CN112561209A - 一种利用生菜叶绿素荧光参数预测光合气体交换参数方法 - Google Patents
一种利用生菜叶绿素荧光参数预测光合气体交换参数方法 Download PDFInfo
- Publication number
- CN112561209A CN112561209A CN202011578196.4A CN202011578196A CN112561209A CN 112561209 A CN112561209 A CN 112561209A CN 202011578196 A CN202011578196 A CN 202011578196A CN 112561209 A CN112561209 A CN 112561209A
- Authority
- CN
- China
- Prior art keywords
- photosynthetic
- parameters
- lettuce
- gas exchange
- chlorophyll fluorescence
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000243 photosynthetic effect Effects 0.000 title claims abstract description 87
- 241000208822 Lactuca Species 0.000 title claims abstract description 36
- 235000003228 Lactuca sativa Nutrition 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 24
- 229930002875 chlorophyll Natural products 0.000 title claims abstract description 21
- 235000019804 chlorophyll Nutrition 0.000 title claims abstract description 21
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 title claims abstract description 21
- 230000027756 respiratory electron transport chain Effects 0.000 claims abstract description 23
- 230000001419 dependent effect Effects 0.000 claims abstract description 7
- 230000012010 growth Effects 0.000 claims description 21
- 230000004044 response Effects 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 7
- 238000005286 illumination Methods 0.000 claims description 5
- 238000000611 regression analysis Methods 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- 230000003698 anagen phase Effects 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims description 2
- 241000196324 Embryophyta Species 0.000 abstract description 11
- 238000011160 research Methods 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000008569 process Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000004298 light response Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0098—Plants or trees
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N2021/635—Photosynthetic material analysis, e.g. chrorophyll
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N2021/8466—Investigation of vegetal material, e.g. leaves, plants, fruits
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- Economics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- Game Theory and Decision Science (AREA)
- Data Mining & Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Chemical & Material Sciences (AREA)
- Development Economics (AREA)
- Mathematical Optimization (AREA)
- Quality & Reliability (AREA)
- Mathematical Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Agronomy & Crop Science (AREA)
- Animal Husbandry (AREA)
- Marine Sciences & Fisheries (AREA)
- Mining & Mineral Resources (AREA)
- Primary Health Care (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Wood Science & Technology (AREA)
- Algebra (AREA)
- Botany (AREA)
Abstract
本发明公开了一种利用生菜叶绿素荧光参数预测光合气体交换参数方法,属植物生理研究领域。叶绿素荧光参数与光合气体交换参数均为表征植物光合能力的独立指标体系。本技术通过同期分别测算生菜叶绿素荧光参数中最大表观光合电子传递速率及其光饱和点和光合气体交换参数中的最大净光合速率及其光饱和点,以叶绿素荧光参数为自变量X,光合气体交换参数为因变量Y,按Y=aXb方程分别构建最大表观光合电子传递速率‑最大净光合速率和最大表观光合电子传递速率时光饱和点‑最大净光合速率时光饱和点的拟合方程,求出各自回归系数a和b,从而得到基于叶绿素荧光的部分参数预测光合气体交换的部分参数的方程,从而揭示两指标体系间的内在统一。
Description
技术领域
本技术公布一种利用生菜叶绿素荧光参数预测光合气体交换参数方法,以揭示叶绿素荧光参数和光合气体交换参数这两个均可表征植物光合能力大小的不同指标体系间的内在联系,属于探究植物生理特征内在统一性的技术领域。
背景技术
生菜因其食用方便、营养丰富,且具一定的医疗和保健功能,现已成为世界上最为普遍种植的蔬菜之一。因此,关于生菜高产栽培的研究一直在持续进行。鉴于光合作用是构建一切作物产量的基础,生菜光合特性的研究因而也成为生菜高产栽培研究的重点。目前,叶绿素荧光参数和光合气体交换参数分别是反映植物光合特性的两个重要的不同指标体系,在研究时需分别测算。其中,光合气体交换参数中的最大净光合速率及其相应光强即光饱和点既反映植物的光合潜力,又反映植物对光能的利用范围,在光合生理研究中尤为重要。目前,二者主要是通过Li-6400光合测定系统进行光响应(净光合速率Pn对光强PAR的响应,PAR-Pn)曲线测试,进而最大净光合速率及相应光强即光饱和点则根据拟合的PAR-Pn响应曲线方程(其中PAR为自变量,Pn为因变量)求得。因该方法测算精确,它已几乎成为当前近乎唯一的测算方法。但是,该方法对环境条件和测量时间要求较严,通常需在晴朗天气下的上午9:00-10:00进行,而每测量一个样本则需近25-30分钟,这样每天最多仅能测量3个样本。然而,很多研究常需设计多个处理,且每个处理还需设有3个以上重复,因此,不同处理的样本难以在短期内进行测定,即平行测定,最终影响研究结果的准确性。叶绿素荧光技术被称为研究植物光合功能的快速、无损伤探针,广泛应用在植物光合生理的研究中。它以体内叶绿素作为天然探针,研究和探测植物的光合生理状况,测量时间短,可在短时间内测定多个样本。该测试系统通常为德国产的调制荧光成像系统(Imaging-PAM系统),它包括表观光合电子传递速率ETR对光强PAR的响应曲线及曲线方程拟合(PAR-ETR),其中,表观光合电子传递速率表示单位时间内光合电子传递链中电子传递的速度,直接影响净光合速率的大小,二者相关性极强。而最大表观光合电子传递速率及相应光强即光饱和点则是根据拟合的PAR-ETR响应曲线方程(其中PAR为自变量,ETR为因变量)求得。那么,是否可以用简单易测的叶绿素荧光参数中的最大电子传递速率ETR及对应光强即光饱和点精确表征光合气体交换参数中最大净光合速率及对应光强即光饱和点,从而在克服以上光合气体交换参数不便测量的同时,也揭示两个不同指标体系间的内在联系。
本技术利用生菜作为研究对象,通过拟合的PAR-Pn和ETR-ETR响应曲线方程,分别测算同一生菜的最大净光合速率及相应光饱和点和最大表观光合电子传递速率及相应光饱和点,然后,利用选用适宜的拟合方程,分别构建最大净光合速率-最大表观光合电子传递速率、最大净光合速率时光饱和点-最大表观光合电子传递速率时光饱和点间的关系,从而揭示两个不同指标体系间的内在联系。
发明内容
本技术目的是提供一种方法,利用叶绿素荧光参数中的最大电子传递速率及相应光饱和点分别预测光合气体交换参数中的最大电子传递速率及相应光饱和点。
为实现以上目标,本发明主要采用以下技术方案,一种利用生菜叶绿素荧光参数预测光合气体交换参数方法,按照下述步骤进行:
(1)为更全面地构建两个不同指标体系的内在联系,本方法分别选择了生菜前期慢速生长阶段和中期快速生长阶段进行测试。其中,慢速生长阶段和快速生长阶段生菜的叶龄数分别为5-7片和11-13片。
(2)在生菜的两个不同生长阶段,在晴朗天气的上午9:00-10:00,分别选取一定数量(n≥10)正常生长的叶片,利用LI-6400XT便携式光合仪,进行净光合速率对光照强度的响应曲线的测定。再利用Imaging-PAM系统,进行相对电子传递速率对光照强度的响应曲线的测定。
(3)将得到的不同叶片PAR-Pn响应曲线和不同叶片PAR-ETR响应曲线分别用双曲线修正模型进行拟合,从而求得一组最大净光合速率(Pnmax)及一组光饱和点(LSP),以及另一组最大表观光合电子传递速率(ETRmax)及一组光饱和点(LSP’)。
(4)选用幂函数方程Y=a1Xb1,以ETRmax为自变量,Pnmax为因变量,将测算得到的两组值,按照相同叶片一一对应地回归分析,求出回归系数a1和b1。
选用幂函数方程Y=a2Xb2,以LSP’为自变量,LSP为因变量,将两组值也按照相同叶片一一对应地进行回归分析,求出回归系数a2和b2。
其中步骤(2)中,LI-6400XT便携式光合仪设置的光强梯度为0、50、100、150、200、400、600、800、1000、1200μmol·m-2·s-1,每次时间间隔为2-3min。随后利用叶绿素荧光仪IMAGING-PAM进行相同叶片的表观光合电子传递速率对光照强度的响应曲线的测定。
其中步骤(2)中,Imaging-PAM系统设置的光强梯度为0、42、77、135、206、250、299、372、457、582、727μmol·m-2·s-1,每次时间间隔为20s。
这样,便可利用易于测算的生菜最大表观光合电子传递速率及相应光饱和点预测测算条件要求较高的最大净光合速率及相应光饱和点。
本发明的优点
目前,光合气体交换参数中的最大光合速率及其光饱和点的测算通常十分耗时,测定时受限条件也多。本发明选择与其极相关且测量耗时短、测定时受外界条件限制较少的叶绿素荧光参数中的最大表观光合电子传递速率及其光饱和点,通过构建其与最大光合速率及其光饱和点拟合方程,预测生菜的最大光合速率及其光饱和点,在克服以上光合气体交换参数不便测量的同时,也揭示两个不同指标体系间的内在联系。
附图说明
图1最大净光合速率预测的拟合曲线及方程;
图2最大净光合速率对应的光饱和点预测的拟合曲线及方程;
图3最大净光合速率预测的拟合曲线和方程;
图4最大净光合速率对应的光饱和点预测的拟合曲线和方程。
具体实施方式
实验地点在镇江的某温室大棚内,栽培的生菜为全年意大利耐抽苔品种。在生菜叶龄为6.5左右时,进行一次代表生菜处于慢速生长阶段的测算。选取13片大小不同、生长的正常的叶片,分别测定PAR-Pn和PAR-ETR响应曲线,利用双曲线修正模型拟合得到最大表观光合电子传递速率ETRmax及光饱和点LSP’和最大净光合速率Pnmax及光饱和点LSP(表1)。分别按照幂函数方程Pnmax=a1ETRmax b1和LSP=a2LSP’b2进行拟合(图1),求得回归系数a1、b1和a2、b2分别为0.3178、0.8361和0.2159、1.2847,系数代入后得到预测最大净光合速率的公式:Pnmax=0.3178*ETRmax 0.8361(图1)及其预测最大净光合速率对应的光饱和点的公式LSP=0.2159*LSP’1.2847(图2)。
表1:生菜处于慢速生长阶段的各参数
在生菜叶龄为12.0左右时,进行一次代表生菜处于快速生长阶段的测算。选取13片大小不同、生长的正常的叶片,分别按照慢速生长阶段的测算方法,获取相关数据(表2)后,得到预测最大净光合速率的公式:Pnmax=0.3174*ETRmax 0.8368(图3)及其预测最大净光合速率对应的光饱和点的公式LSP=0.2144*LSP’1.2836(图4)。
表2生菜处于快速生长阶段的各参数
图1和图3显示,生菜处于两个不同生长阶段时,最大净光合速率预测方程Pnmax=a1*ETRmaxb1中的系数a1极其相近,b1也是如此,这表明不同生长阶段生菜的最大净光合速率可用同一方程预测,因此,本技术方法则分别以两个不同生长阶段a1和b1的均值,作为生菜整个生长阶段预测方程的系数a1和b1,即a1=0.3176,b1=0.8365,因而最大净光合速率的预测方程公式为Pnmax=0.3176*ETRmax0.8365;生菜处于两个不同生长阶段时,最大净光合速率相应光饱和点的预测方程LSP=a2*LSPb2中的系数a2极其相近,b2也是如此,这表明不同生长阶段生菜的最大净光合速率相应光饱和点也可用同一方程预测,因此,本技术方法则分别以两个不同生长阶段a2和b2的均值,作为生菜整个生长阶段预测方程的系数a2和b2,即a2=0.2152,b2=1.2844,因而最大净光合速率相应光饱和点的预测方程为LSP=0.2152*LSP’1.2844。因此,可利用生菜叶绿素荧光参数中部分参数预测光合气体参数中的部分参数,这一方法应同样适用于其他植物的预测。
Claims (3)
1.一种利用生菜叶绿素荧光参数预测光合气体交换参数方法,其特征在于按照下述步骤进行:
(1)为更全面地构建两个不同指标体系的内在联系,本方法分别选择了生菜前期慢速生长阶段和中期快速生长阶段进行测试;其中,慢速生长阶段和快速生长阶段生菜的叶龄数分别为5-7片和11-13片;
(2)在生菜的两个不同生长阶段,在晴朗天气的上午9:00-10:00,分别选取一定数量(n≥10)正常生长的叶片,利用LI-6400XT便携式光合仪,分别进行净光合速率对光照强度的响应曲线的测定;再利用Imaging-PAM系统,进行相对电子传递速率对光照强度的响应曲线的测定;
(3)将得到的不同叶片PAR-Pn响应曲线和不同叶片PAR-ETR响应曲线分别用双曲线修正模型进行拟合,从而求得一组最大净光合速率(Pnmax)及一组光饱和点(LSP),以及另一组最大表观光合电子传递速率(ETRmax)及一组光饱和点(LSP’);
(4)选用幂函数方程Y=a1Xb1,以ETRmax为自变量,Pnmax为因变量,将测算得到的两组值,按照相同叶片一一对应地回归分析,求出回归系数a1和b1;
选用幂函数方程Y=a2Xb2,以LSP’为自变量,LSP为因变量,将两组值也按照相同叶片一一对应地进行回归分析,求出回归系数a2和b2。
2.根据权利要求1所述的一种利用生菜叶绿素荧光参数预测光合气体交换参数方法,其特征在于其中步骤(2)中,LI-6400XT便携式光合仪设置的光强梯度为0、50、100、150、200、400、600、800、1000、1200μmol·m-2·s-1,每次时间间隔为2-3min。
3.根据权利要求1所述的一种利用生菜叶绿素荧光参数预测光合气体交换参数方法,其特征在于其中步骤(2)中,Imaging-PAM系统设置的光强梯度为0、42、77、135、206、250、299、372、457、582、727μmol·m-2·s-1,每次时间间隔为20s。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011578196.4A CN112561209B (zh) | 2020-12-28 | 2020-12-28 | 一种利用生菜叶绿素荧光参数预测光合气体交换参数方法 |
PCT/CN2021/115991 WO2022142432A1 (zh) | 2020-12-28 | 2021-09-01 | 一种利用生菜叶绿素荧光参数预测光合气体交换参数方法 |
DE112021000074.8T DE112021000074T5 (de) | 2020-12-28 | 2021-09-01 | Verfahren zur vorhersage von austauschparametern von photosynthetischem gas unter verwendung von fluoreszenzparametern von chlorophyll des kopfsalats |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011578196.4A CN112561209B (zh) | 2020-12-28 | 2020-12-28 | 一种利用生菜叶绿素荧光参数预测光合气体交换参数方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112561209A true CN112561209A (zh) | 2021-03-26 |
CN112561209B CN112561209B (zh) | 2024-03-19 |
Family
ID=75033782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011578196.4A Active CN112561209B (zh) | 2020-12-28 | 2020-12-28 | 一种利用生菜叶绿素荧光参数预测光合气体交换参数方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN112561209B (zh) |
DE (1) | DE112021000074T5 (zh) |
WO (1) | WO2022142432A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114324265A (zh) * | 2021-12-03 | 2022-04-12 | 中国农业大学 | 叶片生理生化指标高通集成测定方法及系统 |
WO2022142432A1 (zh) * | 2020-12-28 | 2022-07-07 | 江苏大学 | 一种利用生菜叶绿素荧光参数预测光合气体交换参数方法 |
CN115017460A (zh) * | 2022-05-27 | 2022-09-06 | 北京林业大学 | 植物光环境-固碳效益曲线回归测定方法、系统及介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102435590A (zh) * | 2011-08-30 | 2012-05-02 | 上海泽泉科技有限公司 | 叶绿素荧光诱导曲线测量中光化光强度的确定方法 |
CN105699348A (zh) * | 2016-01-29 | 2016-06-22 | 浙江农林大学 | 不同生长调节剂对北美冬青保花保果效应的研究方法 |
CN107356569A (zh) * | 2017-06-06 | 2017-11-17 | 河南农业大学 | 基于叶绿素荧光预测小麦籽粒产量的方法及其模型的构建方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140041073A1 (en) * | 2012-08-03 | 2014-02-06 | Mendel Biotechnology, Inc. | Trait improvement in plants expressing myb-related proteins |
CN106770142A (zh) * | 2017-02-28 | 2017-05-31 | 成都学院 | 一种九寨沟水生植物的叶绿素荧光特性研究方法与装置 |
CN107329511B (zh) * | 2017-05-31 | 2019-09-03 | 西北农林科技大学 | 基于适宜根温区间的水培蔬菜光环境高效调控方法与系统 |
CN107144669A (zh) * | 2017-06-15 | 2017-09-08 | 江苏农牧科技职业学院 | 一种遮荫对七叶树幼苗光合特性影响的测试方法 |
CN112561209B (zh) * | 2020-12-28 | 2024-03-19 | 江苏大学 | 一种利用生菜叶绿素荧光参数预测光合气体交换参数方法 |
-
2020
- 2020-12-28 CN CN202011578196.4A patent/CN112561209B/zh active Active
-
2021
- 2021-09-01 WO PCT/CN2021/115991 patent/WO2022142432A1/zh active Application Filing
- 2021-09-01 DE DE112021000074.8T patent/DE112021000074T5/de active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102435590A (zh) * | 2011-08-30 | 2012-05-02 | 上海泽泉科技有限公司 | 叶绿素荧光诱导曲线测量中光化光强度的确定方法 |
CN105699348A (zh) * | 2016-01-29 | 2016-06-22 | 浙江农林大学 | 不同生长调节剂对北美冬青保花保果效应的研究方法 |
CN107356569A (zh) * | 2017-06-06 | 2017-11-17 | 河南农业大学 | 基于叶绿素荧光预测小麦籽粒产量的方法及其模型的构建方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022142432A1 (zh) * | 2020-12-28 | 2022-07-07 | 江苏大学 | 一种利用生菜叶绿素荧光参数预测光合气体交换参数方法 |
CN114324265A (zh) * | 2021-12-03 | 2022-04-12 | 中国农业大学 | 叶片生理生化指标高通集成测定方法及系统 |
CN115017460A (zh) * | 2022-05-27 | 2022-09-06 | 北京林业大学 | 植物光环境-固碳效益曲线回归测定方法、系统及介质 |
CN115017460B (zh) * | 2022-05-27 | 2023-10-13 | 北京林业大学 | 植物光环境-固碳效益曲线回归测定方法、系统及介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112561209B (zh) | 2024-03-19 |
DE112021000074T5 (de) | 2022-08-25 |
WO2022142432A1 (zh) | 2022-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112561209B (zh) | 一种利用生菜叶绿素荧光参数预测光合气体交换参数方法 | |
ur Rahman et al. | Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan | |
CN109211801B (zh) | 一种作物氮素需求量实时获取方法 | |
CN113268923B (zh) | 一种基于模拟多光谱的夏玉米产量估算方法 | |
CN107505271B (zh) | 基于氮素组分辐射传输模型的植株氮素估算方法和系统 | |
CN113049750B (zh) | 一种基于高通量气孔导度诊断植物水分胁迫的方法及系统 | |
CN112485204A (zh) | 基于高光谱的水稻穗期氮营养监测与诊断方法及应用 | |
CN110567892B (zh) | 一种基于临界氮浓度的夏玉米氮素高光谱预测方法 | |
CN107271382A (zh) | 一种不同生育期油菜叶片spad值遥感估算方法 | |
CN112052988B (zh) | 耦合多目标优化和集合同化的作物产量估测方法及应用 | |
CN111855591A (zh) | 水稻地上部碳氮比遥感反演模型和方法 | |
Li et al. | High-throughput physiology-based stress response phenotyping: advantages, applications and prospective in horticultural plants | |
CN110569605B (zh) | 一种基于nsga2-elm的粳稻叶片氮素含量反演模型方法 | |
Liu et al. | Spatiotemporal changes of rice phenology in China under climate change from 1981 to 2010 | |
CN112986158B (zh) | 基于无人机多光谱数据的甜菜氮素营养检测方法及系统 | |
CN101044823A (zh) | 一种作物能量利用率评价及产量预测的方法 | |
CN112735511A (zh) | 一种基于qga-svr的冷害黄瓜psii潜在活性预测方法 | |
CN111781183A (zh) | 一种利用叶绿素荧光估算植物叶片叶绿素含量的方法 | |
CN113670913A (zh) | 水稻氮素含量反演高光谱植被指数构建方法 | |
CN110068299B (zh) | 一种温室作物叶面积指数的计算方法 | |
CN108770614A (zh) | 一种小麦耐热性评价方法 | |
Lin et al. | A new regional cotton growth model based on reference crop evapotranspiration for predicting growth processes | |
CN113552096A (zh) | 一种基于光谱的菠萝叶片氮含量估算方法 | |
GB2571684A (en) | Nutrient Solution Management Technique Based on Length of Leaf of Greenhouse Tomato | |
CN108062602B (zh) | 一种预测温室茄果类作物同化产物产量的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240702 Address after: 230000 b-1018, Woye Garden commercial office building, 81 Ganquan Road, Shushan District, Hefei City, Anhui Province Patentee after: HEFEI WISDOM DRAGON MACHINERY DESIGN Co.,Ltd. Country or region after: China Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301 Patentee before: JIANGSU University Country or region before: China |