CN112560153A - 一种纵筋锈蚀再生混凝土梁正截面承载力的计算方法 - Google Patents

一种纵筋锈蚀再生混凝土梁正截面承载力的计算方法 Download PDF

Info

Publication number
CN112560153A
CN112560153A CN202011526503.4A CN202011526503A CN112560153A CN 112560153 A CN112560153 A CN 112560153A CN 202011526503 A CN202011526503 A CN 202011526503A CN 112560153 A CN112560153 A CN 112560153A
Authority
CN
China
Prior art keywords
recycled concrete
longitudinal bar
section
concrete beam
bearing capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011526503.4A
Other languages
English (en)
Other versions
CN112560153B (zh
Inventor
韩超
柏彬
刘勇
吴瑾
刘旭
赵伟国
程蒙
马天
陆勇
林冬阳
孙科
张献蒙
蔡辉敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Jiangsu Electric Power Engineering Consultation Co ltd
Nanjing University of Aeronautics and Astronautics
Original Assignee
State Grid Jiangsu Electric Power Engineering Consultation Co ltd
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Jiangsu Electric Power Engineering Consultation Co ltd, Nanjing University of Aeronautics and Astronautics filed Critical State Grid Jiangsu Electric Power Engineering Consultation Co ltd
Priority to CN202011526503.4A priority Critical patent/CN112560153B/zh
Publication of CN112560153A publication Critical patent/CN112560153A/zh
Application granted granted Critical
Publication of CN112560153B publication Critical patent/CN112560153B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00991Uses not provided for elsewhere in C04B2111/00 for testing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Geometry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Computational Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

本发明公开了一种纵筋锈蚀再生混凝土梁正截面承载力的计算方法,包括纵筋锈蚀后再生混凝土梁的正截面开裂弯矩和正截面抗弯承载力的计算,通过引入再生混凝土梁纵筋锈蚀后截面抵抗矩系数和抗弯承载力纵筋锈蚀影响系数,对普通混凝土梁的正截面开裂弯矩和抗弯承载力的计算方法进行修正,对纵筋锈蚀再生混凝土梁在实际工程中的应用具有重要的应用价值。

Description

一种纵筋锈蚀再生混凝土梁正截面承载力的计算方法
技术领域
本发明属于再生混凝土领域,特别涉及了纵筋锈蚀再生混凝土梁正截面承载力的计算方法。
背景技术
当前,城镇化建设和基础设施建设正在快速发展,大量建筑不断拆除和改建,建筑被拆除后将产生大量的废弃混凝土,目前对于废弃混凝土采取的处理措施多为填埋处理,由于废弃混凝土难以降解,填埋处理无法解决根本问题,而且会造成严重的土体浪费和环境污染。再生混凝土是将废弃混凝土经过破碎、筛分、清洗、分级后作为部分或者全部粗骨料与水、水泥等配合而成的新混凝土。再生混凝土技术既能将废弃混凝土得到有效利用,同时也可大量减少天然砂石的使用量,高度契合绿色发展理念,其应用和发展将是解决当前城镇化进程中经济发展与环境保护相矛盾的重要措施,将有效提高国家发展质量,确保资源节约型、环境友好型社会的建设。
国内外已开展了大量有关再生混凝土方面的研究工作,主要围绕再生混凝土基本力学性能、再生混凝土耐久性和再生混凝土梁、柱构件等方面开展研究,其中针对再生混凝土梁研究正截面承载力计算方法的研究很少。在再生混凝土梁工作过程中,梁内纵筋会发生锈蚀,原有的再生混凝土梁正截面承载力计算方法已不适用于纵筋锈蚀的再生混凝土梁。针对纵筋锈蚀再生混凝土梁的受力特点,修正适用于纵筋锈蚀再生混凝土梁正截面承载力计算表达式是十分必要的,对纵筋锈蚀再生混凝土梁在实际工程中的应用具有重要的应用价值。
发明内容
为了解决上述背景技术提到的技术问题,本发明提出了一种纵筋锈蚀再生混凝土梁正截面承载力的计算方法,明显减小再生混凝土梁纵筋锈蚀后开裂弯矩和抗弯极限承载力计算值与实测值之间的差异。
为了实现上述技术目的,本发明的技术方案为:
一种纵筋锈蚀再生混凝土梁正截面承载力的计算方法,引入再生混凝土梁纵筋锈蚀后截面抵抗矩系数和抗弯承载力纵筋锈蚀影响系数,包括纵筋锈蚀后再生混凝土梁的正截面开裂弯矩和正截面抗弯承载力的计算。
进一步地,纵筋锈蚀再生混凝土梁是指利用再生混凝土粗骨料取代部分天然粗骨料,并且纵筋出现锈蚀的梁。
进一步地,所述天然粗骨料是指天然石料经破碎筛分得到的粒径不大于31mm,且符合颗粒级配的粗骨料。
进一步地,所述再生混凝土粗骨料是指由建筑拆除废弃物中混凝土构件破碎筛分得到的,粒径不大于26.5mm,且符合颗粒级配的粗骨料。
进一步地,纵筋锈蚀后再生混凝土梁的正截面开裂弯矩的计算过程如下:
(a)建立纵筋锈蚀后再生混凝土梁的正截面开裂弯矩计算基本假设,包括再生混凝土梁截面符合平截面假定;截面受拉边缘开裂时,受拉边缘混凝土产生塑性变形,其余混凝土处于弹性状态;再生混凝土受拉本构关系中极限应变εtu与峰值应变εto的关系为εtu=1.5εt0,钢筋受拉本构关系为σs=Esεs,其中σs为钢筋应力,Es为钢筋弹性模量,εs为钢筋应变;
(b)计算受压区边缘混凝土应力σc
Figure BDA0002850977840000021
上式中,xc为中和轴至受压区边缘距离;h为梁截面高度;ft为再生混凝土轴心抗拉强度;
(c)根据静力平衡条件,计算中和轴高度系数ξc和再生混凝土梁正截面开裂弯矩Mcr
Figure BDA0002850977840000031
Figure BDA0002850977840000032
上式中,m为钢筋拉力与全截面混凝土抗拉力的比值,
Figure BDA0002850977840000033
σs为钢筋应力;As为受拉区钢筋面积;b为梁截面宽度;as截面边缘至受拉钢筋中心距离,γ为混凝土构件的截面抵抗矩塑性影响系数;W0为换算截面受拉边缘的弹性抵抗矩;
(d)对再生混凝土轴心抗拉强度ft和弹性模量Ec与立方体抗压强度fcu的关系进行拟合:
Figure BDA0002850977840000034
Figure BDA0002850977840000035
(e)设再生混凝土梁纵筋锈蚀后截面抵抗矩系数为γRcr,则纵筋锈蚀后再生混凝土梁的正截面开裂弯矩Mcr的表达式如下:
Figure BDA0002850977840000036
(f)通过正截面开裂荷载Pcr实测值和再生混凝土强度fcu实测值计算得到γRcr与纵筋锈蚀率ρL的关系,从而得到纵筋锈蚀后再生混凝土梁的正截面开裂弯矩。
进一步地,在步骤(a)中,所述基本假设包括再生混凝土梁截面符合平截面假定;截面受拉边缘开裂时,受拉边缘混凝土产生塑性变形,其余混凝土处于弹性状态;再生混凝土受拉本构关系中极限应变εtu与峰值应变εto的关系为εtu=1.5εt0,钢筋受拉本构关系为σs=Esεs,其中σs为钢筋应力,Es为钢筋弹性模量,εs为钢筋应变。
进一步地,在步骤(f)中,γRcr与纵筋锈蚀率ρL的关系如下:
γRcr=1.782-0.3ρL
据此得到纵筋锈蚀后再生混凝土梁的正截面开裂弯矩:
Figure BDA0002850977840000041
进一步地,纵筋锈蚀后再生混凝土梁的正截面抗弯承载力的计算过程如下:
(A)建立纵筋锈蚀后再生混凝土梁的正截面抗弯承载力计算基本假设;
(B)假设纵筋均匀锈蚀,则纵筋锈蚀后的几何关系如下:
Figure BDA0002850977840000042
上式中,d为纵筋锈蚀后直径;ω为铁密度;D为纵筋锈蚀前直径;L为单根钢筋长度;mL为未锈蚀钢筋总质量;
(C)根据再生混凝土梁正截面静力平衡条件,得到纵筋锈蚀后再生混凝土梁的正截面抗弯承载力理论值M′u的表达式:
Figure BDA0002850977840000043
上式中,fy为钢筋抗拉强度设计值;h0为梁截面有效高度;
(D)设抗弯承载力纵筋锈蚀影响系数为γL,则纵筋锈蚀后再生混凝土梁的正截面抗弯承载力实测值Mu与理论值M′u的关系如下:
Mu=γLM′u
(E)通过拟合得到抗弯承载力纵筋锈蚀影响系数γL与纵筋锈蚀率ρL的关系,从而得到纵筋锈蚀后再生混凝土梁的正截面抗弯承载力实测值。
进一步地,在步骤(A)中,所述基本假设包括:
普通混凝土和再生混凝土轴心抗压强度均取fc=0.76fcu,纵筋受拉本构关系为σs=Esεs,极限拉应变为0.01,再生混凝土非均匀受压本构关系如下:
Figure BDA0002850977840000051
σc=fc 0.002≤σc≤0.0033
其中,εc为正截面混凝土压应变;ε0为混凝土压应力达到fc时的混凝土压应变。
进一步地,在步骤(E)中,抗弯承载力纵筋锈蚀影响系数γL与纵筋锈蚀率ρL的关系如下:
Figure BDA0002850977840000052
据此得到纵筋锈蚀后再生混凝土梁的正截面抗弯承载力实测值:
Figure BDA0002850977840000053
采用上述技术方案带来的有益效果:
再生混凝土梁中纵筋锈蚀后与锈蚀前相比钢筋截面积减小,性能发生变化,本发明通过引入再生混凝土梁纵筋锈蚀后截面抵抗矩系数以及抗弯承载力纵筋锈蚀影响系数,对普通混凝土梁的正截面开裂弯矩和抗弯承载力的计算方法进行修正,明显减小再生混凝土梁纵筋锈蚀后开裂弯矩和抗弯极限承载力计算值与实测值之间的差异,推动再生混凝土梁在实际工程中的推广应用。
附图说明
图1是实施例中采用的加速钢筋腐蚀装置示意图。
具体实施方式
以下将结合附图,对本发明的技术方案进行详细说明。
实施例1
试验浇筑2根再生混凝土梁,截面尺寸为200mm*300mm,梁长3300mm。再生混凝土粗骨料取代率为100%,再生混凝土梁保护层厚度为25mm,纵向钢比为1.15%。如图1所示,采用电化学方法加速钢的腐蚀,为了使NaCl溶液完全穿透钢材表面并损坏其钝化膜,将再生混凝土梁在5%浓度的NaCl溶液中浸泡在不锈钢水池中7天,在此期间定期测试溶液,以保持稳定的液位和溶液浓度。随后,将溶液高度调整到试样的一半(以确保足够的氧气),然后插入直流调节电源。连接到螺纹钢的阳极暴露在横梁上方50毫米处,阴极连接到溶液中的不锈钢管。
为了验证本发明提出的纵筋锈蚀后再生混凝土梁的正截面开裂弯矩中各计算式的适用性,整理锈蚀再生混凝土梁试验数据如表1-2所示。由表3可知,验证结果是比较接近的,产生差距的原因是由于试验者不仅锈蚀了纵筋,还锈蚀了箍筋,且在浇筑的过程中掺入了粉煤灰,因此对结果产生了一定的影响。
表1 再生混凝土配合比
Figure BDA0002850977840000061
表2 钢筋力学性能
钢筋种类 直径 屈服强度 抗拉强度 弹性模量E(N/mm<sup>2</sup>)
HPB300 8 250 315 2×10<sup>5</sup>
HRB400 12 500 670 2×10<sup>5</sup>
HRB400 14 500 640 2×10<sup>5</sup>
表3 正截面开裂弯矩计算式验证
Figure BDA0002850977840000062
实施例2
试验共设计制作了两组钢筋再生混凝土梁共12根,截面尺寸为120mm×120mm×1800mm,混凝土强度设计等级为C30,再生混凝土粗骨料取代率为100%,钢筋再生混凝土保护层厚度20mm。第一组RCBD12,配筋率1.08%,钢筋直径12mm;第二组RCBD14,配筋率1.48%,钢筋直径14mm。钢筋锈蚀方法与实施例1相同。
为了验证所得计算公式适用性,整理锈蚀再生混凝土梁试验数据如表4所示。由表5可知,纵筋锈蚀再生混凝土梁抗弯承载力计算值与试验值基本一致。
表4 再生混凝土配合比
Figure BDA0002850977840000071
表5 正截面抗弯承载力计算式验证
Figure BDA0002850977840000072
Figure BDA0002850977840000081
实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (10)

1.一种纵筋锈蚀再生混凝土梁正截面承载力的计算方法,其特征在于:引入再生混凝土梁纵筋锈蚀后截面抵抗矩系数和抗弯承载力纵筋锈蚀影响系数,包括纵筋锈蚀后再生混凝土梁的正截面开裂弯矩和正截面抗弯承载力的计算。
2.根据权利要求1所述纵筋锈蚀再生混凝土梁正截面承载力的计算方法,其特征在于:纵筋锈蚀再生混凝土梁是指利用再生混凝土粗骨料取代部分天然粗骨料,并且纵筋出现锈蚀的梁。
3.根据权利要求2所述纵筋锈蚀再生混凝土梁正截面承载力的计算方法,其特征在于:所述天然粗骨料是指天然石料经破碎筛分得到的粒径不大于31mm,且符合颗粒级配的粗骨料。
4.根据权利要求2所述纵筋锈蚀再生混凝土梁正截面承载力的计算方法,其特征在于:所述再生混凝土粗骨料是指由建筑拆除废弃物中混凝土构件破碎筛分得到的,粒径不大于26.5mm,且符合颗粒级配的粗骨料。
5.根据权利要求1所述纵筋锈蚀再生混凝土梁正截面承载力的计算方法,其特征在于:纵筋锈蚀后再生混凝土梁的正截面开裂弯矩的计算过程如下:
(a)建立纵筋锈蚀后再生混凝土梁的正截面开裂弯矩计算基本假设,包括再生混凝土梁截面符合平截面假定;截面受拉边缘开裂时,受拉边缘混凝土产生塑性变形,其余混凝土处于弹性状态;再生混凝土受拉本构关系中极限应变εtu与峰值应变εto的关系为εtu=1.5εt0,钢筋受拉本构关系为σs=Esεs,其中σs为钢筋应力,Es为钢筋弹性模量,εs为钢筋应变;
(b)计算受压区边缘混凝土应力σc
Figure FDA0002850977830000011
上式中,xc为中和轴至受压区边缘距离;h为梁截面高度;ft为再生混凝土轴心抗拉强度;
(c)根据静力平衡条件,计算中和轴高度系数ξc和再生混凝土梁正截面开裂弯矩Mcr
Figure FDA0002850977830000021
Figure FDA0002850977830000022
上式中,m为钢筋拉力与全截面混凝土抗拉力的比值,
Figure FDA0002850977830000023
σs为钢筋应力;As为受拉区钢筋面积;b为梁截面宽度;as截面边缘至受拉钢筋中心距离,γ为混凝土构件的截面抵抗矩塑性影响系数;W0为换算截面受拉边缘的弹性抵抗矩;
(d)对再生混凝土轴心抗拉强度ft和弹性模量Ec与立方体抗压强度fcu的关系进行拟合:
Figure FDA0002850977830000024
Figure FDA0002850977830000025
(e)设再生混凝土梁纵筋锈蚀后截面抵抗矩系数为γRcr,则纵筋锈蚀后再生混凝土梁的正截面开裂弯矩Mcr的表达式如下:
Figure FDA0002850977830000026
(f)通过正截面开裂荷载Pcr实测值和再生混凝土强度fcu实测值计算得到γRcr与纵筋锈蚀率ρL的关系,从而得到纵筋锈蚀后再生混凝土梁的正截面开裂弯矩。
6.根据权利要求5所述纵筋锈蚀再生混凝土梁正截面承载力的计算方法,其特征在于:在步骤(a)中,所述基本假设包括再生混凝土梁截面符合平截面假定;截面受拉边缘开裂时,受拉边缘混凝土产生塑性变形,其余混凝土处于弹性状态;再生混凝土受拉本构关系中极限应变εtu与峰值应变εto的关系为εtu=1.5εt0,钢筋受拉本构关系为σs=Esεs,其中σs为钢筋应力,Es为钢筋弹性模量,εs为钢筋应变。
7.根据权利要求5所述纵筋锈蚀再生混凝土梁正截面承载力的计算方法,其特征在于:在步骤(f)中,γRcr与纵筋锈蚀率ρL的关系如下:
γRcr=1.782-0.3ρL
据此得到纵筋锈蚀后再生混凝土梁的正截面开裂弯矩:
Figure FDA0002850977830000031
8.根据权利要求5所述纵筋锈蚀再生混凝土梁正截面承载力的计算方法,其特征在于:纵筋锈蚀后再生混凝土梁的正截面抗弯承载力的计算过程如下:
(A)建立纵筋锈蚀后再生混凝土梁的正截面抗弯承载力计算基本假设;
(B)假设纵筋均匀锈蚀,则纵筋锈蚀后的几何关系如下:
Figure FDA0002850977830000032
上式中,d为纵筋锈蚀后直径;ω为铁密度;D为纵筋锈蚀前直径;L为单根钢筋长度;mL为未锈蚀钢筋总质量;
(C)根据再生混凝土梁正截面静力平衡条件,得到纵筋锈蚀后再生混凝土梁的正截面抗弯承载力理论值Mu′的表达式:
Figure FDA0002850977830000033
上式中,fy为钢筋抗拉强度设计值;h0为梁截面有效高度;
(D)设抗弯承载力纵筋锈蚀影响系数为γL,则纵筋锈蚀后再生混凝土梁的正截面抗弯承载力实测值Mu与理论值M′u的关系如下:
Mu=γLM′u
(E)通过拟合得到抗弯承载力纵筋锈蚀影响系数γL与纵筋锈蚀率ρL的关系,从而得到纵筋锈蚀后再生混凝土梁的正截面抗弯承载力实测值。
9.根据权利要求8所述纵筋锈蚀再生混凝土梁正截面承载力的计算方法,其特征在于:在步骤(A)中,所述基本假设包括:
普通混凝土和再生混凝土轴心抗压强度均取fc=0.76fcu,纵筋受拉本构关系为σs=Esεs,极限拉应变为0.01,再生混凝土非均匀受压本构关系如下:
Figure FDA0002850977830000041
σc=fc 0.002≤σc≤0.0033
其中,εc为正截面混凝土压应变;ε0为混凝土压应力达到fc时的混凝土压应变。
10.根据权利要求8所述纵筋锈蚀再生混凝土梁正截面承载力的计算方法,其特征在于:在步骤(E)中,抗弯承载力纵筋锈蚀影响系数γL与纵筋锈蚀率ρL的关系如下:
Figure FDA0002850977830000042
据此得到纵筋锈蚀后再生混凝土梁的正截面抗弯承载力实测值:
Figure FDA0002850977830000043
CN202011526503.4A 2020-12-22 2020-12-22 一种纵筋锈蚀再生混凝土梁正截面承载力的计算方法 Active CN112560153B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011526503.4A CN112560153B (zh) 2020-12-22 2020-12-22 一种纵筋锈蚀再生混凝土梁正截面承载力的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011526503.4A CN112560153B (zh) 2020-12-22 2020-12-22 一种纵筋锈蚀再生混凝土梁正截面承载力的计算方法

Publications (2)

Publication Number Publication Date
CN112560153A true CN112560153A (zh) 2021-03-26
CN112560153B CN112560153B (zh) 2023-08-01

Family

ID=75030727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011526503.4A Active CN112560153B (zh) 2020-12-22 2020-12-22 一种纵筋锈蚀再生混凝土梁正截面承载力的计算方法

Country Status (1)

Country Link
CN (1) CN112560153B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668412B1 (en) * 1997-05-29 2003-12-30 Board Of Regents Of University Of Nebraska Continuous prestressed concrete bridge deck subpanel system
US20140000204A1 (en) * 2011-03-08 2014-01-02 Harbin Wushuhuan Construction Engineering Technology Research Co., Ltd. Outer thermal insulating composite wall with supporters for outer walls
CN104699988A (zh) * 2015-03-27 2015-06-10 北京筑信达工程咨询有限公司 钢筋混凝土构件正截面极限承载力计算的快速方法
CN106638332A (zh) * 2016-10-12 2017-05-10 山西省交通科学研究院 一种基于力筋应力测试结果的混凝土桥梁加固设计方法
WO2019064211A1 (en) * 2017-09-29 2019-04-04 Societa' Per Azioni Fratelli Citterio STRUCTURAL ELEMENT IN REINFORCED CONCRETE AND METHOD FOR MANUFACTURING THE SAME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668412B1 (en) * 1997-05-29 2003-12-30 Board Of Regents Of University Of Nebraska Continuous prestressed concrete bridge deck subpanel system
US20140000204A1 (en) * 2011-03-08 2014-01-02 Harbin Wushuhuan Construction Engineering Technology Research Co., Ltd. Outer thermal insulating composite wall with supporters for outer walls
CN104699988A (zh) * 2015-03-27 2015-06-10 北京筑信达工程咨询有限公司 钢筋混凝土构件正截面极限承载力计算的快速方法
CN106638332A (zh) * 2016-10-12 2017-05-10 山西省交通科学研究院 一种基于力筋应力测试结果的混凝土桥梁加固设计方法
WO2019064211A1 (en) * 2017-09-29 2019-04-04 Societa' Per Azioni Fratelli Citterio STRUCTURAL ELEMENT IN REINFORCED CONCRETE AND METHOD FOR MANUFACTURING THE SAME

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴庆;庄悦;: "锈蚀钢筋混凝土梁抗弯承载力计算方法", 混凝土, no. 08 *
吴瑾;郭兴陈;: "再生粗骨料钢筋混凝土梁疲劳性能试验研究", 建筑结构, no. 05 *
赵新铭;欧日强;吴瑾;: "预应力碳纤维布加固混凝土梁的抗弯承载力计算", 河海大学学报(自然科学版), no. 06 *

Also Published As

Publication number Publication date
CN112560153B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
Azad et al. Residual strength of corrosion-damaged reinforced concrete beams
Rana Some studies on steel fiber reinforced concrete
Hwang et al. Corrosion risk of steel fibre in concrete
CN107563049B (zh) 一种钢纤维再生混凝土梁的设计方法
CN108304689A (zh) 预应力混凝土氯离子扩散系数多尺度预测模型的构建方法
Bertolini et al. Corrosion of steel in concrete and its prevention in aggressive chloride-bearing environments
CN110847496A (zh) 一种frp筋部分钢纤维增强混凝土梁及其制备方法
Xue et al. Shear behavior of RC beams containing corroded stirrups
Mao et al. Recycling methodology of chloride-attacked concrete based on electrochemical treatment
Farzad et al. Corrosion macrocell development in reinforced concrete with repair UHPC
CN112560153B (zh) 一种纵筋锈蚀再生混凝土梁正截面承载力的计算方法
Sathe et al. Experimental analysis and behavior of corrosion-damaged fly ash blended reinforced concrete beam under flexural loading
Ishii et al. Cathodic protection for prestressed concrete structures
KR101289702B1 (ko) 강섬유 보강에 의한 순환골재 콘크리트 조성물
Gu et al. Flexural behavior of corroded reinforced concrete beams
El-Khoriby et al. Performance of pre-cracked beams exposed to corrosion environment cast with ultra-high performance concrete
CN114491982A (zh) 玄武岩筋碱激发海砂混凝土梁的弯拉性能计算方法
Kobayashi The seismic behavior of RC member suffering from chloride-induced corrosion
Yidong et al. Corrosion characteristics of reinforced concrete under the coupled effects of chloride ingress and static loading: Laboratory tests and finite element analysis
KR102418215B1 (ko) 염해내구성 향상 및 미세먼지 저감을 위한 전도성 광촉매 콘크리트의 조성물
Yadeta et al. Influence of pre-existing cracks and concrete cover on service life of reinforced concrete and mechanical behaviour of corroded rebars
AA et al. Durability of Recycled Aggregate Self-Curing Concrete.
CN116383594B (zh) 高强钢筋混凝土受弯构件最大裂缝宽度计算方法
Wang et al. Corrosion depth of steel bars in recycled aggregate concrete beams under static load
Harahap et al. Seawater-mixed concrete in Indonesia and anti-corrosive materials: A review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant