CN112563517B - A kind of preparation method of rare earth metal doped carbon-based oxygen reduction electrocatalyst - Google Patents
A kind of preparation method of rare earth metal doped carbon-based oxygen reduction electrocatalyst Download PDFInfo
- Publication number
- CN112563517B CN112563517B CN202011417932.8A CN202011417932A CN112563517B CN 112563517 B CN112563517 B CN 112563517B CN 202011417932 A CN202011417932 A CN 202011417932A CN 112563517 B CN112563517 B CN 112563517B
- Authority
- CN
- China
- Prior art keywords
- rare earth
- earth metal
- oxygen reduction
- doped carbon
- based oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 54
- 239000010411 electrocatalyst Substances 0.000 title claims abstract description 45
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 45
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 39
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 239000001301 oxygen Substances 0.000 title claims abstract description 37
- 230000009467 reduction Effects 0.000 title claims abstract description 33
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 32
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 238000005406 washing Methods 0.000 claims abstract description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 16
- -1 nitrogen-containing organic compound Chemical class 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 11
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 11
- 239000002904 solvent Substances 0.000 claims abstract description 6
- 239000002243 precursor Substances 0.000 claims abstract description 5
- 150000001491 aromatic compounds Chemical class 0.000 claims abstract description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 3
- 238000010000 carbonizing Methods 0.000 claims abstract 2
- 238000010438 heat treatment Methods 0.000 claims description 61
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 48
- UIAFKZKHHVMJGS-UHFFFAOYSA-N 2,4-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1O UIAFKZKHHVMJGS-UHFFFAOYSA-N 0.000 claims description 32
- 238000003756 stirring Methods 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 30
- 239000008367 deionised water Substances 0.000 claims description 30
- 229910021641 deionized water Inorganic materials 0.000 claims description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 18
- 238000003763 carbonization Methods 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 229920000877 Melamine resin Polymers 0.000 claims description 16
- 229940114055 beta-resorcylic acid Drugs 0.000 claims description 16
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 16
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 16
- 238000001035 drying Methods 0.000 claims description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 6
- IUNJCFABHJZSKB-UHFFFAOYSA-N 2,4-dihydroxybenzaldehyde Chemical compound OC1=CC=C(C=O)C(O)=C1 IUNJCFABHJZSKB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 3
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 claims description 2
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 claims description 2
- WLODWTPNUWYZKN-UHFFFAOYSA-N 1h-pyrrol-2-ol Chemical compound OC1=CC=CN1 WLODWTPNUWYZKN-UHFFFAOYSA-N 0.000 claims description 2
- CXOWHCCVISNMIX-UHFFFAOYSA-N 2-aminonaphthalene-1-carboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(N)=CC=C21 CXOWHCCVISNMIX-UHFFFAOYSA-N 0.000 claims description 2
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 claims description 2
- UPHOPMSGKZNELG-UHFFFAOYSA-N 2-hydroxynaphthalene-1-carboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=C(O)C=CC2=C1 UPHOPMSGKZNELG-UHFFFAOYSA-N 0.000 claims description 2
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 claims description 2
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052691 Erbium Inorganic materials 0.000 claims description 2
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 2
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 claims description 2
- 150000001299 aldehydes Chemical group 0.000 claims description 2
- 229960004050 aminobenzoic acid Drugs 0.000 claims description 2
- 150000005010 aminoquinolines Chemical class 0.000 claims description 2
- 239000004202 carbamide Substances 0.000 claims description 2
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 claims description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 2
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical compound OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 claims description 2
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical compound OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 claims description 2
- WRHZVMBBRYBTKZ-UHFFFAOYSA-N pyrrole-2-carboxylic acid Chemical compound OC(=O)C1=CC=CN1 WRHZVMBBRYBTKZ-UHFFFAOYSA-N 0.000 claims description 2
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 2
- 238000004729 solvothermal method Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 150000003841 chloride salts Chemical class 0.000 claims 2
- 230000001590 oxidative effect Effects 0.000 claims 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 claims 1
- 238000007789 sealing Methods 0.000 claims 1
- 239000003054 catalyst Substances 0.000 abstract description 49
- 229910052751 metal Inorganic materials 0.000 abstract description 8
- 239000002184 metal Substances 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 abstract description 2
- 230000002195 synergetic effect Effects 0.000 abstract description 2
- 239000002253 acid Substances 0.000 abstract 1
- 125000003172 aldehyde group Chemical group 0.000 abstract 1
- 150000004696 coordination complex Chemical class 0.000 abstract 1
- 230000000379 polymerizing effect Effects 0.000 abstract 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 20
- 238000012546 transfer Methods 0.000 description 16
- 230000027756 respiratory electron transport chain Effects 0.000 description 15
- GFHNAMRJFCEERV-UHFFFAOYSA-L cobalt chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Co+2] GFHNAMRJFCEERV-UHFFFAOYSA-L 0.000 description 14
- 229910021397 glassy carbon Inorganic materials 0.000 description 14
- 238000011068 loading method Methods 0.000 description 14
- 238000005119 centrifugation Methods 0.000 description 12
- 230000010287 polarization Effects 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- KPZSTOVTJYRDIO-UHFFFAOYSA-K trichlorocerium;heptahydrate Chemical compound O.O.O.O.O.O.O.Cl[Ce](Cl)Cl KPZSTOVTJYRDIO-UHFFFAOYSA-K 0.000 description 4
- IINACGXCEZNYTF-UHFFFAOYSA-K trichloroyttrium;hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Cl-].[Y+3] IINACGXCEZNYTF-UHFFFAOYSA-K 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- TXVNDKHBDRURNU-UHFFFAOYSA-K trichlorosamarium;hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Cl-].[Sm+3] TXVNDKHBDRURNU-UHFFFAOYSA-K 0.000 description 2
- LOXWVAXWPZWIOO-UHFFFAOYSA-N 7-bromo-1-chloronaphthalene Chemical compound C1=C(Br)C=C2C(Cl)=CC=CC2=C1 LOXWVAXWPZWIOO-UHFFFAOYSA-N 0.000 description 1
- 208000021251 Methanol poisoning Diseases 0.000 description 1
- 230000010757 Reduction Activity Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- UJBPGOAZQSYXNT-UHFFFAOYSA-K trichloroerbium;hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Cl-].[Er+3] UJBPGOAZQSYXNT-UHFFFAOYSA-K 0.000 description 1
- PNYPSKHTTCTAMD-UHFFFAOYSA-K trichlorogadolinium;hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Cl-].[Gd+3] PNYPSKHTTCTAMD-UHFFFAOYSA-K 0.000 description 1
- FDFPDGIMPRFRJP-UHFFFAOYSA-K trichlorolanthanum;heptahydrate Chemical compound O.O.O.O.O.O.O.[Cl-].[Cl-].[Cl-].[La+3] FDFPDGIMPRFRJP-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明属于新能源材料及电催化技术领域,具体涉及一种稀土金属掺杂的碳基氧还原电催化剂的制备方法。The invention belongs to the technical field of new energy materials and electrocatalysis, and particularly relates to a preparation method of a rare earth metal-doped carbon-based oxygen reduction electrocatalyst.
背景技术Background technique
随着社会的高速发展,由于传统的化石能源不可再生性和污染性,人们对清洁能源的需求越来越迫切。燃料电池、金属-空气电池等清洁高效能源转换装置比传统通过燃烧进行能量转化的装置具有更高的转化效率,因此备受学界和业界青睐,是未来清洁能源广泛使用的关键技术之一。然而阴极氧气还原电催化剂的活性和稳定性差一直是阻碍此类技术推广应用的核心因素,目前商业应用仍然依赖于Pt/C催化剂。能源利用规模巨大,Pt/C催化剂因贵金属Pt的自然储量低、价格高昂、稳定性差、易CO和甲醇中毒等缺点,仍然无法支撑燃料电池等技术的规模化发展。因此,目前人们仍在寻找合适的高效廉价替代催化剂。With the rapid development of society, due to the non-renewability and pollution of traditional fossil energy, people's demand for clean energy is more and more urgent. Fuel cells, metal-air batteries and other clean and efficient energy conversion devices have higher conversion efficiency than traditional energy conversion devices through combustion, so they are favored by academia and industry, and are one of the key technologies for widespread use of clean energy in the future. However, the poor activity and stability of cathode oxygen reduction electrocatalysts have always been the core factors hindering the popularization and application of such technologies, and current commercial applications still rely on Pt/C catalysts. Due to the huge scale of energy utilization, Pt/C catalysts are still unable to support the large-scale development of fuel cells and other technologies due to the disadvantages of low natural reserves of precious metal Pt, high price, poor stability, and easy CO and methanol poisoning. Therefore, people are still looking for suitable efficient and cheap alternative catalysts.
非贵金属催化剂(NPMCs)是替代Pt/C催化剂的理想材料,常见的NPMCs有非金属S、P、O、N、B等掺杂的纯碳材料、碳基过渡金属材料、以及过渡金属硫化物、磷化物、氧化物、氮化物等非贵金属催化剂。其中,碳基过渡金属催化剂借助于金属-N-C及S、P、O、N、B等富电子或缺电子元素与碳结构形成可调控催化剂内部电子结构的活性位点,能够显著降低氧气电催化还原反应的活化能,增强其催化性能和稳定性。稀土元素部分充满的4f轨道能够改善电子环境,因此,在碳基催化材料中引入稀土金属,有望提高其氧气电催化还原活性,同时稀土元素变价特性可使其成为过氧化物中间体的反应位点,从而提高此类催化剂的稳定性。Non-precious metal catalysts (NPMCs) are ideal materials to replace Pt/C catalysts. Common NPMCs include non-metallic S, P, O, N, B and other doped pure carbon materials, carbon-based transition metal materials, and transition metal sulfides. , phosphide, oxide, nitride and other non-precious metal catalysts. Among them, carbon-based transition metal catalysts rely on metal-N-C and electron-rich or electron-deficient elements such as S, P, O, N, B and carbon structures to form active sites that can adjust the internal electronic structure of the catalyst, which can significantly reduce oxygen electrocatalysis. The activation energy of the reduction reaction enhances its catalytic performance and stability. The partially filled 4f orbital of rare earth elements can improve the electronic environment. Therefore, the introduction of rare earth metals into carbon-based catalytic materials is expected to improve their oxygen electrocatalytic reduction activity, and the valence change of rare earth elements can make it a reaction site for peroxide intermediates. point, thereby improving the stability of such catalysts.
发明内容SUMMARY OF THE INVENTION
本发明针对现有氧气还原电催化剂的活性与稳定性问题,提供一种制备催化活性高、稳定性好的稀土金属掺杂的碳基氧还原电催化剂的方法。Aiming at the problems of activity and stability of the existing oxygen reduction electrocatalyst, the present invention provides a method for preparing a rare earth metal doped carbon-based oxygen reduction electrocatalyst with high catalytic activity and good stability.
本发明采用如下技术方案:The present invention adopts following technical scheme:
一种稀土金属掺杂的碳基氧还原电催化剂的制备方法,包括如下步骤:A preparation method of a rare earth metal-doped carbon-based oxygen reduction electrocatalyst, comprising the following steps:
第一步,将氮源、碳源、稀土金属盐和Fe/Co/Ni过渡金属盐置于容器中,加入溶剂,密封加热到40-80℃,搅拌4-12h后,加入甲醛,继续搅拌10-16h,得到金属-有机配合物前驱体;In the first step, place nitrogen source, carbon source, rare earth metal salt and Fe/Co/Ni transition metal salt in a container, add solvent, seal and heat to 40-80°C, stir for 4-12h, add formaldehyde, and continue stirring 10-16h to obtain a metal-organic complex precursor;
第二步,将第一步得到的金属-有机配合物前驱体移入反应容器中,在100-200℃下,进行溶剂热反应20-24h;In the second step, the metal-organic complex precursor obtained in the first step is transferred into the reaction vessel, and the solvothermal reaction is carried out at 100-200 ° C for 20-24 h;
第三步,将第二步得到的产物置于马弗炉中,空气中升温氧化,氧化温度150-300℃,持续时间2-12h;In the third step, the product obtained in the second step is placed in a muffle furnace, heated and oxidized in the air, the oxidation temperature is 150-300 ° C, and the duration is 2-12 h;
第四步,将第三步得到的产物置于管式炉中,在氮气气氛下进行碳化,碳化温度800-1000℃,炭化时间1-3h;In the fourth step, the product obtained in the third step is placed in a tube furnace, and carbonized in a nitrogen atmosphere, the carbonization temperature is 800-1000°C, and the carbonization time is 1-3h;
第五步,将第四步得到的碳化产物经0.5M硫酸酸洗、去离子水洗涤至中性,离心干燥得到稀土金属掺杂的碳基氧还原电催化剂。In the fifth step, the carbonized product obtained in the fourth step is acid-washed with 0.5M sulfuric acid, washed with deionized water until neutral, and centrifuged and dried to obtain a rare earth metal-doped carbon-based oxygen reduction electrocatalyst.
第一步中所述氮源为含氮有机物,包括三聚氰胺、尿素、邻菲罗啉、双氰胺和联吡啶中的至少一种。In the first step, the nitrogen source is a nitrogen-containing organic substance, including at least one of melamine, urea, o-phenanthroline, dicyandiamide and bipyridine.
第一步中所述碳源为含有羧基/醛基/氨基/羟基官能团的芳香化合物,包括2,4-二羟基苯甲酸、2,4-二羟基苯甲醛、氨基苯酚、氨基苯甲酸、羟基喹啉、氨基喹啉、羟基萘、氨基萘、羟基萘甲酸、氨基萘甲酸、羟基吡啶、羧基吡啶、羟基吡咯和羧基吡咯中的至少一种。The carbon source described in the first step is an aromatic compound containing carboxyl/aldehyde/amino/hydroxyl functional groups, including 2,4-dihydroxybenzoic acid, 2,4-dihydroxybenzaldehyde, aminophenol, aminobenzoic acid, hydroxyl At least one of quinoline, aminoquinoline, hydroxynaphthalene, aminonaphthalene, hydroxynaphthoic acid, aminonaphthoic acid, hydroxypyridine, carboxypyridine, hydroxypyrrole, and carboxypyrrole.
第一步中所述稀土金属盐包括镧、铈、钕、钐、钆、铒和钇的水合氯化物中的至少一种。The rare earth metal salt in the first step includes at least one of lanthanum, cerium, neodymium, samarium, gadolinium, erbium and yttrium hydrated chlorides.
第一步中所述Fe/Co/Ni过渡金属盐包括Fe/Co/Ni的水合氯化物中的至少一种。The Fe/Co/Ni transition metal salt in the first step includes at least one of hydrated chlorides of Fe/Co/Ni.
第一步中所述溶剂包括水、乙醇和乙二醇中的至少一种。The solvent in the first step includes at least one of water, ethanol and ethylene glycol.
第一步中所述Fe/Co/Ni过渡金属盐、稀土金属盐、碳源、氮源、甲醛的摩尔比为1:(0.1~0.5):(1~2):(2~5):(1~1)。In the first step, the molar ratio of Fe/Co/Ni transition metal salt, rare earth metal salt, carbon source, nitrogen source and formaldehyde is 1:(0.1~0.5):(1~2):(2~5): (1~1).
第三步中马弗炉氧化升温速率为1-5℃/min。In the third step, the heating rate of the muffle furnace oxidation is 1-5°C/min.
第四步中碳化升温速率为1-3℃/min。In the fourth step, the heating rate of carbonization is 1-3°C/min.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
稀土元素具有丰富的4f电子,其优异的亲氧特性及可变价态在氧化还原反应中常常能够促进主催化活性位的活性,且有利于氧物种的吸附和迁移。同时,稀土元素的掺杂能够形成氧空位,不仅有利于稳定催化剂,而且能够有效调控催化剂的电子结构和电子转移性能,与Fe/Co/Ni主金属协同作用,可明显提高碳基氧还原电催化剂的活性与稳定性。Rare earth elements have abundant 4f electrons, and their excellent oxophilic properties and variable valence states can often promote the activity of main catalytic active sites in redox reactions, and are beneficial to the adsorption and migration of oxygen species. At the same time, the doping of rare earth elements can form oxygen vacancies, which is not only conducive to stabilizing the catalyst, but also can effectively control the electronic structure and electron transfer performance of the catalyst. Catalyst activity and stability.
附图说明Description of drawings
图1本发明实施例12铈掺杂碳基Co电催化剂(Co(Ce)-61)在0.1M的KOH中的ORR线性扫描极化曲线。Fig. 1 ORR linear scan polarization curve of cerium-doped carbon-based Co electrocatalyst (Co(Ce)-61) in 0.1 M KOH of Example 12 of the present invention.
图2为只掺杂Ce单金属掺杂催化剂在0.1M的KOH中的ORR线性扫描极化曲线。Figure 2 shows the ORR linear scan polarization curves of Ce single-metal doped catalysts in 0.1 M KOH.
图3为只掺杂Co单金属掺杂催化剂在0.1M的KOH中的ORR线性扫描极化曲线。Figure 3 shows the ORR linear scan polarization curves of only Co single-metal doped catalysts in 0.1 M KOH.
图4为铈掺杂碳基Co电催化剂(Co(Ce)-61)在0.1M的KOH中稳定性测试前后的ORR线性扫描极化曲线。Figure 4 shows the ORR linear scan polarization curves of the cerium-doped carbon-based Co electrocatalyst (Co(Ce)-61) before and after the stability test in 0.1 M KOH.
图5为系列铈掺杂碳基Co电催化剂的Tafel斜率图。Figure 5 is a plot of Tafel slopes for a series of cerium-doped carbon-based Co electrocatalysts.
图6为系列铈掺杂碳基Co电催化剂的K-L方程计算出的电子转移数。Figure 6 shows the electron transfer numbers calculated by the K-L equation for a series of cerium-doped carbon-based Co electrocatalysts.
图7为系列铈掺杂碳基Co电催化剂的XRD衍射图。Figure 7 is the XRD diffraction pattern of a series of cerium-doped carbon-based Co electrocatalysts.
具体实施方式Detailed ways
实施例1Example 1
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和3.20mmol七水合氯化镧(LaCl3·7H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,50℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得金属掺杂的碳基氧还原电催化剂。催化剂编号为Co(La)-41,所制备催化剂在玻碳电极上负载量为0.2018mg·cm-2,转速为2025rpm的极限电流密度为5.85 mA·cm-2,起始电位为0.817 V vs. RHE。Place 11.51
实施例2Example 2
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和3.20mmol六水合氯化钆(GdCl3·6H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,50℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土金属掺杂的碳基氧还原电催化剂。催化剂编号为Co(Gd)-41,所制备催化剂在玻碳电极上负载量为0.2018mg·cm-2,转速为2025rpm的极限电流密度为4.51mA·cm-2,起始电位为0.825 V vs. RHE。11.51
实施例3Example 3
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和3.20mmol六水合氯化铒(ErCl3·6H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,50℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土金属掺杂的碳基氧还原电催化剂。催化剂编号为Co(Er)-41,所制备催化剂在玻碳电极上负载量为0.2018mg·cm-2,转速为2025rpm的极限电流密度为4.96mA·cm-2,起始电位为0.799 V vs. RHE。11.51
实施例4Example 4
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和3.20mmol六水合氯化钕(NdCl3·6H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,50℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土金属掺杂的碳基氧还原电催化剂。催化剂编号为Co(Nd)-41,所制备催化剂在玻碳电极上负载量为0.2018mg·cm-2,转速为2025rpm的极限电流密度为5.18 mA·cm-2,起始电位为0.868 V vs. RHE。11.51
实施例5Example 5
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和6.40mmol六水合氯化钐(SmCl3·6H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,50℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土金属掺杂的碳基氧还原电催化剂。催化剂编号为Co(Sm)-21,所制备催化剂在玻碳电极上负载量为0.2018mg·cm-2,转速为2025rpm的极限电流密度为6.97 mA·cm-2,起始电位为0.887 V vs. RHE,电子转移数3.74,Tafel斜率为47 mV·dec-1。11.51
实施例6Example 6
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和3.20mmol六水合氯化钐(SmCl3·6H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,50℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土金属掺杂的碳基氧还原电催化剂。。催化剂编号为Co(Sm)-41,所制备催化剂在玻碳电极上负载量为0.2018mg·cm-2,转速为2025rpm的极限电流密度为6.13 mA·cm-2,起始电位为0.880 V vs. RHE,电子转移数3.62,Tafel斜率为55 mV·dec-1。11.51
实施例7Example 7
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和6.40mmol六水合氯化钇(YCl3·6H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,50℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土/碱土-钴-氮共掺杂催化剂。催化剂编号为Co(Y)-21,所制备催化剂在玻碳电极上负载量为0.2018 mg·cm-2,转速为2025rpm的极限电流密度为7.08 mA·cm-2,起始电位为0.875 V vs. RHE,电子转移数3.86,Tafel斜率为50 mV·dec-1。11.51
实施例8Example 8
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和3.20mmol六水合氯化钇(YCl3·6H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,50℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土/碱土-钴-氮共掺杂催化剂。催化剂编号为Co(Y)-41,所制备催化剂在玻碳电极上负载量为0.2018 mg·cm-2,转速为2025rpm的极限电流密度为6.80 mA·cm-2,起始电位为0.885 V vs. RHE,电子转移数3.78,Tafel斜率为53 mV·dec-1。11.51
实施例9Example 9
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和3.20mmol六水合氯化钇(YCl3·6H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,70℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土金属掺杂的碳基氧还原电催化剂。催化剂编号为Co(Y)-41-70,所制备催化剂在玻碳电极上负载量为0.2018mg·cm-2,转速为2025rpm的极限电流密度为6.69 mA·cm-2,起始电位为0.881 V vs. RHE,电子转移数3.63,Tafel斜率为47 mV·dec-1。11.51
实施例10Example 10
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和3.20mmol六水合氯化钇(YCl3·6H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,70℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在180℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土金属掺杂的碳基氧还原电催化剂。催化剂编号为Co(Y)-180-41,所制备催化剂在玻碳电极上负载量为0.2018 mg·cm-2,转速为2025rpm的极限电流密度为6.99 mA·cm-2,起始电位为0.889 Vvs. RHE,电子转移数3.87,Tafel斜率为49 mV·dec-1。11.51
实施例11Example 11
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和6.40mmol七水合氯化铈(CeCl3·7H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,50℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土金属掺杂的碳基氧还原电催化剂。催化剂编号为Co(Ce)-21,所制备催化剂在玻碳电极上负载量为0.2018mg·cm-2,转速为2025rpm的极限电流密度为6.62mA·cm-2,起始电位为0.888 V vs. RHE,电子转移数4.06,Tafel斜率为66 mV·dec-1。11.51
实施例12Example 12
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和3.20mmol七水合氯化铈(CeCl3·7H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,50℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土金属掺杂的碳基氧还原电催化剂。催化剂编号为Co(Ce)-41,所制备催化剂在玻碳电极上负载量为0.2018mg·cm-2,转速为2025rpm的极限电流密度为6.46mA·cm-2,起始电位为0.812 V vs. RHE,电子转移数4.03,Tafel斜率为82 mV·dec-1。11.51
实施例13Example 13
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和2.13mmol七水合氯化铈(CeCl3·7H2O)置于容器中,加入18mL去离子水和4mL无水乙醇,50℃搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土金属掺杂的碳基氧还原电催化剂。催化剂编号为Co(Ce)-61,所制备催化剂在玻碳电极上负载量为0.2018mg·cm-2,转速为2025rpm的极限电流密度为7.15mA·cm-2,起始电位为0.923 V vs. RHE,电子转移数4.36,Tafel斜率为67 mV·dec-1。11.51
实施例14Example 14
将11.51mmol 2,4-二羟基苯甲酸、7.77mmol三聚氰胺、12.80mmol六水合氯化钴(CoCl2·6H2O)和1.60mmol七水合氯化铈(CeCl3·7H2O)置于容器中,加入18mL去离子水和4mL无水乙醇搅拌10h,加入48.9mmol甲醛继续搅拌反应14h;然后转移入水热釜在120℃温度下反应24h;再移入马弗炉在空气中以1℃/min升温速率阶段式升温至280℃氧化4h;将氧化产物移入管式炉在氮气气氛下以1℃/min升温速率阶段式升温至900℃碳化,保温2h;降至室温,用0.5M稀硫酸洗涤,去离子水洗涤至中性,离心,干燥得稀土金属掺杂的碳基氧还原电催化剂。催化剂编号为Co(Ce)-81,所制备催化剂在玻碳电极上负载量为0.2018 mg·cm-2,转速为2025rpm的极限电流密度为6.59mA·cm-2,起始电位为0.875 V vs. RHE,电子转移数3.86,Tafel斜率为73 mV·dec-1。11.51
以本发明制备的铈掺杂碳基Co电催化剂(Co(Ce)-61)为例,说明本发明制备的稀土金属掺杂的碳基氧还原电催化剂及其电化学性能。Taking the cerium-doped carbon-based Co electrocatalyst (Co(Ce)-61) prepared by the present invention as an example, the rare earth metal-doped carbon-based oxygen reduction electrocatalyst prepared by the present invention and its electrochemical performance are described.
图1为铈掺杂碳基Co电催化剂(Co(Ce)-61)在0.1M的KOH中的ORR线性扫描极化曲线,其起始电势为0.923 V vs. RHE,极限电流密度为5.07 mA·cm-2。与单金属掺杂催化剂相比,起始电势和极限电流密度都有很大的提升,反应活性与导电性显著提高,说明稀土金属与过渡金属钴在催化过程中具有协同效应。Figure 1 shows the ORR linear scan polarization curve of cerium-doped carbon-based Co electrocatalyst (Co(Ce)-61) in 0.1 M KOH, the onset potential is 0.923 V vs. RHE, and the limiting current density is 5.07 mA ·cm -2 . Compared with the single-metal doped catalyst, the onset potential and limiting current density are greatly improved, and the reactivity and conductivity are significantly improved, indicating that rare earth metals and transition metal cobalt have a synergistic effect in the catalytic process.
图2、图3分别为单金属Ce掺杂、单金属Co掺杂的催化剂在0.1M的KOH中的ORR线性扫描极化曲线,其起始电位分别为0.775V vs. RHE和0.880V vs. RHE,极限电流密度分别为3.43mA·cm-2和4.45mA·cm-2。Figure 2 and Figure 3 show the ORR linear scan polarization curves of single-metal Ce-doped and single-metal Co-doped catalysts in 0.1 M KOH, respectively, and their onset potentials are 0.775 V vs. RHE and 0.880 V vs. For RHE, the limiting current densities are 3.43 mA·cm -2 and 4.45 mA·cm -2 , respectively.
图4为铈掺杂碳基Co电催化剂(Co(Ce)-61)在0.1 M的KOH中稳定性测试前后的ORR线性扫描极化曲线。从图4中可以看到,在经过1500圈CV循环(20h)测试后,半波电位仅负移23mV,极限电流密度保留了起始值的94.8%,表现出很好的稳定性。Figure 4 shows the ORR linear scan polarization curves of the cerium-doped carbon-based Co electrocatalyst (Co(Ce)-61) before and after the stability test in 0.1 M KOH. As can be seen from Figure 4, after 1500 CV cycles (20h), the half-wave potential only shifted negatively by 23mV, and the limiting current density retained 94.8% of the initial value, showing good stability.
图5为铈掺杂碳基Co电催化剂的Tafel斜率图,其Tafel斜率在70 mV·dec-1左右,Co(Ce)-61催化剂Tafel斜率为67 mV·dec-1,说明有很好的动力学过程。Figure 5 shows the Tafel slope of the cerium - doped carbon - based Co electrocatalyst. kinetic process.
图6为铈掺杂碳基Co电催化剂系列的K-L方程计算出的电子转移数,从图6可看出,铈掺杂碳基Co电催化剂催化的电子转移数在4左右,说明其以4电子路径为主。Figure 6 shows the electron transfer number calculated by the K-L equation of the cerium-doped carbon-based Co electrocatalyst series. It can be seen from Figure 6 that the electron transfer number catalyzed by the cerium-doped carbon-based Co electrocatalyst is about 4, indicating that the number of electron transfers catalyzed by the cerium-doped carbon-based Co electrocatalyst is about 4. The electronic path is predominant.
图7为铈掺杂碳基Co电催化剂系列的XRD衍射图,在26°出现碳的衍射峰,无Ce和Co的衍射峰,表明金属元素在催化剂中的颗粒很小或以单原子结构存在。Fig. 7 is the XRD diffraction pattern of the cerium-doped carbon-based Co electrocatalyst series, the diffraction peak of carbon appears at 26°, and the diffraction peaks of Ce and Co are absent, indicating that the particles of metal elements in the catalyst are very small or exist in a single-atom structure .
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011417932.8A CN112563517B (en) | 2020-12-07 | 2020-12-07 | A kind of preparation method of rare earth metal doped carbon-based oxygen reduction electrocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011417932.8A CN112563517B (en) | 2020-12-07 | 2020-12-07 | A kind of preparation method of rare earth metal doped carbon-based oxygen reduction electrocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112563517A CN112563517A (en) | 2021-03-26 |
CN112563517B true CN112563517B (en) | 2022-05-31 |
Family
ID=75059310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011417932.8A Active CN112563517B (en) | 2020-12-07 | 2020-12-07 | A kind of preparation method of rare earth metal doped carbon-based oxygen reduction electrocatalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112563517B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113699554B (en) * | 2021-09-17 | 2022-11-15 | 中国矿业大学 | Preparation method and application of rare earth metal and transition metal co-doped carbon-based material |
TWI811822B (en) * | 2021-10-26 | 2023-08-11 | 國立高雄科技大學 | Cathode catalyst for metal-air battery and its preparation method |
CN115364860A (en) * | 2021-11-25 | 2022-11-22 | 浙江理工大学 | A kind of preparation method and application of iron-based flake nano-catalyst |
CN116516410B (en) * | 2023-05-10 | 2024-12-03 | 河南农业大学 | Preparation method and application of biomass wood-based catalyst containing polymer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120245019A1 (en) * | 2011-03-23 | 2012-09-27 | Brookhaven Science Associates, Llc | Method and Electrochemical Cell for Synthesis of Electrocatalysts by Growing Metal Monolayers, or Bilayers and Treatment of Metal, Carbon, Oxide and Core-Shell Nanoparticles |
CN108325565B (en) * | 2018-02-01 | 2019-04-05 | 山西大学 | Multi-functional carbon-based base metal elctro-catalyst of one kind and its preparation method and application |
CN109802148A (en) * | 2019-02-01 | 2019-05-24 | 上海亮仓能源科技有限公司 | A kind of preparation method of on-vehicle fuel load type platinum rare earth metal cathod catalyst |
-
2020
- 2020-12-07 CN CN202011417932.8A patent/CN112563517B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN112563517A (en) | 2021-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112563517B (en) | A kind of preparation method of rare earth metal doped carbon-based oxygen reduction electrocatalyst | |
CN110124713B (en) | Nitrogen-doped carbon nanofiber loaded hollow structure Co3O4/CeO2Preparation method and application of nanoparticle material | |
CN111710878A (en) | A preparation method of metal-organic framework-derived Co-intercalated nitrogen-doped carbon nanotubes modified mesoporous carbon-supported platinum catalyst | |
CN110247068B (en) | A kind of preparation method and application of iron/copper azagraphene zinc-air battery cathode catalyst | |
CN105140531A (en) | Three-dimensional anode material for hydrogen production by water electrolysis and preparation method of three-dimensional anode material | |
CN106252673B (en) | A kind of preparation method of the Fe-N/C oxygen reduction reaction catalyst based on natural plants tissue | |
WO2021232751A1 (en) | Porous coo/cop nanotubes, preparation method therefor and use thereof | |
CN113699554B (en) | Preparation method and application of rare earth metal and transition metal co-doped carbon-based material | |
CN112058293B (en) | Preparation method of nitrogen-phosphorus-codoped foam carbon nanosheet loaded NiCo nanoparticle composite material, product and application thereof | |
CN110518261A (en) | The preparation method of nitrogen-phosphor codoping carbon nanotube cladding ferro-cobalt bimetallic alloy original position electrode | |
CN112142037A (en) | Cobalt and nitrogen doped carbon nano tube and preparation method and application thereof | |
CN113659158B (en) | Carbon-based Fe/S/N co-doped oxygen reduction catalyst and preparation method and application thereof | |
CN110560117A (en) | Bimetallic cobalt ruthenium-nitrogen phosphorus doped porous carbon electrocatalyst and preparation method and application thereof | |
CN113026033B (en) | Cobalt-doped ruthenium-based catalyst, preparation method thereof and application of cobalt-doped ruthenium-based catalyst as acidic oxygen precipitation reaction electrocatalyst | |
CN114293200A (en) | Porous carbon loaded amorphous/crystalline ruthenium-based high-efficiency hydrogen evolution catalyst and preparation and application thereof | |
CN114657592B (en) | Nickel-based catalyst for electrocatalytic carbon dioxide reduction and preparation method thereof | |
CN113322473B (en) | Preparation method and application of nitrogen-doped porous carbon nanofiber material loaded with Ni-CeO2 heterojunction | |
CN113249743B (en) | Catalyst for electrocatalytic oxidation of glycerol and preparation method thereof | |
CN110120524A (en) | A kind of load cobalt protoxide/nitrogen-doped carbon nickel foam composite material and preparation method and application | |
CN111250167A (en) | A Fe-based bimetallic organic framework electrocatalyst and its preparation and application | |
CN112058301A (en) | A kind of preparation method of pyrrole-derived single-atom iron-based nitrogen-carbon material for oxygen reduction | |
CN105047884B (en) | Three-dimensional oxygen-evolution electrode anode material, and preparation method and application thereof | |
CN107528070A (en) | The preparation method of cerium oxide bacteria cellulose supported palladium base fuel battery catalyst | |
CN116613332A (en) | Perovskite nanofiber catalyst and preparation method and application thereof | |
CN116532640A (en) | Ultra-small intermetallic compounds confined in the mesoporous carbon gap and preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |