别与两种不同来源的磷脂酶D目的基因连接,形成多种磷脂酶D表达质粒。The specific method is: select Streptomyces commonly used expression vector pSET152 (from the ADDGENE library and purchased from Zhongyuan Biotechnology Company) and Streptomyces high-efficiency expression vector pMS82 (from the ADDGENE library and purchased from Zhongyuan Biotechnology Company), respectively, and two different The source phospholipase D target gene is connected to form a variety of phospholipase D expression plasmids.
步骤五,重组质粒接合转移至宿主菌SBT5Step 5, conjugative transfer of the recombinant plasmid to the host strain SBT5
其中宿主菌SBT5来自文献:白亭丽等,变铅青链霉菌高效异源表达宿主SBT5的构建,华中农业大学学报,2014年1月,第33卷第一期。The host strain SBT5 is from literature: Bai Tingli et al., Construction of efficient heterologous expression host SBT5 of Streptomyces lividans, Journal of Huazhong Agricultural University, January 2014, Volume 33, Issue 1.
其中接合转移的具体方法是:The specific method of joint transfer is:
用大肠杆菌ET12567/pUZ8002作为接合转移的供体菌,其中质粒pUZ8002含有oriT接合转移起始位点,能够辅助目标质粒的转移。Escherichia coli ET12567/pUZ8002 was used as the donor bacteria for conjugative transfer, and the plasmid pUZ8002 contained oriT conjugative transfer initiation site, which could assist the transfer of the target plasmid.
首先将目标质粒用电转化或者化学转化的方法转入到大肠杆菌ET12567/pUZ8002中,用含有相应抗生素的LB将大肠杆菌培养至OD600为0.4-0.6,收集菌体,用不含抗生素的LB培养基洗涤两次,充分除去上清中的抗生素。First, transform the target plasmid into Escherichia coli ET12567/pUZ8002 by means of electrical transformation or chemical transformation, culture Escherichia coli with LB containing corresponding antibiotics until the OD600 is 0.4-0.6, collect the cells, and culture them with LB without antibiotics The base was washed twice to fully remove the antibiotics in the supernatant.
同时,将新鲜收取的SBT5链霉菌孢子悬浮于一定体积的2×YT培养基中(若为保存在20%甘油中的孢子,则离心除去甘油,用无菌水洗涤两次,再用一定体积的的2×YT培养基悬浮),50℃热激10min,充分冷却。At the same time, suspend the freshly harvested SBT5 Streptomyces spores in a certain volume of 2×YT medium (if the spores are stored in 20% glycerol, centrifuge to remove the glycerol, wash twice with sterile water, and then use a certain volume of Suspended in 2×YT medium), heat shock at 50°C for 10 minutes, and fully cool.
将处理好的SBT5链霉菌孢子和大肠杆菌混合,涂布于没有抗生素的MS培养基上,30℃培养12-16小时,用与目标质粒相对应的抗生素和萘定酮酸或者三甲氧卞氨嘧啶覆盖平板;覆盖后2-3天可以看到接合转移子长出来,继而得到了重组菌株如下所示。Mix the treated SBT5 Streptomyces spores with Escherichia coli, smear them on MS medium without antibiotics, and culture them at 30°C for 12-16 hours. Pyrimidine covers the plate; 2-3 days after covering, the conjugative transfer can be seen to grow out, and then the recombinant strain is obtained as shown below.
步骤六,重组菌株的发酵培养及磷脂酶D酶活检测Step 6, fermentation culture of the recombinant strain and detection of phospholipase D enzyme activity
通过对原始菌株和重组菌株的发酵培养和酶活检测,进而找到表达效果最好的菌株。Through the fermentation culture and enzyme activity detection of the original strain and the recombinant strain, the strain with the best expression effect can be found.
其中原始菌株为S.lividans变铅青链霉菌、S.antibioticus抗菌素链霉菌以及S.chromofuscus色褐链霉菌。Among them, the original strains were S. lividans lividans, S. antibioticus and S. chromofuscus.
其中的重组菌株为步骤五所得的第一重组菌株、第二重组菌株、第三重组菌株、第四重组菌株。The recombinant strains are the first recombinant strain, the second recombinant strain, the third recombinant strain and the fourth recombinant strain obtained in Step 5.
采用上述菌株采用通用方法进行发酵培养和酶活检测,具体方法是:链霉菌接种至发酵培养基中30℃培养箱中5-7天;待菌液培养至浑浊,离心,取上清;0.45um滤膜抽滤上清液,进一步去除杂质;硫酸铵过夜沉淀蛋白。高速离心,弃上清;复溶蛋白,超滤脱盐。磷脂酶D水解活力以p-PNP(磷脂酰基对硝基酚)为底物依分光光度法测定。磷脂酰基转移活力以PC转化为磷脂酰乙醇胺(PE)的反应测定,PC及PE浓度以氯仿-甲醇-水(13:5:0.8体积比)为展开剂、GF254硅胶板TLC;碘蒸气染色的薄层板用图像处理软件测量斑点面积及灰度值,计算出磷脂组分浓度。酶蛋白质浓度依Bradford法以牛血清蛋白为标准进行测定,并用于PLD比活力测定,得到的结果如下:Use the above-mentioned strains to carry out fermentation culture and enzyme activity detection using a general method. The specific method is: Streptomyces inoculated into the fermentation medium in a 30°C incubator for 5-7 days; the bacteria solution was cultured until turbid, centrifuged, and the supernatant was taken; 0.45 um filter membrane to filter the supernatant to further remove impurities; ammonium sulfate precipitated protein overnight. Centrifuge at high speed, discard the supernatant; redissolve the protein, desalt by ultrafiltration. The hydrolytic activity of phospholipase D was determined spectrophotometrically with p-PNP (phosphatidyl p-nitrophenol) as substrate. Phosphatidyl transfer activity was determined by the conversion of PC to phosphatidylethanolamine (PE). The concentration of PC and PE was determined by using chloroform-methanol-water (13:5:0.8 volume ratio) as the developing agent, TLC on GF254 silica gel plate; iodine vapor staining The thin-layer plate uses image processing software to measure the spot area and gray value, and calculates the concentration of phospholipid components. Enzyme protein concentration was determined according to the Bradford method with bovine serum albumin as the standard, and used for PLD specific activity determination. The results obtained are as follows:
根据上述表格中的数据可以看出,重组菌株的酶活测定数值均高于原始菌株的酶活测定数值,则说明通过基因工程改造后的重组菌株的磷脂酶D表达效果更好;而重组菌株中采用链霉菌高效表达载体的重组菌株酶活测定数值均高于采用链霉菌常用表达载体的重组菌株酶活测定数值,即表格中第三重组菌株和第四重组菌株的表达效果好于第一重组菌株和第二重组,而其中第三重组菌株的表达效果最佳,那么第三重组菌株就是我们通过该方法筛选得到的最高效表达磷脂酶D的基因工程重组链霉菌。According to the data in the above table, it can be seen that the enzyme activity assay values of the recombinant strains are all higher than the enzyme activity assay values of the original strains, which means that the phospholipase D expression effect of the recombinant strains after genetic engineering transformation is better; while the recombinant strains The measured values of enzyme activity of the recombinant strains using Streptomyces high-efficiency expression vectors are higher than those of the recombinant strains using Streptomyces commonly used expression vectors, that is, the expression effects of the third and fourth recombinant strains in the table are better than those of the first The recombinant strain and the second recombination, and the expression effect of the third recombination strain is the best, then the third recombination strain is the genetically engineered recombinant streptomyces with the highest expression of phospholipase D obtained by our screening by this method.
其中所述第三重组菌株是将重组质粒pMS82-PLDAnti接合转移到链霉菌SBT5内形成的重组菌株,其中pMS82来源于ADDGENE库经中源生物公司购入链霉菌高效表达载体pMS82,其中PLDAnti来源于S.antibioticus抗菌素链霉菌的磷脂酶D合成基因。Wherein the third recombinant strain is a recombinant strain formed by conjugatively transferring the recombinant plasmid pMS82-PLDAnti into Streptomyces SBT5, wherein pMS82 is derived from the ADDGENE library and purchased Streptomyces high-efficiency expression vector pMS82 by Zhongyuan Biological Company, wherein PLDAnti is derived from Phospholipase D synthesis gene from S. antibioticus antibiotic Streptomyces spp.
序列表sequence listing
<110> 河南省商业科学研究所有限责任公司<110> Henan Commercial Science Research Institute Co., Ltd.
河南省科学院Henan Academy of Sciences
<120> 一种在链霉菌中高效表达磷脂酶D的方法及重组链霉菌<120> A method for highly expressing phospholipase D in Streptomyces and recombinant Streptomyces
<141> 2020-12-31<141> 2020-12-31
<160> 2<160> 2
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 1632<211> 1632
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 1<400> 1
atgctgctgc gccaccgcct gcgccgcctg caccgcctga cccgctccgc cgccgtctcc 60atgctgctgc gccaccgcct gcgccgcctg caccgcctga cccgctccgc cgccgtctcc 60
gccgtcgtcc tggccgccct gccggccgcc ccggccttcg ccgccgacac cccgccgacc 120gccgtcgtcc tggccgccct gccggccgcc ccggccttcg ccgccgacac cccgccgacc 120
ccgcacctgg acgccatcga gcgctccctg cgcgacacct ccccgggcct ggagggctcc 180ccgcacctgg acgccatcga gcgctccctg cgcgacacct ccccggggcct ggagggctcc 180
gtctggcagc gcaccgacgg caaccgcctg gacgccccgg acggcgaccc ggccggctgg 240gtctggcagc gcaccgacgg caaccgcctg gacgccccgg acggcgaccc ggccggctgg 240
ctgctgcaga ccccgggctg ctggggcgac gccggctgca aggaccgcgc cggcacccgc 300ctgctgcaga ccccgggctg ctggggcgac gccggctgca aggaccgcgc cggcacccgc 300
cgcctgctgg acaagatgac ccgcaacatc gccgacgccc gccacaccgt cgacatctcc 360cgcctgctgg acaagatgac ccgcaacatc gccgacgccc gccacaccgt cgacatctcc 360
tccctggccc cgttcccgaa cggcggcttc gaggacgccg tcgtcgacgg cctgaaggcc 420tccctggccc cgttcccgaa cggcggcttc gaggacgccg tcgtcgacgg cctgaaggcc 420
gtcgtcgccg ccggccactc cccgcgcgtc cgcatcctgg tcggcgccgc cccgatctac 480gtcgtcgccg ccggccactc cccgcgcgtc cgcatcctgg tcggcgccgc cccgatctac 480
cacctgaacg tcgtcccgtc ccgctaccgc gacgagctga tcggcaagct gggcgccgcc 540cacctgaacg tcgtcccgtc ccgctaccgc gacgagctga tcggcaagct gggcgccgcc 540
gccggcaagg tcaccctgaa cgtcgcctcc atgaccacct ccaagacctc cctgtcctgg 600gccggcaagg tcaccctgaa cgtcgcctcc atgaccacct ccaagacctc cctgtcctgg 600
aaccactcca agctgctggt cgtcgacggc aagaccgcca tcacctccgg catcaacggc 660aaccactcca agctgctggt cgtcgacggc aagaccgcca tcacctccgg catcaacggc 660
tggaaggacg actacctgga caccgcccac ccggtctccg acgtcgacat ggccctgtcc 720tggaaggacg actacctgga caccgcccac ccggtctccg acgtcgacat ggccctgtcc 720
ggcccggccg ccgcctccgc cggcaagtac ctggacaccc tgtgggactg gacctgccgc 780ggcccggccg ccgcctccgc cggcaagtac ctggacaccc tgtgggactg gacctgccgc 780
aacgcctccg acccggccaa ggtctggctg gccacctcca acggcgcctc ctgcatgccg 840aacgcctccg acccggccaa ggtctggctg gccacctcca acggcgcctc ctgcatgccg 840
tccatggagc aggacgaggc cggctccgcc ccggccgagc cgaccggcga cgtcccggtc 900tccatggagc aggacgaggc cggctccgcc ccggccgagc cgaccggcga cgtcccggtc 900
atcgccgtcg gcggcctggg cgtcggcatc aaggagtccg acccgtcctc cggctaccac 960atcgccgtcg gcggcctggg cgtcggcatc aaggagtccg acccgtcctc cggctaccac 960
ccggacctgc cgaccgcccc ggacaccaag tgcaccgtcg gcctgcacga caacaccaac 1020ccggacctgc cgaccgcccc ggacaccaag tgcaccgtcg gcctgcacga caacaccaac 1020
gccgaccgcg actacgacac cgtcaacccg gaggagaacg ccctgcgctc cctgatcgcc 1080gccgaccgcg actacgacac cgtcaacccg gaggagaacg ccctgcgctc cctgatcgcc 1080
tccgcccgct cccacgtcga gatctcccag caggacctga acgccacctg cccgccgctg 1140tccgcccgct cccacgtcga gatctcccag caggacctga acgccacctg cccgccgctg 1140
ccgcgctacg acatccgcac ctacgacacc ctggccggca agctggccgc cggcgtcaag 1200ccgcgctacg acatccgcac ctacgacacc ctggccggca agctggccgc cggcgtcaag 1200
gtccgcatcg tcgtctccga cccggccaac cgcggcgccg tcggctccgg cggctactcc 1260gtccgcatcg tcgtctccga cccggccaac cgcggcgccg tcggctccgg cggctactcc 1260
cagatcaagt ccctggacga gatctccgac accctgcgca cccgcctggt cgccctgacc 1320cagatcaagt ccctggacga gatctccgac accctgcgca cccgcctggt cgccctgacc 1320
ggcgacaacg agaaggcctc ccgcgccctg tgcggcaacc tgcagctggc ctccttccgc 1380ggcgacaacg agaaggcctc ccgcgccctg tgcggcaacc tgcagctggc ctccttccgc 1380
tcctccgacg ccgccaagtg ggccgacggc aagccgtacg ccctgcacca caagctggtc 1440tcctccgacg ccgccaagtg ggccgacggc aagccgtacg ccctgcacca caagctggtc 1440
tccgtcgacg actccgcctt ctacatcggc tccaagaacc tgtacccggc ctggctgcag 1500tccgtcgacg actccgcctt ctacatcggc tccaagaacc tgtacccggc ctggctgcag 1500
gacttcggct acatcgtcga gtccccggcc gccgcccagc agctgaagac cgagctgctg 1560gacttcggct acatcgtcga gtccccggcc gccgcccagc agctgaagac cgagctgctg 1560
gacccggagt ggaagtactc ccagcaggcc gccgccaccc cggccggctg cccggcccgc 1620gacccggagt ggaagtactc ccagcaggcc gccgccaccc cggccggctg cccggcccgc 1620
caggccggct ga 1632caggccggct ga 1632
<210> 2<210> 2
<211> 1947<211> 1947
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 2<400> 2
ctagaacacc cagacctgag cactcaccca cgcgtactca gccccgcgca ctcaccccac 60ctagaacacc cagacctgag cactcaccca cgcgtactca gccccgcgca ctcaccccac 60
gcactcagcc ctgagcaccc acccccgcgc actcagccct gagcacccac cccccgcacc 120gcactcagcc ctgagcaccc acccccgcgc actcagccct gagcacccac cccccgcacc 120
cagcgaggcc cgagcgcccc ggaaccggcc cgtgtcctcg acgtaagcgt tccgtgacct 180cagcgaggcc cgagcgcccc ggaaccggcc cgtgtcctcg acgtaagcgt tccgtgacct 180
caccgcaccg tccacagggg ttcacccggc gttcatttac gcccttcggc gccttcatct 240caccgcaccg tccacagggg ttcacccggc gttcatttac gcccttcggc gccttcatct 240
catctgccta atttcggcct taccactcct cgcacgccgc cgaattcagg acggcggctc 300catctgccta atttcggcct taccactcct cgcacgccgc cgaattcagg acggcggctc 300
ctggaaggaa ctccctcaag tgaagcttca gcgcatgttg ctgcgccacc gcctgcgccg 360ctggaaggaa ctccctcaag tgaagcttca gcgcatgttg ctgcgccacc gcctgcgccg 360
cctgcaccgc ctgacccgct ccgccgccgt ctccgccgtc gtcctggccg ccctgccggc 420cctgcaccgc ctgacccgct ccgccgccgt ctccgccgtc gtcctggccg ccctgccggc 420
cgccccggcc ttcgccgcct ccccgacccc gcacctggac tccgtcgagc agaccctgcg 480cgccccggcc ttcgccgcct ccccgacccc gcacctggac tccgtcgagc agaccctgcg 480
ccaggtctcc ccgggcctgg agggctccgt ctgggagcgc accgccggca actccctggg 540ccaggtctcc ccgggcctgg agggctccgt ctgggagcgc accgccggca actccctggg 540
cgcctccgcc ccgggcggct ccgactggct gctgcagacc ccgggctgct ggggcgaccc 600cgcctccgcc ccgggcggct ccgactggct gctgcagacc ccgggctgct ggggcgaccc 600
gtcctgcacc gaccgcccgg gctcccgccg cctgctggac aagacccgcc aggacatcgc 660gtcctgcacc gaccgcccgg gctcccgccg cctgctggac aagaccgcc aggacatcgc 660
ccaggcccgc cagtccgtcg acatctccac cctggccccg ttcccgaacg gcggcttcca 720ccaggcccgc cagtccgtcg acatctccac cctggccccg ttcccgaacg gcggcttcca 720
ggacgccgtc gtcgccggcc tgaaggaggc cgtcgccaag ggcaaccgcc tgcaggtccg 780ggacgccgtc gtcgccggcc tgaaggaggc cgtcgccaag ggcaaccgcc tgcaggtccg 780
catcctggtc ggcgccgccc cgatctacca cgccaacgtc atcccgtcct cctaccgcga 840catcctggtc ggcgccgccc cgatctacca cgccaacgtc atcccgtcct cctaccgcga 840
cgagatggtc gcccgcctgg gcccggccgc cgccaacgtc accctgaacg tcgcctccat 900cgagatggtc gcccgcctgg gcccggccgc cgccaacgtc accctgaacg tcgcctccat 900
gaccacctcc aagaccggct tctcctggaa ccactccaag ctggtcgtcg tcgacggcgg 960gaccacctcc aagaccggct tctcctggaa ccactccaag ctggtcgtcg tcgacggcgg 960
ctccgtcatc acctccggca tcaactcctg gaaggacgac tacctggaca ccgcccaccc 1020ctccgtcatc acctccggca tcaactcctg gaaggacgac tacctggaca ccgcccaccc 1020
ggtcaacgac gtcgacctgg ccctgtccgg cccggccgcc ggctccgccg gccgctacct 1080ggtcaacgac gtcgacctgg ccctgtccgg cccggccgcc ggctccgccg gccgctacct 1080
ggacaccctg tgggactgga cctgccgcaa caagtcctcc tggtcctccg tctggttcgc 1140ggacaccctg tgggactgga cctgccgcaa caagtcctcc tggtcctccg tctggttcgc 1140
ctcctccaac aacgccggct gcatgccgac cctgccgcgc ccggccgccc cggccggcgg 1200ctcctccaac aacgccggct gcatgccgac cctgccgcgc ccggccgccc cggccggcgg 1200
cggcgacgtc ccggccctgg ccgtcggcgg cctgggcgtc ggcatccgcc agtccgaccc 1260cggcgacgtc ccggccctgg ccgtcggcgg cctgggcgtc ggcatccgcc agtccgaccc 1260
ggcctccgcc ttcaagccgg tcctgccgac cgccccggac accaagtgcg gcatcggcgt 1320ggcctccgcc ttcaagccgg tcctgccgac cgccccggac accaagtgcg gcatcggcgt 1320
ccacgacaac accaacgccg accgcgacta cgacaccgtc aacccggagg agtccgccct 1380ccacgacaac accaacgccg accgcgacta cgacaccgtc aacccggagg agtccgccct 1380
gcgcgccctg gtcgcctccg ccaactccca cgtcgagatc tcccagcagg acctgaacgc 1440gcgcgccctg gtcgcctccg ccaactccca cgtcgagatc tcccagcagg acctgaacgc 1440
cacctgcccg ccgctgccgc gctacgacat ccgcctgtac gacaccctgg ccgccaagct 1500cacctgcccg ccgctgccgc gctacgacat ccgcctgtac gacaccctgg ccgccaagct 1500
ggccgccggc gtcaaggtcc gcatcgtcgt ctccgacccg gccaaccgcg gcgccgtcgg 1560ggccgccggc gtcaaggtcc gcatcgtcgt ctccgacccg gccaaccgcg gcgccgtcgg 1560
ctccgacggc tactcccaga tcaagtccct gaacgaggtc tccgacgccc tgcgcggccg 1620ctccgacggc tactcccaga tcaagtccct gaacgaggtc tccgacgccc tgcgcggccg 1620
cctgaccgcc ctgaccggcg acgagcgcac ctccaaggcc gccatgtgcc agaacctgca 1680cctgaccgcc ctgaccggcg acgagcgcac ctccaaggcc gccatgtgcc agaacctgca 1680
gctggccacc ttccgcgcct ccgacaaggc cacctgggcc gacggcaagc cgtacgccca 1740gctggccacc ttccgcgcct ccgacaaggc cacctgggcc gacggcaagc cgtacgccca 1740
gcaccacaag ctggtctccg tcgacgactc cgccttctac atcggctcca agaacctgta 1800gcaccacaag ctggtctccg tcgacgactc cgccttctac atcggctcca agaacctgta 1800
cccgtcctgg ctgcaggact tcggctacgt cgtcgagtcc ccggccgccg ccaaccagct 1860cccgtcctgg ctgcaggact tcggctacgt cgtcgagtcc ccggccgccg ccaaccagct 1860
gaaggactcc ctgctggccc cgcagtggaa gtactcccag gccaccgcca cctacgacta 1920gaaggactcc ctgctggccc cgcagtggaa gtactcccag gccaccgcca cctacgacta 1920
cgcccgcggc ctgtgccagg cctgatt 1947cgcccgcggc ctgtgccagg cctgatt 1947
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011640261.1A CN112575023B (en) | 2020-12-31 | 2020-12-31 | A method for highly expressing phospholipase D in Streptomyces and recombinant Streptomyces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011640261.1A CN112575023B (en) | 2020-12-31 | 2020-12-31 | A method for highly expressing phospholipase D in Streptomyces and recombinant Streptomyces |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112575023A CN112575023A (en) | 2021-03-30 |
CN112575023B true CN112575023B (en) | 2023-08-22 |
Family
ID=75144493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011640261.1A Active CN112575023B (en) | 2020-12-31 | 2020-12-31 | A method for highly expressing phospholipase D in Streptomyces and recombinant Streptomyces |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112575023B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0435725A1 (en) * | 1989-12-15 | 1991-07-03 | Asahi Kasei Kogyo Kabushiki Kaisha | DNA having the genetic information of phospholipase D and its use |
CN102286440A (en) * | 2011-07-22 | 2011-12-21 | 天津科技大学 | Preparation of high-activity phospholipids enzyme D and cell surface display phospholipids enzyme D yeast whole cell catalysts |
-
2020
- 2020-12-31 CN CN202011640261.1A patent/CN112575023B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0435725A1 (en) * | 1989-12-15 | 1991-07-03 | Asahi Kasei Kogyo Kabushiki Kaisha | DNA having the genetic information of phospholipase D and its use |
CN102286440A (en) * | 2011-07-22 | 2011-12-21 | 天津科技大学 | Preparation of high-activity phospholipids enzyme D and cell surface display phospholipids enzyme D yeast whole cell catalysts |
Non-Patent Citations (1)
Title |
---|
Comparison of the expression of phospholipase D from Streptomyces halstedii in different hosts and its over-expression in Streptomyces lividans;Xinyi Tao 等;FEMS Microbiology Letters;第366卷;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN112575023A (en) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106906236B (en) | Sialidase gene recombinant expression vector and construction method thereof, sialidase and preparation method thereof | |
EP3564376A1 (en) | Gene which encodes alanyl-glutamine dipeptide biosynthetic enzyme and application thereof | |
US11773383B2 (en) | Methods for promoting extracellular expression of proteins in Bacillus subtilis using a cutinase | |
CN114908070B (en) | Phospholipase and method for preparing glycerophospholipids by using phospholipase | |
CN112522125B (en) | A kind of hyaluronidase engineering bacteria and its construction method and application | |
US10612054B2 (en) | Single-cell factory for efficiently synthesizing α-aminobutyric acid and construction and application thereof | |
CN102286440B (en) | Preparation of highly active phospholipase D and yeast whole-cell catalyst displaying phospholipase D on the cell surface | |
CN108841770A (en) | A kind of bacillus subtilis engineering bacteria that can express phospholipase D | |
CN112301012A (en) | Cyclodextrin glucosyltransferase mutant and construction method thereof | |
CN102154239A (en) | New gene of beta-galactosidase with high glycosyl transfer efficiency and application thereof | |
US11807883B2 (en) | Polypeptide tag, highly soluble recombinant nitrilase and application thereof in synthesis of pharmaceutical chemicals | |
CN101629169A (en) | Purine nucleoside phosphorylase (PNP) with modified molecules and preparation method thereof | |
CN112575023B (en) | A method for highly expressing phospholipase D in Streptomyces and recombinant Streptomyces | |
CN103352031B (en) | A kind of glycosyltransferase gene and application | |
CN116426499B (en) | Methyltransferase mutant, biological material and application | |
CN109402188B (en) | Omega-transaminase from bacillus pumilus and application of omega-transaminase in biological amination | |
CN117721057A (en) | An engineered bacterium heterologously expressing the E0TYP4 gene and its application in the production of fish feed protease | |
CN106520733A (en) | Beta-xylosidase in vivo enzyme aggregate and preparation method thereof | |
CN112410353A (en) | A kind of fkbS gene, genetically engineered bacteria containing same, preparation method and use thereof | |
RU2447151C1 (en) | ALKALINE PHOSPHATASE CmAP SYNTHESIS-DETERMINING 40Ph PLASMID, E. coli rosetta(DE3)/40Ph STRAIN - PRODUCER OF CHIMERIC PROTEIN, CONTAINING AMINO ACID SEQUENCE OF RECOMBINANT ALKALINE PHOSPHATASE CmAP, AND PRODUCTION METHOD THEREOF | |
US20230407356A1 (en) | Method for producing ketose using novel ketose-3-epimerase | |
CN115772510A (en) | Cyclohexenecarboxylic acid ester hydrolase mutant and preparation method and application thereof | |
CN116731942A (en) | Phospholipase D gene engineering bacteria constructed by efficient expression and molecular transformation and application thereof | |
CN111363733B (en) | A kind of thermostable phospholipase D mutant and method for preparing and synthesizing functional phospholipid | |
CN114736884A (en) | A cytidine monophosphate kinase mutant and its gene and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |