CN112561067A - 基于超导量子比特和里德堡原子的纠缠态制备方法及装置 - Google Patents

基于超导量子比特和里德堡原子的纠缠态制备方法及装置 Download PDF

Info

Publication number
CN112561067A
CN112561067A CN202011157980.8A CN202011157980A CN112561067A CN 112561067 A CN112561067 A CN 112561067A CN 202011157980 A CN202011157980 A CN 202011157980A CN 112561067 A CN112561067 A CN 112561067A
Authority
CN
China
Prior art keywords
superconducting
cavity
transmission line
qubit
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011157980.8A
Other languages
English (en)
Other versions
CN112561067B (zh
Inventor
袁健豪
潘德坚
叶沁州
梁振涛
颜辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202011157980.8A priority Critical patent/CN112561067B/zh
Priority to PCT/CN2021/080997 priority patent/WO2021190349A1/zh
Priority to US17/611,127 priority patent/US20220222565A1/en
Publication of CN112561067A publication Critical patent/CN112561067A/zh
Application granted granted Critical
Publication of CN112561067B publication Critical patent/CN112561067B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/40Physical realisations or architectures of quantum processors or components for manipulating qubits, e.g. qubit coupling or qubit control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • G06N10/20Models of quantum computing, e.g. quantum circuits or universal quantum computers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

本发明公开了一种基于超导量子比特和里德堡原子的纠缠态制备方法及装置,将超导量子比特与超导传输线腔的选定模式共振耦合,同时将里德堡原子的两个里德堡态与超导平面波导腔/超导平面LC谐振腔共振耦合,将超导平面波导腔/超导平面LC谐振腔与超导传输线腔的选定模式共振耦合;调节超导量子比特和超导传输线腔的耦合强度g1,以及里德堡原子和超导平面波导腔/超导平面LC谐振腔的耦合强度g2,使它们与超导传输线腔和超导平面波导腔/超导平面LC谐振腔之间的耦合强度J满足
Figure DDA0002743382830000011
的关系;借助两个强微波驱动场,实现非常规几何量子门,完成最大纠缠态的制备。可降低里德堡原子所需激光场和磁场以及辐射冷却超导同轴电缆对超导量子比特相干性的影响。

Description

基于超导量子比特和里德堡原子的纠缠态制备方法及装置
技术领域
本发明涉及量子信息技术领域,具体涉及一种通过热耦合腔实现超导量子比特和里德堡原子的纠缠态制备方法及装置,可以应用于广泛的量子信息领域(包括量子存储、量子通信以及量子计算等技术方向)。
背景技术
不同量子体系(超导量子比特、囚禁离子、量子点、金刚石色心、冷原子、掺杂离子晶体、光子、声子等)之间的量子接口或纠缠对实现分布式量子计算至关重要。不同的实验体系有各自的优点和缺点,如超导量子比特的操作速度快、可扩展性强,但工作在微波波段,自身缺乏光学波段跃迁,需要其它量子体系辅助才能与光量子网络互联。同时具有微波波段跃迁和光学波段跃迁的冷原子体系是其中一种优选体系。因此,实现超导量子电路与冷原子系综的量子信息交换对实现分布式超导量子计算机的研究至关重要。结合不同实验体系的系统称为复合系统,复合系统的研究关键在于实现不同实验体系之间的量子接口或纠缠。里德堡原子是将原子的一个电子被激发到主量子数较高的轨道,因此具有大的电偶极矩,容易与外界相互作用。因此超导量子比特和冷原子复合系统的研究,一般是将冷原子激发到里德堡态,通过一个耦合腔去分别耦合超导量子比特和里德堡原子,从而实现它们之间的量子接口或纠缠。超导量子比特和冷原子间的量子接口或纠缠将实现复合原子-光子量子门,有助于原子的量子存储和量子转换器的实现。
超导量子比特芯片需要安装在稀释制冷机的≤50mK平台上,且容易受环境影响退相干,为了减少背景黑体辐射和杂散红外光的不利影响,通常用多层不透光的屏蔽层屏蔽保护。此外,还需要多层磁屏蔽保护免受电磁噪声的影响。现有的超导量子比特和冷原子复合系统都是在制冷机的同一个制冷平台上安装超导芯片和囚禁冷原子。在超导量子比特附近转移和囚禁冷原子将不可避免地破坏辐射屏蔽和磁屏蔽,降低超导量子比特的相干性,更不用说将冷原子激发到里德堡态需要用到的高功率激光场。在同一个制冷平台安装超导芯片和囚禁里德堡原子,会降低超导量子比特的相干性,不利于量子态传输或纠缠。将超导芯片和里德堡原子放置在不同的制冷平台是解决超导量子比特的相干性受激光影响的途径之一,但是暂时缺乏非局域的超导量子比特和里德堡原子高保真度的量子接口或纠缠方案。
在不同平台的非局域量子接口或纠缠相对于局域的量子态传输存在着保真度低、速度较慢的缺点,因此有必要提出一种技术手段,一方面可以实现超导量子比特和冷原子之间非局域的量子接口或纠缠,从而不影响超导量子比特的相干性;另一方面保真度和速度要达到局域系统的性能,即高于实现量子网络或分布式量子计算的阈值。
发明内容
有鉴于此,为了解决现有技术中的上述问题,本发明提出一种基于超导量子比特和里德堡原子的纠缠态制备方法及装置,实验的装置结构简单,在现有的实验条件下可行性强。且完成纠缠态制备的速度快,保真度高。
本发明通过以下技术手段解决上述问题:
一方面,本发明提供一种基于超导量子比特和里德堡原子的纠缠态制备方法,包括如下步骤:
将超导量子比特与超导传输线腔的选定模式共振耦合,同时将里德堡原子的两个里德堡态与超导平面波导腔/超导平面LC谐振腔共振耦合,将超导平面波导腔/超导平面LC谐振腔与超导传输线腔的选定模式共振耦合;
调节超导量子比特和超导传输线腔的耦合强度g1,以及里德堡原子和超导平面波导腔/超导平面LC谐振腔的耦合强度g2,使它们与超导传输线腔和超导平面波导腔/超导平面LC谐振腔之间的耦合强度J满足
Figure BDA0002743382810000031
的关系;
借助两个强微波驱动场,实现非常规几何量子门,使量子比特之间产生有效的耦合;
选择特定的时间使得里德堡原子和超导比特态传输的时间演化算子对热态不敏感,完成最大纠缠态的制备。
进一步地,复合系统的哈密顿量在旋转波近似下表示为:
Figure BDA0002743382810000032
其中ωri=ωr是第i个腔的腔模频率,ωqi=ωq是第i个量子比特的频率;
Figure BDA0002743382810000033
i=1时对应超导量子比特的上升算符,i=2时对应里德堡原子的上升算符;
Figure BDA0002743382810000034
Figure BDA0002743382810000035
分别为超导传输线腔的腔模的产生湮灭算符;
Figure BDA0002743382810000036
Figure BDA0002743382810000037
分别为超导平面波导腔或者超导平面LC谐振腔的腔模的产生湮灭算符;g1和g2分别为超导量子比特和超导传输线腔的耦合强度以及里德堡原子和超导平面波导腔/超导平面LC谐振腔的耦合强度;
Figure BDA0002743382810000038
为第i个量子比特的泡利算符。
进一步地,超导传输线腔和超导平面波导腔/超导平面LC谐振腔共振耦合,描述耦合腔系统的缀饰态是非简并的,分别是带有频率f1=f+J和f2=f-J的两个本征模式,其中f为超导传输线腔和超导平面波导腔的频率,J为两个耦合腔之间的耦合强度;两个缀饰态的产生湮灭算符用两个裸腔腔模算符的对称和反对称叠加来描述,即
Figure BDA0002743382810000039
Figure BDA00027433828100000310
两个本征模同时与超导量子比特和里德堡量子比特耦合。
进一步地,根据算符
Figure BDA00027433828100000311
Figure BDA00027433828100000312
重写复合系统的哈密顿量为Hr=H1+H2,其中:
Figure BDA00027433828100000313
Figure BDA00027433828100000314
在强驱动极限Ω>>{gi,J}中,得到
Figure BDA00027433828100000315
其中
Figure BDA0002743382810000041
Figure BDA0002743382810000042
由于H1和H2对易,演化算符可以分解为:
Figure BDA0002743382810000043
在tn=2nπ/J时演化算子对热态不敏感。
进一步地,每个本征模最初都处于平衡光子数分布为
Figure BDA0002743382810000044
的混合态,
Figure BDA0002743382810000045
是温度T时每个本征模的平均光子数,fi为第i个腔的频率;为了减少纠缠态制备期间热光子的不利影响,在非常规几何量子门操作之前在量子比特中引入强驱动场,通过非常规几何量子门的方法消除热模对纠缠态制备的不良影响。
另一方面,本发明还提供一种基于超导量子比特和里德堡原子的纠缠态制备装置,包括稀释制冷机的≤50mK的制冷平台、稀释制冷机的1K制冷平台、超导量子比特、可调耦合器、超导传输线腔、超导平面波导腔/超导平面LC谐振腔以及里德堡原子;
其中超导量子比特安装在稀释制冷机的≤50mK的制冷平台上;超导量子比特与超导传输线腔的耦合强度可通过可调耦合器调制;超导传输线腔一端固定在稀释制冷机的≤50mK的制冷平台上1与超导量子比特耦合,另一端固定在稀释制冷机的1K制冷平台上与超导平面波导腔/超导平面LC谐振腔耦合;超导平面波导腔/超导平面LC谐振腔安装在稀释制冷机的1K制冷平台上与里德堡原子耦合;
通过超导传输线腔和超导平面波导腔/超导平面LC谐振腔实现超导量子比特和里德堡原子之间的非局域纠缠态制备,超导同轴电缆和超导平面波导腔/超导平面LC谐振腔之间的耦合强度J实验前加工确定,通过可调耦合器调节超导量子比特与超导传输线腔的耦合强度,同时调节超导平面波导腔/超导平面LC谐振腔和里德堡原子的耦合强度,当满足特定的关系
Figure BDA0002743382810000046
与选择特定的时间使得里德堡原子和超导比特的时间演化算子对热态不敏感,可实现超导量子比特与里德堡原子之间的纠缠态制备。
进一步地,所述稀释制冷机的≤50mK的制冷平台用于给超导量子比特制冷以维持其超导态,1K制冷平台用于转移、囚禁、制备以及操控里德堡原子。
进一步地,所述超导量子比特为拥有长相干时间的transmon超导量子比特。
进一步地,借助于加在量子比特上的驱动场,实现非常规几何量子门,从而实现量子比特之间纠缠态的产生;在特定的时间点,由于演化算符的相位因子不依赖于腔态,因此该过程对热态不敏感。
进一步地,所述里德堡原子选择87Rb原子的
Figure BDA0002743382810000051
Figure BDA0002743382810000052
两个能级作为量子比特。
本发明具有如下有益效果:
1、本发明不需要在≤50mK的制冷平台囚禁和制备里德堡原子,而是在1K制冷平台,因此不影响安装在≤50mK的制冷平台的超导量子比特的相干性。
2、本发明为了消除纠缠态制备期间热光子的不利影响,加入两个强微波驱动场实现非常规几何相位门,该过程对热态不敏感,可进一步提高纠缠态制备的保真度。
3、本发明实现了最大纠缠态的制备,并且速度快、保真度高、对局部随机噪声具有鲁棒性。
4、本发明对主方程的数值模拟表明量子比特之间纠缠态的制备,
Figure BDA0002743382810000053
的保真度和时间可达到0.99和50ns,这将促进分布式超导量子计算的发展。
5、本发明使用了热耦合腔,虽然较高的环境温度导致腔中的热光子布居略高,但温度升高会降低两能级系统的介质损耗,从而改善超导谐振器的品质因子,并降低加热速率。此外,与毫开尔文环境相比,更高的环境温度还提供了更大的冷却功率和更大的导热系数。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明基于超导量子比特和里德堡原子的纠缠态制备装置的结构示意图;
图2为本发明基于超导量子比特和里德堡原子的纠缠态制备方法的流程图。
具体实施方式
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。
实施例1
图1为本发明基于超导量子比特和里德堡原子的纠缠态制备装置的结构示意图。如图1所示,基于超导量子比特和里德堡原子的纠缠态制备装置,包括稀释制冷机的≤50mK的制冷平台1、稀释制冷机的1K制冷平台2、超导量子比特3、可调耦合器4、超导传输线腔5、超导平面波导腔或超导平面LC谐振腔6、里德堡原子7。
其中超导量子比特3安装在稀释制冷机的≤50mK的制冷平台1上;超导量子比特3与超导传输线腔5的耦合强度可通过可调耦合器4调制;超导传输线腔5一端固定在稀释制冷机的≤50mK的制冷平台1上与超导量子比特3耦合,另一端固定在稀释制冷机的1K制冷平台2上与超导平面波导腔或超导平面LC谐振腔6耦合;超导平面波导腔或超导平面LC谐振腔6安装在稀释制冷机的1K制冷平台2上与里德堡原子7耦合。
本发明基于超导量子比特和里德堡原子的纠缠态制备装置的基本工作原理是:通过超导传输线腔5和超导平面波导腔或超导平面LC谐振腔6实现超导量子比特3和里德堡原子7之间的非局域纠缠态制备,超导同轴电缆5和超导平面波导腔或超导平面LC谐振腔6间的耦合强度J实验前加工确定,通过可调耦合器4调节超导量子比特3与超导传输线腔5的耦合强度,同时调节超导平面波导腔或超导平面LC谐振腔6和里德堡原子7的耦合强度,当满足特定的关系
Figure BDA0002743382810000071
与选择特定的时间使得里德堡原子和超导比特的时间演化算子对热态不敏感,可以实现超导量子比特3与里德堡原子7之间的纠缠态制备。
具体地,所述稀释制冷机的≤50mK的制冷平台1用于给超导量子比特3制冷以维持其超导态,1K制冷平台2用于转移、囚禁、制备以及操控里德堡原子7。
具体地,所述超导量子比特3为拥有长相干时间的transmon超导量子比特。
具体地,借助于加在量子比特上的驱动场,可以实现非常规几何量子门,从而实现量子比特之间纠缠态的产生。在特定的时间点,由于演化算符的相位因子不依赖于腔态,因此该过程对热态不敏感。
具体地,所述里德堡原子7选择87Rb原子的
Figure BDA0002743382810000072
Figure BDA0002743382810000073
两个能级作为量子比特。
具体地,g1是超导量子比特和超导传输线腔之间的耦合强度,可以通过可调耦合器来调节;g2是里德堡量子比特和超导平面波导腔或超导平面LC谐振腔之间的耦合强度,可以通过改变原子的量子化轴与耦合腔的电场之间的角度θ来调节;J表示两个耦合腔之间的耦合强度,是实验前加工确定的。
具体地,复合系统的哈密顿量在旋转波近似下可以表示为(h=1):
Figure BDA0002743382810000081
其中ωri=ωr是第i个腔的腔模频率,ωqi=ωq是第i个量子比特的频率;
Figure BDA0002743382810000082
i=1时对应超导量子比特的上升算符,i=2时对应里德堡原子的上升算符;
Figure BDA0002743382810000083
Figure BDA0002743382810000084
分别为超导传输线腔的腔模的产生湮灭算符;
Figure BDA0002743382810000085
Figure BDA0002743382810000086
分别为超导平面波导腔或者超导平面LC谐振腔的腔模的产生湮灭算符;g1和g2分别为超导量子比特和超导传输线腔的耦合强度以及里德堡原子和超导平面波导腔/超导平面LC谐振腔的耦合强度;
Figure BDA0002743382810000087
为第i个量子比特的泡利算符。
具体地,超导传输线腔和超导平面波导腔,或者和超导平面LC谐振腔共振耦合,描述耦合腔系统的缀饰态是非简并的,分别是带有频率f1=f+J和f2=f-J的两个本征模式,其中f为超导传输线腔和超导平面波导腔的频率,J为两个耦合腔之间的耦合强度。两个缀饰态的产生湮灭算符可以用两个裸腔腔模算符的对称和反对称叠加来描述,即
Figure BDA0002743382810000088
Figure BDA0002743382810000089
两个本征模同时与超导量子比特和里德堡量子比特耦合。
具体地,根据算符
Figure BDA00027433828100000810
Figure BDA00027433828100000811
重写复合系统的哈密顿量为:
Figure BDA00027433828100000812
具体地,为了纠缠态制备过程中热态的不利影响,我们采用了非常规几何量子门来实现超导量子比特与里德堡量子比特的纠缠。
具体地,对两个量子比特加入强微波驱动场,考虑共振驱动ωd=ωq,在驱动频率的旋转坐标系中,系统的哈密顿量变为:
Figure BDA00027433828100000813
其中Ω是拉比频率。
具体地,在强驱动极限Ω>>{gi,J}中,我们得到
Figure BDA0002743382810000091
其中
Figure BDA0002743382810000098
Figure BDA0002743382810000092
由此,由
Figure BDA0002743382810000093
得总演化算符
Figure BDA0002743382810000094
具体地,通过使用马格努斯公式,得到演化算子
Figure BDA0002743382810000095
在tn=2nπ/J时B=0,腔模与量子比特的耦合被有效地去除,演化算符的相位因子不依赖于腔态,该过程对热态不敏感。
具体地,由于复合系统的两个耦合腔都固定在1K平台上,因此每个本征模最初都处于平衡光子数分布为
Figure BDA0002743382810000096
的混合态,
Figure BDA0002743382810000097
是温度T时每个本征模的平均光子数。为了消除纠缠态制备期间热光子的不利影响,在SWAP门操作之前在两量子比特中引入强驱动场实现非常规几何量子门的方法消除了纠缠态制备过程中热态的不良影响。
本发明的基于超导量子比特和里德堡原子的纠缠态制备装置,通过热耦合腔实现放置在≤50mK制冷平台上的超导量子比特与囚禁在1K制冷平台附近的里德堡原子量子比特之间的远程纠缠,借助驱动场实现非常规几何量子操作,有效消除量子比特与腔模的耦合,可以避免腔场热态对纠缠产生过程的不良影响。所述量子态传输的方法包括如下步骤:将超导量子比特放置在≤50mK的制冷平台上,并且与超导NbTi同轴电缆选定的驻波模式共振耦合;同轴电缆腔的一端固定在≤50mK的制冷平台上,另一端固定在1K制冷平台上;将LC谐振器固定在1K制冷平台上,并且与超导NbTi同轴电缆选定的驻波模式共振耦合;调节超导量子比特和超导传输线腔的耦合强度g1,以及里德堡原子和超导平面波导腔(或里德堡原子和超导平面LC谐振腔)的耦合强度g2,使它们与超导传输线腔和超导平面波导腔(或超导传输线腔和超导平面LC谐振腔)之间的耦合强度J满足
Figure BDA0002743382810000101
的关系;借助于加在量子比特上的驱动场,可以实现非常规几何量子门,从而实现量子比特之间纠缠态的制备。在特定的时间点,由于演化算符的相位因子不依赖于腔态,因此该过程对腔模热态不敏感;选择特定的时间和参数使得里德堡原子和超导比特态传输的演化算子对热态不敏感,完成纠缠态的制备。
本发明的基于超导量子比特和里德堡原子的纠缠态制备装置,利用了非常规几何量子态传输的方案,因此纠缠态制备的速度快、保真度高。只要超导量子比特、里德堡原子以及两个耦合腔相互之间的耦合强度满足特定的比例,选择特定的时间使得里德堡原子和超导比特态传输的时间演化算子对热态不敏感,完成纠缠态制备。
通过两端固定在不同制冷平台的超导传输线腔实现超导量子比特和里德堡原子之间纠缠态制备,在开始量子态传输之前通过在两量子比特加入强的驱动场,使得该过程对热态不敏感,可以进一步提高纠缠态制备的保真度以及极大地防止超导量子比特被干扰。基于此方案超导量子比特和里德堡原子的非局域纠缠态制备的保真度和操作速度都可以达到现有局域系统的性能,为量子网络和分布式量子计算研究提供新技术基础。
实施例2
图2为本发明基于超导量子比特和里德堡原子的纠缠态制备方法的流程图。本发明基于超导量子比特和里德堡原子的纠缠态制备方法的主要思想是通过调节耦合强度及选择里德堡原子和超导比特在特定的时间使得时间演化算子中对热态不敏感的条件完成纠缠态制备。并且加入强驱动场实现非常规几何量子门,而且通过两个耦合腔实现超导量子比特和里德堡原子之间非局域纠缠态制备:
步骤301,将超导量子比特与超导传输线腔的选定模式共振耦合,同时将里德堡原子的两个里德堡态与超导平面波导腔共振耦合,或者将里德堡原子的两个里德堡态与超导平面LC谐振腔共振耦合,将超导平面波导腔或者超导平面LC谐振腔与超导传输线腔的选定模式共振耦合;
步骤302,调节超导量子比特和超导传输线腔的耦合强度g1,以及里德堡原子和超导平面波导腔(或者里德堡原子和超导平面LC谐振腔)的耦合强度g2,使它们与超导传输线腔和超导平面波导腔(或者超导传输线腔和超导平面LC谐振腔)之间的耦合强度J满足
Figure BDA0002743382810000111
的关系;
步骤303,借助两个强微波驱动场,实现非常规几何量子门;
步骤304,选择特定的时间使得里德堡原子和超导比特态传输的时间演化算子对热态不敏感即可完成最大纠缠态的制备。
本发明借助于加在量子比特上的驱动场,可以实现非常规几何量子门,从而实现量子比特之间纠缠态的产生。在特定的时间点,由于演化算符的相位因子不依赖于腔态,因此该过程对热态不敏感。
具体地,g1是超导量子比特和超导传输线腔之间的耦合强度,可以通过可调耦合器来调节;g2是里德堡量子比特和超导平面波导腔或超导平面LC谐振腔之间的耦合强度,可以通过改变原子的量子化轴与耦合腔的电场之间的角度θ来调节;J表示两个耦合腔之间的耦合强度,是实验前加工确定的。
具体地,复合系统的哈密顿量在旋转波近似下可以表示为(h=1):
Figure BDA0002743382810000112
其中ωri=ωr是第i个腔的腔模频率,ωqi=ωq是第i个量子比特的频率。
Figure BDA0002743382810000113
i=1时对应超导量子比特的上升算符,i=2时对应里德堡原子的上升算符。
Figure BDA0002743382810000114
Figure BDA0002743382810000115
分别为超导传输线腔的腔模的产生湮灭算符。
Figure BDA0002743382810000116
Figure BDA0002743382810000117
分别为超导平面波导腔或者超导平面LC谐振腔的腔模的产生湮灭算符;g1和g2分别为超导量子比特和超导传输线腔的耦合强度以及里德堡原子和超导平面波导腔/超导平面LC谐振腔的耦合强度;
Figure BDA0002743382810000121
为第i个量子比特的泡利算符。
具体地,超导传输线腔和超导平面波导腔/超导平面LC谐振腔共振耦合,描述耦合腔系统的缀饰态是非简并的,分别是带有频率f1=f+J和f2=f-J的两个本征模式,其中f为超导传输线腔和超导平面波导腔的频率,J为两个耦合腔之间的耦合强度;两个缀饰态的产生湮灭算符用两个裸腔腔模算符的对称和反对称叠加来描述,即
Figure BDA0002743382810000122
Figure BDA0002743382810000123
两个本征模同时与超导量子比特和里德堡量子比特耦合。
具体地,根据算符
Figure BDA0002743382810000124
Figure BDA0002743382810000125
重写复合系统的哈密顿量为:
Figure BDA0002743382810000126
具体地,为了纠缠态制备过程中热态的不利影响,我们采用了非常规几何量子门来实现超导量子比特与里德堡量子比特的纠缠。
具体地,对两个量子比特加入强微波驱动场,考虑共振驱动ωd=ωq,在驱动频率的旋转坐标系中,系统的哈密顿量变为:
Figure BDA0002743382810000127
其中Ω是拉比频率。
具体地,在强驱动极限Ω>>{gi,J}中,我们得到
Figure BDA0002743382810000128
其中
Figure BDA0002743382810000129
Figure BDA00027433828100001210
由此,由
Figure BDA00027433828100001211
得总演化算符
Figure BDA00027433828100001212
具体地,通过使用马格努斯公式,得到演化算子
Figure BDA0002743382810000131
在tn=2nπ/J时B=0,腔模与量子比特的耦合被有效地去除,演化算符的相位因子不依赖于腔态,该过程对热态不敏感。
具体地,由于复合系统的两个耦合腔都固定在1K平台上,因此每个本征模最初都处于平衡光子数分布为
Figure BDA0002743382810000132
的混合态,
Figure BDA0002743382810000133
是温度T时每个本征模的平均光子数。为了消除纠缠态制备期间热光子的不利影响,在SWAP门操作之前在两量子比特中引入强驱动场实现非常规几何量子门的方法消除了纠缠态制备过程中热态的不良影响。
本发明给出的超导量子比特和里德堡原子的纠缠态制备方法是调节超导量子比特、里德堡原子和两个耦合腔相互之间的耦合强度满足特定关系同时并且加入强驱动场,选择特定的时间使得里德堡原子和超导比特的时间演化算子对热态不敏感,完成最大纠缠态的制备;利用两端分别固定在≤50mK和1K制冷平台的超导传输线腔与超导平面波导腔或超导平面LC谐振腔的耦合实现超导量子比特和里德堡原子的非局域纠缠态制备,因此可以降低里德堡原子所需激光场和磁场对超导量子比特相干性的影响;在两量子比特系统中引入驱动场,借助非常规几何量子门消除了热态的不良影响,进而为超导量子比特和里德堡原子之间快速的、高保真度的纠缠态制备提供了新技术。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种基于超导量子比特和里德堡原子的纠缠态制备方法,其特征在于,包括如下步骤:
将超导量子比特与超导传输线腔的选定模式共振耦合,同时将里德堡原子的两个里德堡态与超导平面波导腔/超导平面LC谐振腔共振耦合,将超导平面波导腔/超导平面LC谐振腔与超导传输线腔的选定模式共振耦合;
调节超导量子比特和超导传输线腔的耦合强度g1,以及里德堡原子和超导平面波导腔/超导平面LC谐振腔的耦合强度g2,使它们与超导传输线腔和超导平面波导腔/超导平面LC谐振腔之间的耦合强度J满足
Figure FDA0002743382800000011
的关系;
借助两个强微波驱动场,实现非常规几何量子门,使量子比特之间产生有效的耦合;
选择特定的时间使得里德堡原子和超导比特态传输的时间演化算子对热态不敏感,完成最大纠缠态的制备。
2.如权利要求1所述的基于超导量子比特和里德堡原子的纠缠态制备方法,其特征在于,复合系统的哈密顿量在旋转波近似下表示为:
Figure FDA0002743382800000012
其中ωri=ωr是第i个腔的腔模频率,ωqi=ωq是第i个量子比特的频率;
Figure FDA0002743382800000013
i=1时对应超导量子比特的上升算符,i=2时对应里德堡原子的上升算符;
Figure FDA0002743382800000014
Figure FDA0002743382800000015
分别为超导传输线腔的腔模的产生湮灭算符;
Figure FDA0002743382800000016
Figure FDA0002743382800000017
分别为超导平面波导腔或者超导平面LC谐振腔的腔模的产生湮灭算符;g1和g2分别为超导量子比特和超导传输线腔的耦合强度以及里德堡原子和超导平面波导腔/超导平面LC谐振腔的耦合强度;
Figure FDA0002743382800000018
为第i个量子比特的泡利算符。
3.如权利要求2所述的基于超导量子比特和里德堡原子的纠缠态制备方法,其特征在于,超导传输线腔和超导平面波导腔/超导平面LC谐振腔共振耦合,描述耦合腔系统的缀饰态是非简并的,分别是带有频率f1=f+J和f2=f-J的两个本征模式,其中f为超导传输线腔和超导平面波导腔的频率,J为两个耦合腔之间的耦合强度;两个缀饰态的产生湮灭算符用两个裸腔腔模算符的对称和反对称叠加来描述,即
Figure FDA0002743382800000021
Figure FDA0002743382800000022
两个本征模同时与超导量子比特和里德堡量子比特耦合。
4.如权利要求3所述的基于超导量子比特和里德堡原子的纠缠态制备方法,其特征在于,根据算符
Figure FDA0002743382800000023
Figure FDA0002743382800000024
重写复合系统的哈密顿量为Hr=H1+H2,其中:
Figure FDA0002743382800000025
Figure FDA0002743382800000026
在强驱动极限Ω>>{gi,J}中,得到
Figure FDA0002743382800000027
其中
Figure FDA0002743382800000028
Figure FDA0002743382800000029
由于H1和H2对易,演化算符可以分解为:
Figure FDA00027433828000000210
在tn=2nπ/J时演化算子对热态不敏感。
5.如权利要求1所述的基于超导量子比特和里德堡原子的纠缠态制备方法,其特征在于,每个本征模最初都处于平衡光子数分布为
Figure FDA00027433828000000211
的混合态,
Figure FDA00027433828000000212
是温度T时每个本征模的平均光子数,fi为第i个腔的频率;为了减少纠缠态制备期间热光子的不利影响,在非常规几何量子门操作之前在量子比特中引入强驱动场,通过非常规几何量子门的方法消除热模对纠缠态制备的不良影响。
6.一种基于超导量子比特和里德堡原子的纠缠态制备装置,其特征在于:包括稀释制冷机的≤50mK的制冷平台、稀释制冷机的1K制冷平台、超导量子比特、可调耦合器、超导传输线腔、超导平面波导腔/超导平面LC谐振腔以及里德堡原子;
其中超导量子比特安装在稀释制冷机的≤50mK的制冷平台上;超导量子比特与超导传输线腔的耦合强度可通过可调耦合器调制;超导传输线腔一端固定在稀释制冷机的≤50mK的制冷平台上1与超导量子比特耦合,另一端固定在稀释制冷机的1K制冷平台上与超导平面波导腔/超导平面LC谐振腔耦合;超导平面波导腔/超导平面LC谐振腔安装在稀释制冷机的1K制冷平台上与里德堡原子耦合;
通过超导传输线腔和超导平面波导腔/超导平面LC谐振腔实现超导量子比特和里德堡原子之间的非局域纠缠态制备,超导同轴电缆和超导平面波导腔/超导平面LC谐振腔之间的耦合强度J实验前加工确定,通过可调耦合器调节超导量子比特与超导传输线腔的耦合强度,同时调节超导平面波导腔/超导平面LC谐振腔和里德堡原子的耦合强度,当满足特定的关系
Figure FDA0002743382800000031
与选择特定的时间使得里德堡原子和超导比特的时间演化算子对热态不敏感,可实现超导量子比特与里德堡原子之间的纠缠态制备。
7.如权利要求6所述的基于超导量子比特和里德堡原子的纠缠态制备装置,其特征在于,所述稀释制冷机的≤50mK的制冷平台用于给超导量子比特制冷以维持其超导态,1K制冷平台用于转移、囚禁、制备以及操控里德堡原子。
8.如权利要求6所述的基于超导量子比特和里德堡原子的纠缠态制备装置,其特征在于,所述超导量子比特为拥有长相干时间的transmon超导量子比特。
9.如权利要求6所述的基于超导量子比特和里德堡原子的纠缠态制备装置,其特征在于,借助于加在量子比特上的驱动场,实现非常规几何量子门,从而实现量子比特之间纠缠态的产生;在特定的时间点,由于演化算符的相位因子不依赖于腔态,因此该过程对热态不敏感。
10.如权利要求6所述的基于超导量子比特和里德堡原子的纠缠态制备装置,其特征在于,所述里德堡原子选择87Rb原子的
Figure FDA0002743382800000032
Figure FDA0002743382800000041
两个能级作为量子比特。
CN202011157980.8A 2020-10-26 2020-10-26 基于超导量子比特和里德堡原子的纠缠态制备方法及装置 Active CN112561067B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202011157980.8A CN112561067B (zh) 2020-10-26 2020-10-26 基于超导量子比特和里德堡原子的纠缠态制备方法及装置
PCT/CN2021/080997 WO2021190349A1 (zh) 2020-10-26 2021-03-16 基于超导量子比特和里德堡原子的纠缠态制备方法及装置
US17/611,127 US20220222565A1 (en) 2020-10-26 2021-03-16 Entangled State Preparation Method and Device Based on Superconducting Quantum Bit and Rydberg Atom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011157980.8A CN112561067B (zh) 2020-10-26 2020-10-26 基于超导量子比特和里德堡原子的纠缠态制备方法及装置

Publications (2)

Publication Number Publication Date
CN112561067A true CN112561067A (zh) 2021-03-26
CN112561067B CN112561067B (zh) 2022-11-15

Family

ID=75042569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011157980.8A Active CN112561067B (zh) 2020-10-26 2020-10-26 基于超导量子比特和里德堡原子的纠缠态制备方法及装置

Country Status (3)

Country Link
US (1) US20220222565A1 (zh)
CN (1) CN112561067B (zh)
WO (1) WO2021190349A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839644A (zh) * 2021-10-08 2021-12-24 中国科学院上海微系统与信息技术研究所 一种基于压电薄膜的声表面波与超导量子比特耦合器件
CN114448513A (zh) * 2021-12-20 2022-05-06 军事科学院系统工程研究院网络信息研究所 基于里德堡原子的通信网络机固物理接口实现方法
CN114640401A (zh) * 2022-03-01 2022-06-17 南京理工大学 一种量子网络中非局域的多体纠缠态的并行制备方法
CN114819165A (zh) * 2022-05-27 2022-07-29 北京大学 一种量子系统的模拟演化方法及装置
WO2023246271A1 (zh) * 2022-06-24 2023-12-28 深圳国际量子研究院 一种超导量子芯片连接结构及连接方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976557B (zh) * 2022-05-24 2023-07-18 中国人民解放军国防科技大学 应用于里德堡原子探测系统的可调谐振增强装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140314419A1 (en) * 2013-04-23 2014-10-23 Raytheon Bbn Technologies Corp. System and method for quantum information transfer between optical photons and superconductive qubits
US9934469B1 (en) * 2015-12-10 2018-04-03 National Technology & Engineering Solutions Of Sandia, Llc Method and apparatus for quantum information processing using entangled neutral-atom qubits
US20180159636A1 (en) * 2016-12-05 2018-06-07 Government Of The United States Of America, As Represented By The Secretary Of Commerce Fast entangled state generation and quantum information transfer in a quantum system with long-range interactions
CN109001137A (zh) * 2018-09-21 2018-12-14 山东科技大学 一种利用微波辅助里德堡原子的宽频光吸收方法
CN110161774A (zh) * 2019-05-17 2019-08-23 中国科学技术大学 基于里德堡阻塞效应的光子纠缠量子开关系统
CN111382873A (zh) * 2020-02-23 2020-07-07 华南师范大学 一种超导量子比特和里德堡原子量子态转移的方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111260066B (zh) * 2020-01-14 2022-07-19 清华大学 一种实现双量子比特门操作的电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140314419A1 (en) * 2013-04-23 2014-10-23 Raytheon Bbn Technologies Corp. System and method for quantum information transfer between optical photons and superconductive qubits
US9934469B1 (en) * 2015-12-10 2018-04-03 National Technology & Engineering Solutions Of Sandia, Llc Method and apparatus for quantum information processing using entangled neutral-atom qubits
US20180159636A1 (en) * 2016-12-05 2018-06-07 Government Of The United States Of America, As Represented By The Secretary Of Commerce Fast entangled state generation and quantum information transfer in a quantum system with long-range interactions
WO2018106506A1 (en) * 2016-12-05 2018-06-14 Government Of The United States Of America, As Represented By The Secretary Of Commerce Fast entangled state generation and quantum information transfer in a quantum system with long-range interactions
CN109001137A (zh) * 2018-09-21 2018-12-14 山东科技大学 一种利用微波辅助里德堡原子的宽频光吸收方法
CN110161774A (zh) * 2019-05-17 2019-08-23 中国科学技术大学 基于里德堡阻塞效应的光子纠缠量子开关系统
CN111382873A (zh) * 2020-02-23 2020-07-07 华南师范大学 一种超导量子比特和里德堡原子量子态转移的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DITTE MØLLER ET AL.: "Quantum Gates and Multiparticle Entanglement by Rydberg Excitation Blockade and Adiabatic Passage", 《PHYSICAL REVIEW LETTERS》 *
杜炎雄等: "量子网络研究进展", 《华南师范大学学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113839644A (zh) * 2021-10-08 2021-12-24 中国科学院上海微系统与信息技术研究所 一种基于压电薄膜的声表面波与超导量子比特耦合器件
CN113839644B (zh) * 2021-10-08 2023-08-18 中国科学院上海微系统与信息技术研究所 一种基于压电薄膜的声表面波与超导量子比特耦合器件
CN114448513A (zh) * 2021-12-20 2022-05-06 军事科学院系统工程研究院网络信息研究所 基于里德堡原子的通信网络机固物理接口实现方法
CN114448513B (zh) * 2021-12-20 2023-11-14 军事科学院系统工程研究院网络信息研究所 基于里德堡原子的通信网络物理接口实现方法及系统
CN114640401A (zh) * 2022-03-01 2022-06-17 南京理工大学 一种量子网络中非局域的多体纠缠态的并行制备方法
CN114640401B (zh) * 2022-03-01 2024-05-17 南京理工大学 一种量子网络中非局域的多体纠缠态的并行制备方法
CN114819165A (zh) * 2022-05-27 2022-07-29 北京大学 一种量子系统的模拟演化方法及装置
CN114819165B (zh) * 2022-05-27 2023-03-28 北京大学 一种量子系统的模拟演化方法及装置
WO2023246271A1 (zh) * 2022-06-24 2023-12-28 深圳国际量子研究院 一种超导量子芯片连接结构及连接方法

Also Published As

Publication number Publication date
WO2021190349A1 (zh) 2021-09-30
US20220222565A1 (en) 2022-07-14
CN112561067B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
CN112561067B (zh) 基于超导量子比特和里德堡原子的纠缠态制备方法及装置
AU2020230284B2 (en) Superconducting circuit structure, superconducting quantum chip and superconducting quantum computer
Yao et al. Theory of control of the spin-photon interface for quantum networks
Matolak et al. Wireless networks-on-chips: architecture, wireless channel, and devices
Chen et al. Inverse design of photonic and phononic topological insulators: a review
Saleh et al. Waveguides with a silver lining: Low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices
Shi-Biao Quantum communication and entanglement between two distant atoms via vacuum fields
Ataloglou et al. Nonlinear coupled-mode-theory framework for graphene-induced saturable absorption in nanophotonic resonant structures
Zhang et al. Generation of hybrid Greenberger-Horne-Zeilinger entangled states of particlelike and wavelike optical qubits in circuit QED
Kurokawa et al. Remote entanglement of superconducting qubits via solid-state spin quantum memories
Sakoda Numerical study on localized defect modes in two-dimensional triangular photonic crystals
Zhang et al. Coherent interaction of a quantum emitter and the edge states in two-dimensional optical topological insulators
Liu et al. Distributed quantum information processing via single atom driving
Enz Charge-transfer model of s-and d-wave pairing in the cuprates
Pei et al. Quantum state transfer via a hybrid solid–optomechanical interface
Chen et al. Dual-polarization helical interface states in inverse-designed photonic crystals with glide symmetry
WO2022084778A1 (en) Microwave photonic quantum processor
Zhong et al. Deterministic multi-atom GHZ states generation in a coupled cavity system with the assistance of strong classical fields
Zhang et al. Feasible schemes for quantum swap gates of optical qubits via cavity QED
Xue et al. Tunable interaction of superconducting flux qubits in circuit QED
Zhou et al. Protected Transverse Electric Waves in Topological Dielectric Waveguides
Klusoň Particle production on half S-brane
Lu et al. Fidelity analysis of cyclic three-level system-based quantum routing
Rahman et al. Cavity quantum electrodynamics for photon mediated transfer of quantum states
Zhang et al. Robust topological valley-locked waveguide transport in photonic heterostructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant