CN112553288A - 一种筛选具有抗衰老潜力天然产物的方法 - Google Patents

一种筛选具有抗衰老潜力天然产物的方法 Download PDF

Info

Publication number
CN112553288A
CN112553288A CN202011428651.2A CN202011428651A CN112553288A CN 112553288 A CN112553288 A CN 112553288A CN 202011428651 A CN202011428651 A CN 202011428651A CN 112553288 A CN112553288 A CN 112553288A
Authority
CN
China
Prior art keywords
cells
treatment
senescent cells
gse
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011428651.2A
Other languages
English (en)
Other versions
CN112553288B (zh
Inventor
孙宇
许奇霞
张旭光
贺瑞坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BY Health Co Ltd
Original Assignee
BY Health Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BY Health Co Ltd filed Critical BY Health Co Ltd
Priority to CN202011428651.2A priority Critical patent/CN112553288B/zh
Publication of CN112553288A publication Critical patent/CN112553288A/zh
Priority to PCT/CN2021/130639 priority patent/WO2022121627A1/zh
Application granted granted Critical
Publication of CN112553288B publication Critical patent/CN112553288B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/136Amines having aromatic rings, e.g. ketamine, nortriptyline having the amino group directly attached to the aromatic ring, e.g. benzeneamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/87Vitaceae or Ampelidaceae (Vine or Grape family), e.g. wine grapes, muscadine or peppervine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Botany (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Urology & Nephrology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Polymers & Plastics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Cell Biology (AREA)
  • Pathology (AREA)
  • Nutrition Science (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)

Abstract

本发明涉及一种筛选具有抗衰老潜力天然产物的方法,该方法经过两轮筛选,且每轮筛选中需要控制衰老细胞的密度和培养时间在适当的范围内,进而,可以简便、快速且准确地筛选获得具有抗衰老潜力的天然产物。

Description

一种筛选具有抗衰老潜力天然产物的方法
技术领域
本发明属于生物医药领域,具体涉及一种筛选具有抗衰老潜力天然产物的方法。
背景技术
细胞衰老是指真核细胞一种相对稳定且通常不可逆的细胞周期停滞的状态,在这种状态下增殖细胞会对促生长刺激产生耐受,通常由DNA损伤等胁迫性信号所引起。上个世纪60年代,美国科学家Leonard Hayflick首先描述了细胞衰老的存在和特征,他观察到人类胚胎成纤维细胞(WI38)最终会停止分裂,但在长时间培养后仍然具有活力和代谢活性。这一现象后来被称为复制性衰老,是指正常细胞在大约30-50次分裂(即“Hayflick极限”)后会停止连续分裂。复制性衰老本质上由端粒渐进缩短所诱导。在每一轮的DNA复制中,端粒都会逐渐缩短,最终达到一个临界长度,阻止进一步复制,从而停止细胞分裂。较短的无帽端粒会引起DNA损伤应答,通常直接触发衰老。
现在普遍认为,除了具有干细胞样特性的细胞类型外,只有转化的(包括恶性)细胞会无限复制,而非转化细胞则不会。衰老细胞与静息细胞和终末分化细胞均不同,其中静息细胞能够重新进入细胞周期。衰老细胞的特征是形态学异常、代谢活性变化、染色质重构、基因表达改变、脂褐素增加、颗粒性明显、空泡化严重以及出现一种称为衰老相关分泌表型(senescence-associated secretory phenotype,SASP)的促炎症表型。由于核纤层lamin B1表达丧失,可观察到核膜完整性破坏。同时,衰老细胞积累功能失调的线粒体,并表现出活性氧种属(ROS)水平升高。还可观察到溶酶体内含物增加和溶酶体活性改变,表现为pH为6.0时β-半乳糖苷酶染色阳性率上升,使其成为广被采用的细胞衰老标志物。衰老的生物学作用比较复杂,衰老细胞的保护作用和有害作用均已有描述,主要取决于病理生理学环境。例如,尽管衰老可能作为避免受损细胞恶性转化的机制进化而来,但衰老的发生可能会导致许多年龄相关病变,包括癌症、心脑血管疾病、骨质疏松、关节炎、代谢性疾病、神经退行性症状等一系列危害人类健康与寿命的临床问题。
细胞衰老表现为核膜内折,染色质固缩,细胞体积增大,激活下游包括p53、p16INK4A/Rb、PI3K/Akt、FoxO转录因子和线粒体SIRT3/4/5等在内的多条信号通路。除了进入永久性增殖停滞,衰老细胞常关系到许多病理学特征,包括局部炎症。细胞衰老发生于受损细胞,并防止其在生物体内增殖。在各种外界刺激和内部因素影响下,细胞损伤达到一定程度则可以导致明显的细胞衰老迹象。当损伤累积达到一定的时间,组织中呈现各种肉眼可辨的组织退行变化和生理上的衰老表型。
尤其值得注意的是,衰老细胞中炎症性细胞因子的表达水平显著升高,这一现象被称为衰老相关分泌表型(SASP)。SASP这一概念是由Coppe等人于2008年首次提出。他们发现衰老细胞能通过分泌胞外基质蛋白、炎症相关因子及癌细胞生长因子促进邻近癌前细胞发生癌变或恶性程度加剧,并称这些蛋白为SASP因子。
衰老细胞主要通过3个途径参与机体的各种生理和病理过程:(1)衰老细胞基因表达和形态改变逐步累积可影响相应组织的功能;(2)衰老细胞限制干细胞和未分化祖细胞的再生潜能,导致组织再生能力下降;(3)衰老细胞不仅表现为生长周期停滞,还通过自分泌和旁分泌途径释放大量的细胞因子、趋化因子、生长因子和蛋白酶等,影响邻近细胞和组织的微环境,导致和加速机体衰老及相关疾病,近年大量研究表明在这一过程中SASP起到核心的病理作用。此外,衰老细胞分泌的这些因子还会影响周围的正常细胞,而抑制SASP则能够延缓机体衰老、延缓各种相关疾病。典型的SASP因子包括肿瘤坏死因子-α(TNF-α)、白细胞介素6(IL-6)、白细胞介素8(IL-8)、白细胞介素1a(IL-1a)、基质金属蛋白酶(MMP)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)和纤溶酶原激活物抑制因子-1(PAI1)等,这些因子促进免疫系统激活,导致组织微环境中衰老细胞等异常因素被机体清除,进而发挥肿瘤抑制功能。然而,十分矛盾的是,SASP尚可通过特定分泌因子(如VEGF,ANGPTL4)促进血管生成、细胞外基质重塑或上皮-间质转化(epithelial-to-mesenchymal transition,EMT)的因子来促进肿瘤发展。此外,衰老诱导的慢性炎症可引起系统性免疫抑制,这种慢性炎症还可促进衰老相关的组织损伤和变性、器官功能失调和癌症等多种衰老相关疾病的发生和发展。
DNA损伤、端粒功能障碍、癌基因激活、氧化应激等刺激均可诱导细胞出现SASP,其机制与转录级联、自分泌环路和持续DNA损伤反应密切相关。但是,过表达或者抑制衰老经典通路p53和p16INK4A/Rb不能影响SASP的表达,表明尽管衰老细胞的周期停滞和SASP经常协同发生,两者的调控通路并不完全重叠。据报道,DNA损伤反应通过激活毛细血管扩张共济失调突变基因、奈梅亨断裂综合征蛋白1和检测点激酶2增加SASP因子IL-6和IL-8的分泌。DNA损伤反应(DDR)在细胞受损后立即被激活,衰老细胞出现成熟SASP则需要约1周甚至更长的时间,并且短暂的DNA损伤反应并不能诱导细胞衰老,也不能诱导SASP,表明除了DNA损伤反应外还存在其它机制共同诱导SASP。
研究表明,DDR、p38MAPK和mTOR信号作为上游驱动因子,NF-κB和c/EBPβ作为下游转录因子,均被发现参与到衰老细胞SASP的调节过程中。NF-κB和c/EBPβ转录因子在细胞衰老时活性增加,参与调节细胞应激和炎症信号的细胞因子表达。细胞衰老时磷酸化的NF-κB/RelA亚基入核,与SASP启动基因结合,调控SASP因子表达,因此NF-κB通常被称为SASP的主调节器。小鼠肝脏、肾脏及老年人大脑组织的衰老细胞中锌指转录因子4(GATA4)水平较高,GATA4可以通过调节衰老细胞中NF-κB的活性影响SASP相关基因IL-6、IL-8、CXCL1的表达。p38MAPK是丝氨酸/苏氨酸蛋白激酶家族成员之一,是重要的信号转导分子,激活或者阻断p38MAPK足以影响衰老细胞SASP形成。p38MAPK在衰老程序开始几天后被激活,通过活化丝裂原和应激激活的蛋白激酶-MSK1和MSK2,间接激活NF-κB,使得p65和p50在核内聚集,这与SASP早期发展过程相一致。衰老细胞不直接分泌促炎因子IL-1α,但衰老细胞胞膜表面分布大量的IL-1α,与NF-κB共同形成正前馈环路促进炎性因子的编码转录,建立和维持SASP。mTOR通过调节IL-1α水平促进SASP因子分泌,而雷帕霉素(rapamycin)及其类似物不影响IL-1αmRNA水平,却明显降低衰老细胞表面IL-1α蛋白的表达。mTOR也能够调节p38MAPK下游信号MAPKAPK2影响SASP因子分泌,细胞衰老期间,MAPKAPK2磷酸化RNA结合蛋白ZFP36L1,从而限制其对SASP因子转录产物的降解能力。转录因子c/EBPβ与肿瘤基因激活诱导的细胞衰老有关,衰老时c/EBPβ募集到IL-6启动子上,直接促进SASP因子转录,c/EBPβ也是IL-6正前馈自分泌环路的重要组成部分,可以激活SASP的炎症网络,是SASP早期扩散的重要调节器。HMGB2靶向作用于c/EBPβ调控SASP,通过抑制异染色质的扩散来促进SASP基因的表达,细胞衰老期间大量HMGB2与染色质结合,消除了衰老相关异染色质位点(SAHF)对SASP基因的沉默作用,导致IL-6、IL-8等表达增加。
表观遗传学近年在SASP研究领域取得不少进展。Sirtuins是一种代谢相关、NAD+依赖的去乙酰化酶,在不同模型中已发现SIRT1有寿命延长的效应。衰老细胞中SIRT1通过脱乙酰化IL-6和IL-8启动子区组蛋白H3K9和H4K16实现对SASP因子的表达抑制,当敲除SIRT1后,细胞衰老期间这些区域乙酰化水平高于对照组细胞。microRNAs是一类高度保守的单链非编码RNA,长度大约为20~26个核苷酸,在真核细胞中调节基因的表达。研究结果表明,miR-146、miR-34、miR-21和miR-183等可以调节衰老细胞SASP,并能够有效地抑制炎性细胞因子的过度生成。miR-146a/b可以降低人脐静脉内皮细胞中IL-1受体相关激酶的产生;相反抑制miR-146a/b可以提高IL-1受体相关激酶的活性,激活转录因子NF-κB,诱导IL-6和IL-8蛋白表达。
表观遗传改变通过影响DNA损伤修复、端粒长度和代谢途径或激活衰老相关基因和miRNAs的表达而影响衰老。多种证据表明染色质状态的改变与细胞衰老的控制密切相关。细胞可以感觉到不同的衰老刺激,这些刺激会激活信号通路,驱动染色质状态的改变。然而,衰老信号引起这种改变的途径仍然很大程度上是未知的。因此,从表观遗传角度揭示细胞衰老及其特定表型发生发展的调控机制,从进而揭示具有靶向价值的关键分子及其信号通路,是将来衰老生物学和老年医学的一个新兴方向,亟需深入开展相关探索,为临床医学提供重要科学依据和潜在的干预措施。
随着全球人口老龄化的日益加剧,人们对“主动健康、延缓衰老”的兴趣与日俱增,主要是基于一系列靶向衰老的基本机制可以延缓多种衰老相关慢性或非传染性疾病的发生或加剧的科学证据。因此,细胞衰老作为预防或治疗多种衰老相关疾病和提高健康寿命的潜在靶点已获得诸多关注。
延缓衰老的药物主要是通过短暂性阻断生存途径(衰老细胞抗凋亡途径SCAPs)选择性清除衰老细胞,该生存途径可保护衰老细胞免受环境中凋亡诱导信号的调控。临床前研究表明有一类药物,即senolytics有望将来应用于延缓、预防或治疗多种衰老相关的疾病。
尽管越来越多的实验支持靶向细胞衰老可以同时治疗多种衰老相关疾病,但还有待严谨的人体临床试验以帮助人们更好地评估延缓衰老药物的益处和风险。尽管国际已知的多种SASP抑制剂均可显著减弱SASP,但本质上不会杀死衰老细胞。为了在药理学上减轻衰老细胞的负担,科学家们正在开发“senolytics”(一种衰老细胞清除药物)这种性质的小分子、多肽和抗体来选择性地清除衰老细胞。研究者们自2015年发现senolytic药物以来,在鉴别其他小分子senolytic药物及其作用方面取得了相当大的进展。研究发现首个senolytic药物的文章是基于衰老细胞抵抗凋亡的假说,尽管衰老细胞会产生促凋亡SASP因子来触发自身死亡。
事实上,有研究表明在衰老细胞中促凋亡途径确实上调。因此,衰老细胞依赖于衰老相关的抗凋亡途径(SCAPs)来减轻SASP对自身的伤害,这一假说得到了验证。SCAPs是通过生物信息学方法(基于辐射诱导衰老的人前脂肪细胞的表达谱)来鉴定的。有研究通过体外RNA干扰实验发现衰老细胞对SCAPs具有依赖性,并将SCAPs确认为衰老细胞的致命弱点。这一研究发现最终促成了SCAP网络中潜在的senolytic靶点的发现以及第一种senolytic药物的发现,其中senolytic药物包括达沙替尼(dasatinib)(一种FDA批准的酪氨酸激酶抑制剂)和槲皮素(quercetin)(一种存在于许多水果和蔬菜中的黄烷醇)的组合(D+Q)。此外,有研究将BCL-2家族中一种对抗凋亡的蛋白(BCL-XL)鉴定为SASP组分。在这一发现之后,第三种senolytic药物navitoclax(ABT263)也被鉴定出来,它是一种BCL-2家族抑制剂。研究人员目前已经鉴定出越来越多的senolytics,包括其它合成的小分子、从天然产物中提取的化合物以及靶向已知SCAPs肽的抑制剂。此外,SCAPs也作为潜在的senolytic靶点备受瞩目。
衰老细胞存活所需的SCAP在细胞类型之间有所不同。例如,衰老的人类原代脂肪祖细胞存活所需的SCAPs与衰老的人类胚胎静脉内皮细胞(HUVECs)中的SCAPs不同。这种差异意味着靶向单个SCAP的药物可能无法消除多种衰老细胞类型。而且大量研究表明大多数senolytics确实仅对有限的衰老细胞类型有效。例如,navitoclax能够靶向HUVECs,但对衰老的人类脂肪祖细胞无效。有证据表明,即使在一种特定类型的细胞内,senolytics的功效也可能不同。例如,在人肺成纤维细胞中,navitoclax能靶向并杀死适应培养的IMR-90肺成纤维细胞样细胞株中的衰老细胞,但对衰老的原代人肺成纤维细胞少有成效。因此,为确定senolytics的广谱作用,仍需要进行针对一系列细胞类型的广泛测试。
在特定条件下,senolytic药物的使用频率可能取决于衰老细胞的积累速度,而衰老细胞的积累速度可能会因细胞衰老发生的环境而异。例如,反复接触破坏DNA的癌症疗法或持续的高脂肪饮食,可能会比自然衰老更迅速地导致衰老细胞的重新累积。间歇性使用senolytics可以降低患者产生不良反应的风险,并允许在健康期间使用senolytics。此外,间歇给药还可以减少senolytics产生的副作用并降低患者产生耐药性的可能性。与抗癌药物或抗生素的情况不同,因为衰老细胞不发生分裂,因此机体无法依赖细胞增殖产生senolytics抗性,从而无法获得有利的突变,这位将来临床中广泛使用senolytics创造了良好的基础。
发明内容
发明人经过实验探索,发现了一种筛选具有抗衰老潜力的药物的新方法。该方法经过两轮筛选,且每轮筛选中需要控制衰老细胞的密度和培养时间在适当的范围内;进而,可以简便、快速且准确地筛选获得具有抗衰老潜力的药物,发明人通过本申请的筛选方法成功筛选并获得了具有抗衰老潜力的天然产物葡萄籽提取物(GSE)。同时,发明人还通过体内和体外实验验证了葡萄籽提取物的抗衰老活性。进一步地,发明人对筛选获得的葡萄籽提取物的抗衰老活性进行了更为深入的研究后发现,一定浓度的葡萄籽提取物可以在体外条件下有效抑制SASP标志因子的表达或者消除衰老细胞。另外,发明人还发现,葡萄籽提取物与米托蒽醌(MIT)组合后,可以有效增强米托蒽醌(MIT)的抗肿瘤(如前列腺癌)活性。
为此,在本发明的第一方面,本发明提供了一种筛选具有抗衰老潜力药物的方法,其包括:
(1)将候选药物与衰老细胞进行第一接触处理,之后将未经过所述第一接触处理的衰老细胞和经过所述第一接触处理后的衰老细胞进行细胞增殖检测,同时将对照细胞和经过所述第一接触处理后的衰老细胞进行细胞凋亡检测,所述第一接触处理是在96孔板中进行的,所述第一接触处理中所述衰老细胞的密度为4500-5500个/孔(如4500、4600、4700、4800、4900、5000、5100、5200、5300、5400、5500、4900-5100、4800-5200、4700-5300或4600-5400个/孔;优选5000个/孔),所述第一接触处理的时间为5-10天(如5、6、7、8、9、10、6-8或5-9天,优选7天),所述衰老细胞是通过将所述对照细胞进行衰老诱导处理后获得的;
所述细胞增殖检测和细胞凋亡检测后,同时满足以下条件的候选药物为初筛药物:
A、所述细胞增殖检测后,经过所述第一接触处理后的衰老细胞与未经过所述第一接触处理的衰老细胞相比,检测结果具有显著性差异(P<0.05);
B、所述细胞凋亡检测后,经过所述第一接触处理后的衰老细胞与对照细胞相比,检测结果具有显著性差异(P<0.05);
(2)将所述初筛药物与衰老细胞进行第二接触处理,之后将未经过所述第二接触处理的衰老细胞和经过所述第二接触处理后的衰老细胞进行细胞增殖检测,同时将对照细胞和经过所述第二接触处理后的衰老细胞进行细胞凋亡检测,所述第二接触处理是在96孔板中进行的,所述第二接触处理中所述衰老细胞的密度为15000-25000个/孔(如15000、16000、17000、18000、19000、20000、21000、22000、23000、24000、25000、19000-21000、18000-22000、17000-23000或16000-24000个/孔,优选20000个/孔),所述第二接触处理的时间为25-35天(如25、26、27、28、29、30、31、32、33、34、35、29-31、28-32、27-33或26-34天,优选30天),所述衰老细胞是通过将所述对照细胞进行衰老诱导处理后获得的;
所述细胞增殖检测和细胞凋亡检测后,同时满足以下条件的初筛药物为目标药物:
A、所述细胞增殖检测后,经过所述第二接触处理后的衰老细胞与未经过所述第二接触处理的衰老细胞相比,检测结果具有显著性差异(P<0.05);
B、所述细胞凋亡检测后,经过所述第二接触处理后的衰老细胞与对照细胞相比,检测结果具有显著性差异(P<0.05)。
在一些实施方案中,所述药物可以为天然产物。进而可以理解,所述“筛选具有抗衰老潜力药物的方法”可以为“筛选具有抗衰老潜力天然产物的方法”。
需要说明的是,第一或第二接触处理后,细胞增殖检测或细胞凋亡检测时,未经过(第一/第二)接触处理的衰老细胞、对照细胞以及经过(第一/第二)接触处理的衰老细胞及其对照细胞的检测条件完全相同。另外,需要进行第一/第二接触处理的衰老细胞在进行第一/第二接触处理的过程中,对照细胞以及不进行第一/第二接触处理的衰老细胞同步进行常规条件下的细胞培养,除了不添加GSE之外,其余的细胞培养条件(如起始细胞密度、培养时间、培养基种类及其体积、培养基更换频率、细胞收集和试剂处理程序等)与第一/第二接触处理完全相同。其中,所述对照细胞即为与衰老细胞相近代数的增殖态细胞,所述衰老细胞是通过将所述对照细胞进行衰老诱导处理后获得的细胞。
在一些实施方案中,所述衰老处理为化疗药物处理或辐射处理。在一些优选的实施方案中,所述衰老处理为化疗药物处理。
在一些实施方案中,所述化疗药物为博莱霉素(BLEO)。
在一些实施方案中,所述博莱霉素(BLEO)的处理浓度为40-60μg/mL(如45μg/mL、50μg/mL、55μg/mL或60μg/mL,优选50μg/mL)。
在一些具体实施方案中,所述衰老处理的步骤为:PSC27细胞生长至80%(简称PSC27-CTRL)时培养液中加入50μg/mL博来霉素(bleomycin,BLEO)。BLEO处理12小时后,细胞被PBS简单洗过3次,留置于培养液中7-10天。
在一些实施方案中,所述对照细胞为人源前列腺原代基质细胞系(如PSC27)。
在一些实施方案中,所述第一接触处理和所述第二接触处理的培养基为本领域技术人员常规使用的基础培养基。在一些具体实施方案中,所述第一接触处理和所述第二接触处理的培养基为DMEM(含有10%FBS)。
在一些实施方案中,所述第一接触处理中,所述候选药物的浓度为1μM-l mM(优选1μM-50μM,如1μM、1.25μM、1.5μM、2μM、3μM、4μM、5μM、10μM、15μM、20μM、25μM、30μM、35μM、40μM、45μM或50μM)。
在一些实施方案中,所述第二接触处理中,所述初筛药物的浓度为1μM-l mM(优选1μM-50μM,如1μM、1.25μM、1.5μM、2μM、3μM、4μM、5μM、10μM、15μM、20μM、25μM、30μM、35μM、40μM、45μM或50μM)。
需要说明的是,上述候选药物和初筛药物的浓度可以是单一浓度,也可以是梯度浓度。换句话说,进行第一轮或第二轮筛选时,可以是以单一浓度进行筛选,也可以是以梯度浓度进行筛选。以梯度浓度进行筛选时,每一个浓度均需符合预定筛选条件,才可以判定候选药物为初筛药物,或判定初筛药物为目标药物。
在一些实施方案中,所述细胞增殖检测是利用CCK-8Cell Counting Kit试剂盒进行的。具体检测步骤可以参照检测说明进行。例如,检测步骤如下:(1)接种细胞悬液100μL于96孔板,细胞培养箱中(37℃,5%CO2)孵育;(2)取出需要检测的细胞(即药物处理后第7天或第30天的细胞),在培养皿中加入0.1体积的CCK-8,充分混合,保证孔中颜色的均一性,避免气泡出现;(3)培养箱中继续培养1-4小时;(4)酶标仪读数之前,将96孔板于摇床振荡1min,确保孔板颜色均匀;(5)使用酶标仪在450nm读取吸光值,计算细胞活性。当某种药物在特定浓度条件下造成药物处理后衰老细胞与未经药物处理衰老细胞相比,CCK-8指标之间达到显著性差异(P<0.05,每组至少3个重复样本)时,判定该药物在该浓度下具备靶向衰老细胞的有效性。
在一些实施方案中,所述细胞凋亡检测是利用Caspase 3/7activity kit(Promega)进行的。具体检测步骤可以参照检测说明进行。例如,检测步骤为:(1)从孵化器中取出含有细胞(即药物处理后第7天或第30天的细胞)的96孔板,并允许该板温度平衡至室温;(2)将
Figure BDA0002825795260000081
3/7试剂的100μL添加到含有空白100μL的白壁96孔板的每孔中,以及阴性对照组细胞或培养基中处理的细胞。因这种测定的敏感性,避免枪头尖端触碰到含有样品的孔,以避免交叉污染。用板密封器盖住板或者盖子;(3)用平板摇床在300-500rpm转速下轻混孔内液体30秒,根据细胞培养系统,在室温下孵育持续30分钟至3小时。最佳孵育时间应根据预实验提前确定;(4)根据荧光光度计的使用指南,测定每个样品的生物荧光值。经过对比,在衰老细胞与相近代数的增殖态细胞之间出现显著性差异(P<0.05,每组至少3个重复样本)时,判定该药物在该浓度下具备特异性清除衰老细胞的效果或潜力。
在一些实施方案中,所述第一接触处理中,所述培养基和所述候选药物每两天更换一次。
在一些实施方案中,所述第二接触处理中,所述培养基和所述初筛药物每两天更换一次。
在本发明的第二方面,本发明提供了组合物,其包含葡萄籽提取物,所述葡萄籽提取物的浓度为1-1.5μM(优选1.25μM)。在一些实施方案中,余量为水。
在本发明的第三方面,本发明提供了组合物在制备试剂中的用途,所述试剂用于抑制SASP标志因子的表达,所述组合物包含葡萄籽提取物,所述葡萄籽提取物的浓度为1-1.5μM(优选1.25μM)。在一些实施方案中,余量为水。所述试剂可以供科研人员或其他有需要的研究人员在体外检测和实验中使用。
在一些实施方案中,所述SASP因子选自肿瘤坏死因子-α(TNF-α)、白细胞介素6(IL-6)、白细胞介素8(IL-8)、白细胞介素1α(IL-1α)、白细胞介素1β(IL-1β)、基质金属蛋白酶(MMP,如MMP3)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)、纤溶酶原激活物抑制因子-1(PAI1)、趋化因子(CXC,如CXCL3)、双向调节因子(AREG)、丝氨酸肽酶抑制因子Kazal型1(SPINK1),或其任何组合。
在一些实施方案中,所述SASP因子为白细胞介素6(IL-6)、白细胞介素8(IL-8)、白细胞介素1α(IL-1α)、白细胞介素1β(IL-1β)、基质金属蛋白酶(MMP,如MMP3)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)、趋化因子(CXC,如CXCL3)、双向调节因子(AREG)和丝氨酸肽酶抑制因子Kazal型1(SPINK1)的组合。
在本发明的第四方面,本发明提供了组合物,其包含葡萄籽提取物,所述葡萄籽提取物的浓度为5-50μM(优选5-25μM,更优选25μM)。在一些实施方案中,余量为水。
在本发明的第五方面,本发明提供了组合物在制备试剂中的用途,所述试剂用于消除衰老细胞,所述组合物包含葡萄籽提取物,所述葡萄籽提取物的浓度为5-50μM(优选5-25μM,更优选25μM)。在一些实施方案中,余量为水。所述试剂可以供科研人员或其他有需要的研究人员在体外检测和实验中使用。
在一些实施方案中,所述试剂通过诱导衰老细胞凋亡来清除衰老细胞。
在一些实施方案中,所述试剂用于诱导衰老细胞凋亡。
在本发明的第六方面,本发明提供了组合物,其包含葡萄籽提取物和米托蒽醌(MIT)。
在一些实施方案中,所述葡萄籽提取物和所述米托蒽醌(MIT)的质量比为10:0.1-10:0.3(优选为10:0.2)。
在本发明的第七方面,本发明提供了前述的组合物在制备药物、食品或保健品中的用途,所述药物用于治疗和/或预防癌症。
在本发明的第八方面,本发明提供了治疗和/或预防癌症的方法,其包括给予有需要的受试者有效量的前述组合物或者由前述组合物制备的药物、食品或保健品。
在本发明的第九方面,本发明提供了前述的组合物或者由前述的组合物制备的药物、食品或保健品,其用于治疗和/或预防癌症。
在一些实施方案中,上述癌症为与衰老相关的癌症。
在一些实施方案中,上述癌症为前列腺癌。
在本发明中,除非另有说明,否则本文中使用的科学和技术名词具有本领域技术人员所通常理解的含义。同时,为了更好地理解本发明,下面提供相关术语的定义和解释。
本申请的葡萄籽提取物(grape seed extract,GSE)是从葡萄栽培品种的种子中提取出来的一种多酚类和类黄酮混合物,1951年,Masquelier在法国获得了从松树皮提取OPC的专利技术,并于1970年从葡萄籽中提取成功,其包含单体多酚和聚合多酚。GSE中单体多酚主要包括没食子酸、儿茶素、表儿茶素和表儿茶素没食子酸。聚合多酚主要是以儿茶素或表儿茶素为单体缩合而成的原花青素,其中以低聚体(二聚、三聚、四聚体)-又称为寡聚体(oligomerie procyanidin,OPC)生物活性最强。葡萄籽提取物可以市购获得。GSE的成分含量详见表3。
本文使用的术语“治疗”一般是指获得需要的药理和/或生理效应。该效应根据完全或部分地预防疾病或其症状,可以是预防性的;和/或根据部分或完全稳定或治愈疾病和/或由于疾病产生的副作用,可以是治疗性的。本文使用的“治疗”涵盖了对患者疾病的任何治疗,包括:(a)预防易感染疾病或症状但还没诊断出患病的患者所发生的疾病或症状;(b)抑制疾病的症状,即阻止其进一步发展;或(c)缓解疾病的症状,即,导致疾病减轻或症状退化。
在本发明中,“受试者”指脊椎动物。在某些实施方案中,脊椎动物指哺乳动物。哺乳动物包括,但不限于,牲畜(诸如牛)、宠物(诸如猫、犬、和马)、灵长类动物、小鼠和大鼠。在某些实施方案中,哺乳动物指人。
在本发明中,“有效量”指在必需的剂量和时间上有效实现期望的治疗或预防效果的特定药物的使用量。本发明的物质/分子的“治疗有效量”可根据诸如个体的疾病状态、年龄、性别和体重及该物质/分子在个体中引发期望应答的能力等因素而变化。治疗有效量还涵盖该物质/分子的治疗有益效果胜过任何有毒或有害后果的量。“预防有效量”指在必需的剂量和时间上有效实现期望的预防效果的量。通常而非必然,由于预防剂量是在疾病发作之前或在疾病的早期用于受试者的,因此预防有效量会低于治疗有效量。在癌症的情况中,药物的治疗有效量可减少癌细胞数;缩小肿瘤体积;抑制(即一定程度的减缓,优选停止)癌细胞浸润到周围器官中;抑制(即一定程度的减缓,优选停止)肿瘤转移;一定程度的抑制肿瘤生长;和/或一定程度的减轻与癌症有关的一种或多种症状。
有益效果:
1、本申请的药物筛选方法,可以在最短时间、以最少药物用量、获得达到清除衰老细胞的最佳效果,即最高的研发效率。如果舍弃或者改变这些筛选步骤,将对抗衰老药物的筛选带来时间和成本上的大幅增长,不利于低投入、高产出地获得研究数据和关键结果,最终使得筛选效率显著下降,且准确度将显著降低。
2、本申请的药物筛选方法中,细胞密度是关键,若增加或者减少,会影响数据的准确性、稳定性和可重复性。例如,第一轮筛选中,如使用4000或6000个细胞/孔的细胞密度,会在SASP表达数据上出现不准确或结果分歧(例如参见图11H-11I)。
3、本申请的药物筛选方法中,时间是关键。第一阶段时间若选择本申请以外其它时间长度,会增加药物用量或提高细胞死亡率,或者影响方法的准确度(例如参见图11D-11E)。第二阶段如选择更长或更短时间,将影响数据的可靠性和临床参考价值,不能准确判断药物的安全性和有效性(例如参见图11F-11G)。
4、本申请的药物筛选方法中,两轮筛选在技术上必要且关键。如果舍弃第二轮筛选,准确度将下降(例如参见本申请表1和表2)。另外,不需要进行第三轮或更多轮筛选,以免由于无限推演药物筛选时间和规模,造成不必要的时间成本和经济成本的上升。两轮筛选已经可以比较准确地反映将来临床条件下的微环境中衰老细胞的生存状态或靶向清除效果。
附图说明
图1表示增殖态人源基质细胞PSC27(早期代数如p10-20)在体外经过化疗药物博来霉素(BLEO)以50μg/ml浓度处理之后第7-10天,通过SA-β-Gal染色之后的结果。上图,代表性图片,下图,统计学数据。CTRL,对照细胞;BLEO,博来霉素处理后细胞。**,P<0.01。
图2表示PSC27细胞经过化疗药物博来霉素(BLEO)处理之后,经过BrdU染色之后的结果。上图,代表性图片,下图,统计学数据。CTRL,对照细胞;BLEO,博来霉素处理后的细胞。***,P<0.001。
图3表示PSC27细胞经过化疗药物博来霉素(BLEO)处理之后,使用γH2AX经过免疫荧光染色(immunofluorescence staining)之后的结果。CTRL,对照细胞;BLEO,博来霉素处理后的细胞。***,P<0.001。根据细胞核内荧光点的数量,将其分为4类,包括0foci,1~3foci,4~10foci和>10foci的单个细胞。
图4表示筛选天然产物药库以获得具有抗衰老活性植物原料的实验流程图。
图5A表示候选药物A在细胞增殖实验中所获得的数据,数据显示:经过一系列浓度条件下的A对于衰老细胞与增殖细胞处理的结果相比较,A在0-30μM浓度范围内均未能诱导衰老细胞显著死亡(继续提高浓度在两组细胞之间也未出现显著性差异,结果未显示)。其中,候选药物A为雪莲培养物。其余候选药物的筛选结果与候选药物A基本相同,即其余候选药物在0-30μM浓度范围内均未能诱导衰老细胞显著死亡(继续提高浓度在两组细胞之间也未出现显著性差异)。
图5B表示候选药物A处理细胞之后的caspase-3/7活性变化结果,结果显示:A仅在特定浓度下才有引起衰老细胞发生凋亡的能力(例如,从加药之后起的第16-20小时);在此浓度范围之外,均不能造成衰老细胞的显著性凋亡(与GSE之间形成鲜明对比)。其中,候选药物A为雪莲培养物。其余候选药物的筛选结果与候选药物A大致相同,即其余候选药物最多仅能在特定的个别浓度下才有引起衰老细胞发生凋亡的能力,在此浓度范围之外,均不能造成衰老细胞的显著性凋亡;甚至是在所有浓度下均不能造成衰老细胞的显著性凋亡,这与GSE之间形成鲜明对比。
图6A表示RNA-seq数据经软件处理和生信分析之后发现GSE可以使得衰老细胞相比于增殖态细胞显著上调的基因出现明显回落。相比于BLEO组,BLEO/GSE组细胞有2644个基因显著下调,同时有1472个基因显著上调(fold change>2,P<0.01)。
图6B表示Heatmap显示BLEO损伤造成的衰老细胞中大量因子表达上调,但经过GSE处理之后有不少出现明显逆转。红星标识,典型SASP外泌因子。
图7表示GSEA分析结果显示SASP或NF-κB分子标记相关因子的表达在BLEO造成的衰老细胞中集中上调,但在GSE处理衰老细胞之后发生显著下降。左,SASP分子标记;右,NF-κB分子标记。
图8表示蛋白-蛋白相互作用(PPI)生信分析结果显示,GSE显著下调的衰老细胞分子形成一个相对复杂的network,彼此间存在着多种互作关系。
图9表示KEGG通路分析GSE在衰老细胞中造成显著下调的100个分子在biologicalprocess上的代表性通路。左侧Y轴,percentage。右侧Y轴,log10(p-value)。
图10表示KEGG通路分析GSE在衰老细胞中造成显著下调的100个分子在cellularcomponent上的代表性通路。左侧Y轴,percentage。右侧Y轴,log10(p-value)。
图11A表示在第一轮筛选后,荧光定量PCR(qRT-PCR)检测分析一组典型SASP分子在BLEO诱导形成的衰老细胞、被不同浓度的GSE处理条件下的相对表达水平。所有数据均为相比于CTRL组后的规范化结果。*,P<0.05;**,P<0.01;***,P<0.001。
图11B表示在第二轮筛选后,荧光定量PCR(qRT-PCR)检测分析一组典型SASP分子在BLEO诱导形成的衰老细胞、被不同浓度的GSE处理条件下的相对表达水平。所有数据均为相比于CTRL组后的规范化结果。*,P<0.05;**,P<0.01。
图11C表示候选药物A在第一轮筛选后,荧光定量PCR(qRT-PCR)检测分析一组典型SASP分子在BLEO诱导形成的衰老细胞、被不同浓度的GSE处理条件下的相对表达水平。所有数据均为相比于CTRL组后的规范化结果。^,P>0.05;*,P<0.05。
图11D表示在第一轮筛选时,药物处理后第15天再进行检测,第一轮筛选后,荧光定量PCR(qRT-PCR)检测分析一组典型SASP分子在BLEO诱导形成的衰老细胞、被不同浓度的GSE处理条件下的相对表达水平。所有数据均为相比于CTRL组后的规范化结果。^,P>0.05;*,P<0.05;**,P<0.01。
图11E表示在第一轮筛选时,药物处理后第2天即进行检测,第一轮筛选后,荧光定量PCR(qRT-PCR)检测分析一组典型SASP分子在BLEO诱导形成的衰老细胞、被不同浓度的GSE处理条件下的相对表达水平。所有数据均为相比于CTRL组后的规范化结果。^,P>0.05;*,P<0.05。
图11F表示在第二轮筛选时,药物处理后第50天再进行检测,第二轮筛选后,荧光定量PCR(qRT-PCR)检测分析一组典型SASP分子在BLEO诱导形成的衰老细胞、被不同浓度的GSE处理条件下的相对表达水平。所有数据均为相比于CTRL组后的规范化结果。^,P>0.05;*,P<0.05。
图11G表示在第二轮筛选时,药物处理后第15天即进行检测,第二轮筛选后,荧光定量PCR(qRT-PCR)检测分析一组典型SASP分子在BLEO诱导形成的衰老细胞、被不同浓度的GSE处理条件下的相对表达水平。所有数据均为相比于CTRL组后的规范化结果。^,P>0.05;*,P<0.05。
图11H表示在第一轮筛选时,细胞密度为4000个/孔,第一轮筛选后,荧光定量PCR(qRT-PCR)检测分析一组典型SASP分子在BLEO诱导形成的衰老细胞、被不同浓度的GSE处理条件下的相对表达水平。所有数据均为相比于CTRL组后的规范化结果。^,P>0.05;*,P<0.05。
图11I表示在第一轮筛选时,细胞密度为6000个/孔,第一轮筛选后,荧光定量PCR(qRT-PCR)检测分析一组典型SASP分子在BLEO诱导形成的衰老细胞、被不同浓度的GSE处理条件下的相对表达水平。所有数据均为相比于CTRL组后的规范化结果。^,P>0.05;*,P<0.05。
图12A表示在第一轮筛选后,在GSE浓度递增的条件下,用SA-β-Gal染色确定PSC27的衰老与否。*,P<0.05;**,P<0.01;***,P<0.001;****,P<0.0001。其中,经过第一轮筛选,GSE在1.25μM,2.5μM,5μM,12.5μM,25μM和50μM浓度下的P值为这些实验组的细胞阳性比例同0μM时的数据相比后得出的统计学显著性数据。
图12B表示在第二轮筛选后,在GSE浓度递增的条件下,用SA-β-Gal染色确定PSC27的衰老与否。^,P>0.05;**,P<0.01;****,P<0.0001。其中,GSE在5μM,12.5μM,25μM和50μM浓度下的P值为这些实验组的细胞阳性比例同0μM时的数据相比得出的统计学显著性数据。
图13表示SA-β-Gal染色后PSC27在各种条件下的代表性图片。每组3个重复,上下排列。标尺,20μm。
图14表示CCK8检测增殖态细胞同衰老组细胞在GSE渐增浓度下的存活率。每一GSE浓度下的P值均为CTRL和BLEO组之间相比后的显著性差异。**,P<0.01;***,P<0.001;****,P<0.0001。
图15表示PSC27的群体倍增(population doubling)测试。细胞在第10代(p10)时,受到BLEO损伤性处理,随后GSE在第8天时加入培养基。通过比较分析CTRL组,BLEO组,GSE组和BLEO/GSE组的倍增值(PD)确定GSE对于细胞增殖潜力的影响。^,P>0.05;***,P<0.001。
图16表示GSE处理衰老细胞过程中诱导出现caspase 3/7活性。PSC27细胞经BLEO在培养条件下处理12h后逐渐进入衰老阶段。5μM的GSE在第7天开始加入衰老细胞的培养基,NucLight Rapid Red试剂用于标记细胞,而caspase 3/7试剂(IncuCyte)用于apoptosis检测。Caspase 3/7活性以每4小时的间隔检测一次(n=3)。
图17表示Pan-caspase抑制剂(20μM QVD-OPH)逆转GSE的senolytic活性(5μM的GSE用于这一实验,而1μM的ABT263作为阳性对照;后者为近年被报道的衰老细胞凋亡诱导剂)。统计学差异通过two-way ANOVA(Tukey’test)获得。
图18表示流式细胞仪测定PSC27在几种条件下的细胞凋亡情况。Q2,早期凋亡细胞的分布区域;Q3,晚期凋亡细胞的分布区域。
图19表示对比分析细胞经过BLEO和/或GSE处理之后的存活和凋亡数量。***,P<0.001;****,P<0.0001。
图20表示预临床试验中小鼠的给药方式示意图。人源基质细胞PSC27同癌细胞PC3在体外混合(1:4)之后移植入小鼠皮下形成移植瘤。在单药或组合式给药条件下经过多个治疗周期的处理,最终小鼠处死、病理分析其肿瘤组织有关分子表达变化。
图21表示PSC27细胞的CTRL组和BLEO损伤组在体外同PC3混合之后,或者PC3细胞单独移植入小鼠皮下组织形成移植瘤。在第8周结束时解剖并获得肿瘤,检测、对比各组条件下肿瘤的体积。**,P<0.01;***,P<0.001;****,P<0.0001。
图22表示预临床试验小鼠的给药时间和给药方式示意图。每两周为一次给药周期,在第3/5/7周的第一天分别对小鼠腹腔给药MIT(mitoxantrone,米托蒽醌)。第5周第一天开始对小鼠进行腹腔GSE给药,每周一次。8周疗程结束后,解剖小鼠并进行病理鉴定与表达分析。
图23表示肿瘤终端体积统计分析。化疗药物MIT单独或与抗衰老药GSE一起用于对小鼠给药,第8周结束之后对比分析各组肿瘤大小。
图24表示临床前试验中PC3/PSC27荷瘤动物病灶中细胞衰老情况对比。SA-β-Gal染色之后代表性图片。标尺,100μm。
图25表示小鼠体内肿瘤组织中SA-β-Gal染色阳性细胞百分比平行分析。^,P>0.05;**,P<0.01;***,P<0.001。
图26表示荧光定量PCR(qRT-PCR)检测分析小鼠病灶中上皮癌细胞和基质细胞中SASP典型因子的表达情况。通过LCM技术将基质细胞和癌细胞分别进行特异分离、制备总RNA并用于SASP表达检测。^,P>0.05;*,P<0.05;**,P<0.01;***,P<0.001。
图27表示荧光定量PCR(qRT-PCR)检测分析vehicle、MIT和MIT/GSE给药之后的小鼠病灶中基质细胞SASP因子表达状态。*,P<0.05;**,P<0.01;***,P<0.001。
图28表示用LCM技术将病灶中癌细胞进行特异分离之后分析各组小鼠中DNA损伤和凋亡比例。^,P>0.05;*,P<0.05;**,P<0.01。
图29表示免疫组化染色(immunohistochemical staining)之后的图片分析。Caspase 3cleaved(CCL3)在各组小鼠病灶中的信号形成鲜明对比。标尺,200μm。
图30表示NOD/SCID小鼠在经过各种给药处理之后,无病生存期的Kaplan Meier数据对比。Vehicle,MIT,GSE和MIT/GSE组动物在体内肿瘤体积超过2000mm3时,即被认为严重疾病已经出现,小鼠需要及时处死并检测其荷瘤情况。^,P>0.05;**,P<0.01。
图31表示各种不同给药处理条件下疗程结束时小鼠体重数据对比分析。^,P>0.05。
图32表示以上不同给药处理条件下疗程结束时小鼠血清学数据对比分析。Creatinine,urine(肾脏指标),ALP和ALT(肝脏指标)数据平行对比。^,P>0.05。
图33表示各种不同给药处理条件下疗程结束时免疫完整型小鼠(C57BL/6J)体重数据对比分析。^,P>0.05。
图34表示预临床中不同给药处理条件下疗程结束时小鼠血细胞计数对比分析。WBC,lymphocyte和neutrophil单位体积数量平行对比。^,P>0.05。
图35表示动物体内生物发光(BLI)图像显示报告细胞的位置与信号强度。持续表达luciferase、经BLEO诱导进入衰老阶段之后的PSC27细胞通过腹腔注射被提前移植于小鼠体内;最后一次Vehicle或GSE给药2天之后,使用Berthold LB983(BERTHOLDTechnologies)小动物活体分子成像系统获取小鼠体内luciferase信号。标尺,15mm。
图36表示动物体内生物发光(BLI)图像显示报告细胞的位置与信号强度。持续表达luciferase的增殖态PSC27细胞通过腹腔注射被提前移植于小鼠体内;最后一次Vehicle或GSE给药2天之后,使用Berthold LB983(BERTHOLD Technologies)小动物活体分子成像系统获取小鼠体内luciferase信号。标尺,15mm。
图37表示预临床中对实验小鼠体能进行检测的试验流程。20月龄小鼠经Vehicle或GSE每两周一次给药之后,在第4个月末进行相关体能检测。
图38表示针对实验小鼠进行一系列体能测定,包括最大步行速度、持久力、握力、跑步机耐力、日常活动、体重与摄食量的定量检测。^,P>0.05;*,P<0.05。
图39表示实体器官微环境中基质细胞的一组代表性SASP因子相对mRNA表达水平。小鼠在24月龄时处死之后解剖并获得其肺脏、前列腺和结直肠等实体器官并提取其基质组织中总RNA,进行qRT-PCR定量分析。6月龄(6M)小鼠作为对照,其它两组24月龄(24M)小鼠信号对其规范化之后作图。^,P>0.05;*,P<0.05。
图40表示小鼠寿命分析试验设计。24至27月龄小鼠经过Vehicle或GSE每两周一次给药,持续监测其生存情况并记录其最大寿命。
图41表示预临床阶段小鼠的疗后生存曲线。从24至27月龄时开始,C57BL/6小鼠每两周经受一次Vehicle或GSE腹腔给药(Vehicle组n=80;GSE组n=91)。每组动物的中位生存期(median survival)经过计算并予以标明。****,P<0.0001。
图42表示预临床阶段小鼠的总体(终生,或全长)生存曲线。从24至27月龄时开始,C57BL/6小鼠每两周经受一次Vehicle或GSE腹腔给药(Vehicle组n=80;GSE组n=91)。每组动物一生中的中位生存期(median survival)经过计算并予以标明。****,P<0.0001。
图43表示选取每组动物中寿命长度位于最高区间的雄性小鼠,进行组间最高步行速度、持久力和总体寿命的比较分析。N=5。^,P>0.05;**,P<0.01。
图44表示选取每组动物中寿命长度位于最高区间的雌性小鼠,进行组间最高步行速度、持久力和总体寿命的比较分析。N=5/组。^,P>0.05;***,P<0.001。
图45表示针对两组动物中每只小鼠在生命终端所罹患的疾病负担进行对比分析。N=60/组。统计结果以box-and-whisker plots显示,每个box展示出median withinterquartile range。^,P>0.05。
图46表示针对两组动物中每只小鼠在生命终端所罹患的肿瘤数量进行对比分析。N=60/组。统计结果以box-and-whisker plots显示,每个box展示出median withinterquartile range。^,P>0.05。
图47表示使用HPLC-ESI-QTOF-MS技术对GSE进行成分鉴定,发现GSE中存在多个天然化合物成分。每个峰值的鉴定,基于它们各自的滞留时间和真实的标准及植物化学的广谱数据。
具体实施方式
下面通过具体的实施例对本发明中的技术方案进行清楚、完整地描述。应当理解,此部分所描述的具体实施例仅可用于解释本发明,并不用于限定本发明。
需要说明的是,对于生物统计学方法,以下实施例中所有涉及细胞增殖率,存活率和SA-β-Gal染色等的体外实验和小鼠移植瘤及预临床药物处理的体内试验均重复3次以上,数据以均值±标准误的形式呈现。统计学分析建立在原始数据的基础上,通过one-wayanalysis of variance(ANOVA)or a two-tailed Student's t-test进行计算,而P<0.05的结果认作具有显著性差异。
因素之间的相关性用Pearson’s correlation coefficients检验。当小鼠在几个队列中获得并分组在笼子中时,采用Cox proportional hazard model进行生存分析。该模型将治疗的性别和年龄作为固定效应,队列和初始笼分配作为随机效应。由于在研究中,一些小鼠被从最初的笼子中移动,以尽量减少来自单笼外壳的压力,发明人还进行了没有笼效应的分析。这两种分析的结果在方向性或统计意义上没有很大差异,增强了对发明人结果的自信度。生存分析使用statistical software R(version 3.4.1;library‘coxme’)。在大多数实验和结果评估中,研究者对分配采取盲选。发明人使用基线体重将小鼠分配至实验组(以实现组间相似的体重),因此只在与体重匹配的组内进行随机化。发明人根据过往的实验确定样本量,因此没有使用statistical power analysis。本研究中的所有重复都来自不同的样本,每个样本来自不同的实验动物。
实施例1具有抗衰老潜力的药物的筛选
一、预备工作
为了筛选获得能有效调节衰老细胞表型的化合物,发明人利用一个包含至少4种植物衍生物组成的天然原料性药库开展了无偏倚性筛选。为了检测这些药物的药效和潜在的生物价值,发明人选择使用原发性正常人前列腺基质细胞系,即PSC27作为体外细胞模型。PSC27主要由成纤维细胞组成,而非成纤维细胞系(包括内皮细胞和平滑肌细胞)也存在,但比例较小,PSC27在性质上是人源原代基质细胞系,在暴露于基因毒性化疗或电离辐射等胁迫因素后形成典型的SASP。发明人用预实验中已经优化过的方式,即特定计量的博莱霉素(BLEO)处理这些细胞,并观察到衰老相关β-半乳糖苷酶(SA-β-GAL)染色阳性率明显升高,BrdU掺入率大幅降低,DNA损伤修复灶(DDR foci)在药物损伤后的数天内显著升高(图1-3)。发明人通过系统筛选的方式来平行比较药物产品对衰老细胞表达谱的影响(图4)。
1.细胞培养
(1)细胞系维持
正常人源前列腺原代基质细胞系PSC27(获自美国Fred Hutchinson Cancer研究Research Center)于37℃和5%CO2条件的培养箱中培养,在PSCC完全培养液中增殖和传代。
(2)细胞冻存与复苏
a.细胞冻存
以0.25%胰蛋白酶收集对数生长期细胞,1000rpm离心2min,弃去上清,重新悬浮细胞于新鲜配置的冻存液中。分装细胞于已标示的无菌冻存管中。然后经梯度降温,最后转入液氮中长期储存。
b.细胞复苏
取出液氮中冻存的细胞,立即放入37℃水浴,使其快速融化。直接加入2ml细胞培养液,使细胞均匀悬浮。待细胞贴壁后,更换新的培养液。
(3)体外实验处理
为造成细胞损伤,PSC27细胞生长至80%(简称PSC27-CTRL)时培养液中加入50μg/ml博来霉素(bleomycin,BLEO)。药物处理12小时后,细胞被PBS简单洗过3次,留置于培养液中7-10天,然后进行后续实验。
2.免疫印记和免疫荧光检测
用NuPAGE 4-12%Bis-Tris gel分离细胞裂解来源蛋白质,并转移到硝化纤维素膜(Life Technologies)上。用5%脱脂牛奶在室温下阻断印迹1h,在4℃下与所需的一抗在制造商协议的浓度下孵育一夜,然后在室温下与辣根过氧化物酶结合二抗(Santa Cruz)孵育1h,用增强化学发光(ECL)检测试剂(Millipore)按照制造商的协议开展膜印迹信号检测,并使用ImageQuant LAS 400Phospho-Imager(GE Healthcare)。作为一种标准的蛋白质标记,发明人使用Thermo Fisher Scientific公司提供的PageRuler Plus PrestainedProtein Ladder(no.26619)。
对于免疫荧光染色,目标细胞在培养皿中培养之后在coverslip上预种至少24h。在短暂洗涤后,用4%多聚甲醛在PBS中固定8min,用5%正常山羊血清(NGS,ThermoFisher)阻断30min。小鼠单克隆抗体anti-phospho-Histone H2A.X(Ser139)(cloneJBW301,Millipore)和小鼠单克隆抗体anti-BrdU(Cat#347580,BD Biosciences),及二级抗体Alexa
Figure BDA0002825795260000191
488(or 594)-conjugated F(ab')2按顺序加入到覆有固定细胞的载玻片上。细胞核用2μg/ml of 4',6-diamidino-2-phenylindole(DAPI)进行复染。从3个观察视野中选取最具代表性的一张图像进行数据分析和结果展示。FV1000激光扫描共聚焦显微镜(Olympus)用于获取细胞共聚焦荧光图像。
二、筛选方法
发明人以一个包含至少4种成分、多为药用植物提取物的天然产物库(BY-HEALTH)为例进行筛选。根据研究目的,发明人建立了一套标准的筛选流程,一共有两轮筛选。
第一轮:
各种待筛天然产物分别按照一定浓度梯度稀释至96孔板,密度为每孔5000个细胞。培养基使用DMEM(10%FBS),天然产物(或化合物)的工作浓度一般控制在1μM-l mM(本实施例中采用的示例浓度为10-50μM)。药物处理后第7天,细胞增殖用CCK-8Cell CountingKit试剂盒(基于WST-8原理,Vazyme)测定,细胞凋亡活性以Caspase 3/7activity kit(Promega)确定。
以上过程中培养基和候选药物每两天更换一次,增殖和凋亡活性在药物使用起7天后开始检测。
第二轮:
经第一轮初步确定的候选药物进一步经过筛选30天(时间延伸),即验证确定。具体地,将进入第二轮候选范围的药物稀释到96孔板中,每孔20,000个细胞,培养基使用DMEM(10%FBS),天然产物(或化合物)的工作浓度一般控制在1μM-l mM(本实施例中采用的示例浓度为10-50μM)。药物处理后第30天,细胞增殖用CCK-8Cell Counting Kit试剂盒(基于WST-8原理,Vazyme)测定,细胞凋亡活性以Caspase 3/7activity kit(Promega)确定。
以上培养过程中培养基和候选药物每隔一天更换一次(即每两天一次)。
以上两轮筛选中,药物处理细胞后7天或30天用CCK-8Cell Counting Kit试剂盒检测细胞增殖或存活情况。具体的检测步骤如下:(1)接种细胞悬液100μL于96孔板,细胞培养箱中(37℃,5%CO2)孵育;(2)取出需要检测的细胞(即药物处理后第7天或第30天的细胞),在培养皿中加入0.1体积的CCK-8,充分混合,保证孔中颜色的均一性,避免气泡出现;(3)培养箱中继续培养1-4小时;(4)酶标仪读数之前,将96孔板于摇床振荡1min,确保孔板颜色均匀;(5)使用酶标仪在450nm读取吸光值,计算细胞活性。当某种药物在特定浓度条件下造成药物处理后衰老细胞与未经药物处理衰老细胞相比,CCK-8指标之间达到显著性差异(P<0.05,每组至少3个重复样本)时,判定该药物在该浓度下具备有效性。
以上两轮筛选中,药物处理细胞后7天或30天以Caspase 3/7activity kit(Promega)确定细胞凋亡活性。在以Caspase 3/7activity kit(Promega)测定细胞凋亡活性时,遵循的流程为:(1)从孵化器中取出含有细胞(即药物处理后第7天或第30天的细胞)的96孔板,并允许该板温度平衡至室温;(2)将
Figure BDA0002825795260000212
3/7试剂的100μL添加到含有空白100μL的白壁96孔板的每孔中,以及阴性对照组细胞或培养基中处理的细胞。因这种测定的敏感性,避免枪头尖端触碰到含有样品的孔,以避免交叉污染。用板密封器盖住板或者盖子;(3)用平板摇床在300-500rpm转速下轻混孔内液体30秒,根据细胞培养系统,在室温下孵育持续30分钟至3小时。最佳孵育时间应根据预实验提前确定;(4)根据荧光光度计的使用指南,测定每个样品的生物荧光值。经过对比,在衰老细胞与相近代数的增殖态细胞之间出现显著性差异(P<0.05,每组至少3个重复样本)时,判定该药物在该浓度下具备特异性清除衰老细胞的效果或潜力。
以上标准筛选流程,同样适合于其它天然产物库根据特定用途或生物活性(如抗衰老潜力)的筛选。
另外,为进一步确定每种药物对细胞表型和存活率等的影响,发明人进行了进一步深入的验证性分析。
三、实验结果
筛选前,上述包含至少4种成分的天然产物库(BY-HEALTH)中的候选药物为GSE(葡萄籽提取物)、雪莲培养物、白藜芦醇和姜黄素等植物化学提取产物。
经过第一轮筛选,符合条件的候选药物只有GSE(葡萄籽提取物)。其余几种候选药物完全不符合筛选标准,即在第一轮筛选后即被淘汰。具体实验结果如图5A和图5B所示。
经过第二轮筛选,符合条件的候选药物确定为GSE(葡萄籽提取物)。
结合实施例2和实施例3的体内体外验证分析可以确定,GSE的确具有抗衰老活性。因此,本申请的筛选方法准确度高、且简便易操作。
另外,发明人基于上述实施例,通过变换第一轮筛选和第二轮筛选的个别处理条件,对本申请筛选方法的准确度进行了进一步验证。具体的实验条件和实验结果如下表所示:
Figure BDA0002825795260000211
Figure BDA0002825795260000221
由上表可以进一步确定,本申请的筛选方法中,第一轮和第二轮的药物处理时间,以及第一轮的细胞密度对于最终检测结果的准确性十分关键,处理时间过长或过短,细胞密度过大或过小,筛选方法的准确度均明显下降。
实施例2抗衰老药物的体外分析和验证
一、方法
1.全转录组测序分析(RNA-sequencing)
对不同处理条件下的人源前列腺原代基质细胞系PSC27进行全转录组测序。从基质细胞中获得总RNA样本。其完整性经Bioanalyzer 2100(Agilent)验证,RNA用IlluminaHiSeq X10测序,基因表达水平由软件包rsem(https://deweylab.github.io/rsem/)进行量化。简而言之,以RiboMinus Eukaryote kit(Qiagen,Valencia,CA,USA)消除RNA样品中的rRNA;并根据制造商的指示,在深度测序前用TruSeq Stranded Total RNA preparationkits(Illumina,San Diego,CA,USA)构建链特异性RNA-seq文库。
Paired-end transcriptomic reads取被映射到参考基因组(GRCh38/hg38),并使用Bowtie工具从Gencode v27进行参考注释。使用picard tools(1.98)脚本标记重复项(https://github.com/broadinstitute/picard)识别重复读取,只保留非重复读取。Reference splice junctions由参考转录组提供(Ensembl build 73)。用Cufflinks计算FPKM值,用Cufflinks,最大似然估计函数调用差异基因表达。表达显著变化的基因由falsediscovery rate(FDR)-corrected P value<0.05定义,仅用状态“Known”和生物型“coding”的ensembl genes 73进行下游分析。
接下来使用Trim Galore(v0.3.0)(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)修剪Reads,而质量评估使用FastQC(v0.10.0)(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/)。随后,利用DAVIDbioinformatics platform(https://david.ncifcrf.gov/),、Ingenuity PathwaysAnalysis(IPA)program(http://www.ingenuity.com/index.html)。在Majorbio I-SangerCloud Platform(www.i-sanger.com)免费在线平台上对原始数据进行了初步分析,并将原始数据存入NCBI Gene Expression Omnibus(GEO)database数据库,登录代码为GSE156301。
2.蛋白质-蛋白质相互作用网络分析
用STRING3.0进行蛋白质-蛋白质相互作用(PPI)分析。将符合标准的特定蛋白质导入在线分析软件(http://www.networkanalyst.ca),选择一个最小交互网络进行进一步的集线器和模块分析。
3.基因集富集分析(GSEA)
基于RNA-seq初步分析所得数据,对于每个差异表达显著基因分析比较,基因是使用从DESeq2获得的“wald statistics”进行排序的,GSEA是在MSigDB(http://software.broadinstitute.org/gsea/msigdb)中可用的所有规划基因集的这些排序列表上进行的)。DESeq2 independent filtering是基于归一化读取计数的平均值,筛选出表达水平很低的基因。SASP和GSEA signature如发明人过往发表文献所述(Zhang等人,2018a)。
4.定量PCR(RT-PCR)测定基因表达
(1)细胞总RNA的提取
以Trizol试剂抽提处于生长期或停滞期细胞的总RNA,每T25培养瓶细胞加入1mlTrizol,用细胞刮刀刮下细胞层后将其转移至离心管中,充分混匀至不粘稠。每1ml Trizol加0.2ml氯仿,剧烈震荡15sec,室温孵育5-10min;4℃,11,000g离心15min;将无色上清液移入一新的离心管中,按每1ml Trizol加0.5ml异丙醇,室温孵育10分钟,11,000g,4℃离心10min;倒掉上清,用75%乙醇(每1ml Trizol至少用1ml 75%乙醇)洗涤,4℃,7,500g离心5min;室温干燥RNA沉淀5-10分钟(RNA不能干燥),用DEPC-H2O溶解沉淀。
分光光度计定量RNA之后,取少量总RNA进行1%琼脂糖电泳,检查RNA状态和质量。
(2)逆转录反应
OligodT23 VN(50uM) 1ul
Total RNA 1-2ug
RNase Free ddH2O to 8ul
65℃加热5min,迅速置于冰上骤冷,并静置2min。
配置第一链cDNA合成液
2x RT Mix 10ul
HiScript II Enzyme Mix 2ul
按照以下条件进行第一链cDNA合成:
25℃ 5min
50℃ 45min
85℃ 5min
(3)实时定量PCR反应
将逆转录反应产物cDNA稀释50倍作为模板。
Figure BDA0002825795260000241
按照以上标准加样,反应条件为:95℃预变性15sec,然后95℃5sec,60℃31sec,40个循环;融解曲线条件为95℃15sec,60℃30sec,95℃15sec。样品于ABI ViiA7(ABI)仪上进行反应。以β-actin的表达作内参。反应完成后,经软件分析查看每个基因的扩增情况,导出相应的域值循环数,采用2-ΔΔCt方法,计算每个基因的相对表达量。对融解曲线(meltingcurve)的波峰和波形进行分析以确定得到的扩增产物是否为特异性单一目的片段。
5.SA-β-Gal染色
衰老相关β-半乳糖苷酶(SA-β-Gal)染色,操作执行以往报道程序(Debacq-Chainiaux等人,2009年)。简单地说,细胞培养皿中经PBS洗涤,在室温下固定。在2%甲醛和0.2戊二醛中作用3min,用以固定细胞。然后用新制备的染色液对SA-β-Gal进行染色,在37℃下过夜。第二天拍摄图像并计算单位面积内阳性细胞百分比。
6.克隆扩增实验
单细胞克隆扩增实验,按过往文献所述进行(Duan等人,2015年;Wu等人,2018年)。简单地说,细胞被铺板于明胶涂层的12孔板,密度为2000个细胞/孔。。结晶紫染色之后计算细胞克隆数。
7.药物诱导衰老细胞凋亡
将PSC27细胞铺板于96孔皿中,在50μg/ml的BLEO处理下诱导细胞衰老。分别以5.0μm和1.0μm的浓度加入GSE和ABT263。细胞培养基配以Incucyte Nuclight快速红色试剂(Essen Bioscience)和IncucyteC-3/7细胞凋亡试剂(Essen Bioscience)。选取代表性视野进行拍照。
二、结果
1.GSE在低浓度下使用时可以有效抑制SASP的表达
发明人对实施例1第二轮筛选后的细胞进行了RNA-seq测序。而随后获得的高通量数据表明,经过实施例1的筛选方法筛选获得的葡萄籽提取物(grape seed extract,GSE),显著改变了衰老细胞的表达谱。其中2644个基因出现显著下调,同时1472个基因发生上调,发明人这里的heatmap中每个基因的倍数变化为2.0(P<0.01)(图6A)。重要的是,GSE处理之后的衰老细胞中SASP因子的表达普遍降低,而这些SASP因子一般会在衰老细胞中明显上调(图6B)。虽然一些SASP不相关基因的表达情况与那些典型的SASP因子表现出类似的趋势,但GSEA分析的数据进一步揭示了表征SASP表达或NF-KB激活的分子特征的显著抑制,后者是介导促炎SASP发展的主要转录性事件(图7)。基于蛋白质-蛋白质相互作用的生信分析结果显示了一个高度活跃的网络,其涉及多种因素在细胞衰老时显著上调,而一旦细胞处于GSE作用下,则反而呈现下调(图8)。进一步的GO生物信息学数据表明,这些分子在功能上参与了一组重要生物过程,包括信号转导、细胞间通讯、能量调节、细胞代谢和炎症反应(图9)。这些下调基因中的大多数,生化本质上属于表达后即释放至胞外空间的蛋白质,或位于内质网或高尔基体上,总体而言在特征上与这些分子的分泌性质相互一致(图10)。
为了进一步证实和研究GSE在体外条件下对SASP表达的影响,发明人在一系列体外梯度浓度下处理了PSC27细胞(PSC27细胞参见实施例1;另外,PSC27细胞的处理方法参见实施例1的两轮筛选)。两轮筛选的实验结果如图11A、图11B和表1所示。
表1:两轮筛选实验结果
Figure BDA0002825795260000261
数据表明,工作浓度在1.25μM时的GSE以最大的效率抑制了SASP发生发展(图11B)。然而,较低或较高浓度的这种药物的疗效却不理想,尽管后者可能与这种药物的细胞毒性增加引起的细胞应激反应有关(图11B)。因此,GSE这一植物性天然产物,可用于控制衰老细胞的促炎表型,即SASP,尤其在相对低浓度下使用彰显最佳效果。
另外,发明人还基于上述体外检测对SASP表达的影响的方法,在仅将GSE替换为候选药物A(候选药物A参见实施例1),其余条件不变的情况下进一步进行了检测。检测结果如图11C所示。由图11C可知,候选药物A在第一轮筛选后,绝大部分SASP标志因子的表达并未产生显著性差异,P>0.05,与GSE之间形成鲜明对比。其余候选药物与候选药物A的结果大致相同,即其余候选药物在第一轮筛选后,绝大部分甚至是全部SASP标志因子的表达均未产生显著性差异,P>0.05,与GSE之间形成鲜明对比。该结果验证了实施例1的筛选方法的准确性,除GSE以外的候选药物A和其余候选药物在第一轮筛选后即会被淘汰。
另外,发明人还基于上述体外检测对SASP表达的影响的方法,通过变换第一轮和第二轮的个别处理条件,进一步进行了检测。检测条件和检测结果如下表所示。
Figure BDA0002825795260000262
Figure BDA0002825795260000271
由上表可知,第一轮筛选中,若细胞密度过大或过小,或药物处理时间过长或过短,或者第二轮筛选中,药物处理时间过长或过短,会在SASP表达数据上出现不准确或结果分歧(例如,经过梯度浓度的GSE处理后的衰老细胞相比于未经GSE处理的衰老细胞,部分甚至大部分SASP标志因子的表达并未产生显著性差异,P>0.05,进而,根本无法筛选最优浓度)。以上结果进一步验证了实施例1中本申请筛选方法的准确性。
2.当在高浓度使用时GSE是一种新型的senolytics
鉴于GSE在控制SASP表达方面的显著疗效,发明人接下来进一步探究了这种天然产物在较高浓度下杀死衰老细胞的潜力。为此,发明人测量了随着GSE浓度的增加,体外条件下所处理(处理方法参见实施例1的两轮筛选)的衰老细胞(细胞参见实施例1)的生存百分比。两轮筛选的实验结果如图12A、图12B和表2所示。
表2:两轮筛选实验结果
Figure BDA0002825795260000272
Figure BDA0002825795260000281
SA-β-GAL染色数据表明,在GSE浓度达到5μM之前,衰老细胞不会被消除(图12B)。随着浓度的增加,GSE对衰老细胞(80%染色阳性)的杀伤效果进一步增强,而当GSE在25μM时达到阈值(衰老细胞此时剩余20%);当其浓度升高到50μM时,GSE的杀伤效果没有进一步增强(图12B;图13)。
为了进一步剖析这些问题,发明人做了验证性实验。细胞活力测定(测定方法参见实施例1)表明,与其增殖态对照细胞相比较,GSE从5μM浓度开始诱导衰老细胞显著死亡(图14)。当GSE浓度增加到50μM时,存活衰老细胞的百分比下降到约10%。然而,即使在GSE的50μm时,增殖细胞也并未明显减少。这些结果,证实了GSE对衰老细胞高度的选择性和突出的特异性,而这种特征实际是senolytics作为一类独特的抗衰老药的基本要求。
发明人接下来研究了基质细胞经基因毒性处理后群体倍增(populationdoubling,PD)的潜力。与损伤性处理之后迅速进入生长停滞状态的BLEO组细胞相比,BLEO和GSE的联合治疗组表现出显著增高的PD能力(图15)。然而有趣的是,GSE本身似乎不影响增殖细胞的PD,这一数据进一步表明GSE在衰老细胞与正常细胞之间的选择性。
为了探究GSE是否通过诱导凋亡的方式造成衰老细胞丧失存活能力,发明人使用GSE在培养条件下分别处理增殖组细胞和衰老组细胞。随后观察到的caspase-3/7活性变化结果,表明GSE引起衰老细胞发生凋亡;从GSE加入之后的第16小时,衰老组开始与对照组之间出现统计学差异(图16)。此外,泛caspase抑制剂QVD可防止GSE对衰老细胞的杀伤,这一过程中的实际效果跟ABT263(一种目前已知的、十分有效的衰老细胞凋亡诱导剂)对衰老细胞的影响非常相似(图17)。上述一系列结果证实,GSE通过诱导凋亡的方式促使衰老细胞进入死亡程序,但增殖态细胞基本不被这一天然药物靶向。
鉴于GSE对衰老细胞产生的明显影响,发明人随后分析了GSE诱导细胞凋亡的潜力。流式细胞数据显示衰老PSC27细胞活力显著降低,而其凋亡比例显著升高,但增殖细胞的变化却并不明显(图18;图19)。因此,发明人的数据一致性支持GSE在体外条件下通过诱导细胞凋亡的方式引起衰老细胞的消除,该天然产物在靶向衰老细胞方面具有突出的潜力。
实施例3抗衰老药物的体内分析和验证
一、方法
1.小鼠移植瘤接种和预临床治疗试验
所有实验小鼠实验均严格遵循中国科学院上海生命科学研究院实验动物看护和使用委员会(IACUC)的有关规章进行。年龄6-8周的免疫缺陷型小鼠(NOD-SCID mice,ICR)(体重约25g)用于本专利相关动物实验。基质细胞PSC27和上皮细胞PC3以1:4预先确定的比例混合,而每一移植体包含1.25×106细胞,用于组织重构。移植瘤通过皮下移植方式植入小鼠体内,移植手术结束之后8周末动物被执行安乐死。肿瘤体积按照如下公式计算:V=(π/6)x((l+w)/2)3(V,体积;l,长度;w,宽度)。
在预临床治疗试验中,经过皮下移植的小鼠被供给标准实验食谱,2周之后实施化疗药物米托蒽醌(MIT,0.2mg/kg剂量)和/或葡萄籽提取物(GSE)(500μl,10mg/kg剂量)腹腔给药。时间点为:前者在第3,5,7周的第一天,后者在第5,7周的第一天。整个疗程共进行3次MIT循环给药,每个循环为2周。疗程结束后,小鼠肿瘤被收集用于体积测量和组织学分析。每只小鼠累积性共接受MIT这一药物0.6mg/kg体重,GSE则为30mg/kg体重。为造成全身范围SASP因子在化疗诱导下表达,MIT按照以上步骤和顺序,经过静脉输注方式对小鼠给药,但剂量下降至0.1mg/kg体重/每次(整个疗程累计接受MIT剂量为0.3mg/kg体重)以减轻药物相关毒性。化疗试验进行到第8周末结束,小鼠处死之后立即解剖,其移植瘤被收集并用于病理系统分析。
2.小鼠寿命研究
在细胞移植研究中,发明人在SPF动物平台通过连续饲养获得了16个月大的雄性C57BL/6小鼠,每个笼子里有4到5只动物。发明人首先按体重从低到高对小鼠进行分类,然后选择了体重相似的小鼠。接下来,衰老(SEN)或对照(CTRL)移植治疗方式,则使用随机数产生器被分配给每间隔一次的小鼠,而中间的小鼠被分配到另一种治疗方式中,从而使衰老和对照移植小鼠的体重匹配。细胞移植1个月后,当小鼠年龄为18个月时,进行身体功能测试。在那之后,除了检查它们的笼子外,没有对这些老鼠进行进一步的测试。最早的死亡发生在上次身体功能测试后大约2个月。19至21个月大的C57BL/6小鼠,每个笼子里安放有3-5只。与移植小鼠一样,小鼠根据体重进行分类,并随机分配给每一组,由不知道预临床试验设计的人进行对照组(vehicle)或药物组(GSE)组处理。从24-27个月龄开始,小鼠每2周用vehicle或GSE治疗一次,每次连续3天口服灌胃。在研究过程中,一些老鼠被从原来的笼子移走,以尽量避免在单一笼子中长期饲养产生的动物居住压力。RotaRod和hanging测试每月进行,因为这些测试是敏感和无创的。试验结束时,发明人对小鼠进行安乐死;如果它们表现出以下几种症状之一,发明人就认为它们已经死亡:(一)不能饮水或吃饭;(二)即使有刺激也不愿意移动;(三)快速减肥;(四)严重的平衡障碍;或(五)机体出血或出现溃疡肿瘤。试验过程中,没有老鼠因为打架、意外死亡或皮炎而被排除在外。进行生物统计时,发明人采用Cox proportional hazard model进行生存分析。
3.预临床动物死后病理检查
研究人员每天对笼子进行检查,并将死鼠从笼子中取出。在动物死亡24小时内,尸体被打开(腹腔、胸腔和颅骨),并单独保存在10%福尔马林中至少7天。分解或破坏的身体被排除在外。保存的尸体被运到Autopsy专用地点进行病理检查。评估肿瘤负担(每个小鼠不同类型肿瘤的总和),疾病负担(每个小鼠主要器官不同组织病理学变化的总和),每个病变的严重程度和炎症(淋巴细胞浸润)。
4.生物发光成像
小鼠腹腔注射3mg荧光素(BioVision,Milpitas,CA),以体积200μl的PBS递送。小鼠用异氟烷麻醉,使用Xenogen IVIS 200System(Caliper Life Sciences,Hopkinton,MA)获取生物发光图像。
5.体能检测
所有检测均在最后一次安慰剂或药物处理后的第5天开始。最大步行速度采用加速RotaRod System(TSE System,Chesterfiled,MO)进行评估。在RotaRod上小鼠被训练3天,速度分别为4,6和8r.p.m,第1、2和3天历时200秒。在测试日,小鼠被放置在RotaRod上,在4r.p.m速度下开始。以5分钟为间隔,转速由4加速到40r.p.m。当老鼠从RotaRod上掉下来时,速度被记录下来。最终结果从3或4个试验中取平均值,并规范为基线速度。在前两个月内训练过的小鼠不再接受训练。
前肢握力(N)使用Grip Strength Meter(Columbus Instruments,Columbus,OH)测定,结果来自超过10个试验的平均值。对于悬挂耐力试验,小鼠被放置在一个2毫米厚的金属线上,后者位于垫子上方35厘米处。小鼠只被允许用前肢抓住电线,悬挂时间根据体重进行规范化,表示为悬挂持续时间(sec)×体重(g)。结果取每只小鼠2到3次实验的平均值。通过Comprehensive Laboratory Animal Monitoring System(CLAMS)监测24小时(12小时光照和12小时黑暗)的日常活动和食物摄入量。CLAMS系统配备了Oxymax Open CircuitCalorimeter System(Columbus Instruments)。对于跑步机性能,小鼠在5°倾斜度下适应在电动跑补机(Columbus Instruments)上跑步,经过3天训练,每天持续5分钟,以5米/分钟的速度开始2分钟,继而加速至到7米/分钟2分钟,然后9米/分钟1分钟。在试验当日,小鼠在跑步机上以5米/分钟的初始速度跑步2分钟,然后每2分钟增加2米/分钟的速度,直到小鼠筋疲力尽。疲劳被定义为即便有轻微的电击刺激和机械刺激,小鼠仍无法回到跑步机上。试验结束后记录距离,用下列公式计算总功(KJ):质量(kg)×g(9.8m/s2)×距离(m)×sin(5°)。
二、结果
1.使用GSE治疗性靶向衰老细胞可促进肿瘤消退并能有效降低化疗耐药
鉴于GSE在体外较高浓度条件下清除衰老细胞中的突出选择性,发明人接下来考虑这种药物是否可以被利用来干预体内与增龄相关的疾病。癌症是严重威胁人类寿命和危害健康的主要慢性疾病之一。此外,临床中癌细胞耐药性限制了大多数抗癌治疗的效果,而衰老细胞往往通过在受损肿瘤灶中发展SASP来促进治疗性耐药的发生。即便如此,从原发肿瘤中清除衰老细胞以促进癌症治疗指数的可行性与安全性,至今几乎未被科学家们探索过。
首先,发明人通过将PSC27基质细胞与PC3上皮细胞混合构建成组织重组体,后者是一种典型的高度恶性前列腺癌细胞系。在非肥胖糖尿病和严重联合免疫缺陷(NOD/SCID)实验小鼠大腿后侧皮下植入重组体之前,基质细胞与上皮细胞的数量比例为1:4。动物在重组体植入体内之后8周结束时,测量肿瘤大小(体积)(图20)。同由PC3癌细胞和原代PSC27基质细胞组成的肿瘤相比,由PC3细胞和衰老PSC27细胞组成的异种移植物(xenograft)体积显著增加(P<0.001),这一差异再次证实了衰老细胞在肿瘤进展中的关键促进作用(图21)。
为了更加接近临床条件,发明人特别设计了一种临床前方案,其中涉及基因毒化疗药物治疗和/或衰老药物干预(图22)。在皮下植入两周后,当观察到体内肿瘤已经稳定被摄取时,发明人在第3、第5和第7周的第一天分别向实验动物提供单次剂量的MIT(MITOXANTRONE,一种化疗剂)或安慰剂,直到8周方案全部结束。同安慰剂治疗组相比,MIT给药可显著延缓肿瘤生长,这证实了MIT作为化疗药物的疗效(肿瘤大小减少44.0%,P<0.0001)(图23)。值得注意的是,虽然GSE本身并不会引起肿瘤收缩,但对治疗MIT后的小鼠,GSE给药却可显著减小肿瘤(与MIT相比,肿瘤体积减少55.2%,P<0.001;与安慰剂治疗相比,肿瘤体积减少74.9%,P<0.0001)(图23)。
接下来,发明人推断细胞衰老是否发生在这些动物的肿瘤灶中。检测结果证明,MIT给药过程诱导了肿瘤组织中大量衰老细胞的出现,尽管这毫不奇怪。然而,GSE给药则将这些化疗动物病灶内的大多数衰老细胞基本耗尽(图24;图25)。激光捕获显微解剖(LCM)和随后的定量PCR(条件参见实施例2)结果表明,SASP因子的表达显著升高,包括IL6、CXCL8、SPINK1、WNT16B、GM-CSF、MMP3、IL1Α,这一趋势伴随着化疗动物衰老标记p16INK4A的上调(图26)。有趣的是,这些变化主要发生在基质细胞中,而不是它们邻近的癌细胞,这意味着残留癌细胞再增殖的可能性,而这些细胞在治疗损伤的TME中产生了获得性耐药。然而,在使用GSE给药时,这一变化在很大程度上被逆转,正如转录水平数据分析结果所展示的那样(图27)。
为了研究直接支持在MIT给药的小鼠中SASP的表达和逆转这种衰老相关模式的机制,发明人在第一次GSE给药7天后即解剖了这两种药物治疗的动物体内的荷瘤,选择给药7天后这一时间点主要是因为这时病灶中癌细胞耐药克隆尚未形成。与安慰剂相比,MIT给药导致DNA损伤和凋亡程度均显著增加。虽然GSE单独不能诱导DNA损伤或造成凋亡,但化疗药物MIT却可以高度上调这两个指标(图28)。然而,当MIT处理的动物与GSE一起使用时,DNA损伤或凋亡的指数明显增强,这意味着这些衰老药物处理条件下的动物体内肿瘤位点细胞毒性增强。作为支持性证据,当GSE在治疗上应用时,caspase 3cleavage活性升高,这是细胞凋亡的一个典型标志(图29)。
接下来发明人比较了不同药物处理组动物的生存情况,主要以一种时间延长的方式来评估肿瘤进展的后果。在这一临床前队列中,发明人对动物进行了肿瘤生长监测,一旦小鼠内体肿瘤负担突出(大小≥2000mm3),就会判断为严重疾病已经发生,这是一种用于某些情况下肿瘤等疾病的病情进展的方法。接受MIT/GSE组合治疗的小鼠表现出最长的中位生存期,与仅接受MIT治疗的组相比,存活期延长了至少48.1%(图30,绿色与蓝色相比)。然而,仅用GSE治疗荷瘤小鼠并没有造成显著的好处,只有边际性生存延伸。
值得注意的是,在这些研究中进行的治疗似乎被实验小时很好地耐受。发明人没有观察到尿素、肌酐、肝酶或体重的显著波动(图31;图32)。更重要的是,在本研究设计的各药剂量下使用的化疗和抗衰老药物不会显著干扰免疫系统的完整性和关键器官的组织稳态,即使在免疫完整型的野生小鼠中也是如此(图33;图34)。这些结果一致证实,抗衰老剂结合常规化疗药物有可能在普遍意义上增强肿瘤反应,而不引起严重的全身毒性。
2.GSE治疗造成的衰老细胞清除可以减轻机体功能障碍,延长老龄小鼠的晚年生存期,而不增加其在生命晚期阶段的发病率
既然GSE具有在肿瘤小鼠的微环境中清除衰老细胞、降低肿瘤耐药性和提高总体治疗效果的药效,那么对于自然衰老的动物是否也有某种促进健康或延缓疾病的显著益处?为回答这一问题,发明人首先测试了GSE将表达荧光素酶(luciferase,LUC)的、腹腔注射到野生型(WT)小鼠体内的衰老或对照细胞予以清除的潜力。与Vehicle处理相比,GSE处理过的LUC衰老细胞移植小鼠的体内相应部位生物发光强度明显降低(图35)。然而,体内有LUC对照细胞(增殖态,未衰老)移植的小鼠经过治疗后,Vehicle组和GSE组之间没有观察到显著差异(图36)。这些数据进一步支持GSE可以在组织微环境中选择性杀死衰老细胞。
为了确定衰老细胞在老年小鼠生理功能障碍中发挥的作用,发明人用GSE治疗20个月龄的非移植性WT小鼠,以安慰剂(Vehicle)为平行对照。治疗为间歇性的给药,历时4个月(图37)。结果表明,GSE减轻了小鼠的身体机能障碍,主要表现在显著提高的最大步行速度、悬挂耐力、握力、跑步机耐力和日常活动能力(图38)。相比于用Vehicle处理组,GSE给药组的食物摄入量也倾向于增高,尽管没有达到统计学显著程度(P=0.1682,图38)。此外,GSE处理组的老龄小鼠内脏组织微环境中基质细胞几种重要SASP成分(qRT-PCR定量分析方法参见实施例2)的表达出现普遍降低(图39),进一步说明组织水平的衰老细胞数量及其造成的影响均已被有效控制。
发明人进而考虑,是否可以使用一种具有潜在转化价值的方法来消除衰老细胞,即:从非常老龄的某一时间点开始进行间歇治疗,能否延长WT小鼠的剩余寿命(图40)?对此,一系列体内试验得以相应开展。值得发明人注意、也十分令人惊讶的是,在每两周服用一次药物的治疗方案下,从24-27个月年龄(相当于人类75-90岁的年龄)开始给药的GSE组,其治疗后中位生存期比Vehicle组延长了64.2%,同时具有较低的死亡危险(HR=0.35,GSE组/Vehicle组;或HR=2.857,Vehicle组/GSE组,P<0.0001)(图41,图42)。这一发现,表明GSE介导的衰老细胞清除可以降低老年小鼠的死亡风险,并有效延长其生存期。
为了进一步检验这种降低老年小鼠死亡率的治疗方案,是否以提高机体的晚期发病率为代价,发明人评估了这些小鼠的身体功能。尽管GSE组小鼠的剩余寿命较长,但经过GSE每两周一次给药处理的小鼠,在生命的最后2个月的身体功能跟Vehicle处理组的小鼠在雄、和雌两性之间分别比较时,并未出现显著降低((图43,图44)。此外在小鼠尸检中,几种年龄相关疾病的患病率和肿瘤负担,在两组之间也没有统计学差异(图45,图46)。因此,间歇性提供GSE这种具有生物活性的抗衰老药物,可以通过清除微环境中衰老细胞的方式,显著减少衰老机体的疾病负担,并可以增加治疗后阶段机体的寿命。这种治疗方式,并不会导致显著上升的机体发病率,可以在生命的晚期阶段安全使用。
实施例4基于ESI-QTOF-MS的天然药物实际组分鉴定
一、方法
1.样本制备
将葡萄籽提取物(GSE)溶解在1ml DMSO中,超声处理5min。涡旋1min,离心5min,每分钟14,000转,在HPLC分析前通过0.25mm过滤器过滤。用Agilent 1200系列快速分辨率LC系统(Agilent Technologies,Palo Alto,CA,USA)对GSE进行了分析鉴定,该系统配备了二元泵和自动采样器。将HPLC系统耦合到四极飞行时间质谱仪(QTOF)质谱仪(BrukerDaltonics,Bremen,Germany),配备了电喷雾电离(ESI)界面(model G1607A from AgilentTechnologies,Palo Alto,CA,USA)。荧光(ORAC)和吸光度(Folin-Ciocalteu,Vanillinassay,FRAP and TEAC)测量在协同Mx单色基多模微平板阅读器(Bio-Tek InstrumentsInc.,Winooski,VT,USA)上进行,使用96孔聚苯乙烯microplates。
2.色谱条件
用Zorbax Eclipse Plus C18 column(1.8μm,150×4.6mm在室温下分离葡萄籽中的化合物。流动相为乙酸0.5%(溶剂a)和甲醇(溶剂b)。采用多步线性梯度:0min,0%B;5min,25%B;15min,35%B;20min,39%B;38min,60%B;40min,70%B;42min,80%B;44min,100%B;46min,0%B;48min,0%B。初始条件维持10min。注射体积为10μl。所用流量设定为0.3ml/min。
3.ESI-QTOF-MS检测
在配备ESI接口的QTOF质谱仪上进行了HPLC分析。在负离子模式下,毛细管电压工作在3.5KV条件下。源的其它参数设置为:干燥气体温度220℃;干燥气体流量,9L/min;雾化气体压力,2.5bar。检测的质量范围为50~1200m/z。
利用测量的[M-H]-离子,提出了每种分析物的分子公式,并通过软件DataAnalysis 4.0(Bruker Daltonics)进行了处理,在5ppm时建立了确认元素组成的公认精度阈值。在HPLC方法的开发过程中,采用74900-00-05注射器泵(Vernon Hills,IL,USA)作为直接连接到界面的外部仪器校准,用乙酸钠团簇溶液。在每次运行开始时注入校准溶液,并在化合物鉴定之前对所有光谱进行校准。整个运行过程中的溶剂流量为0.6和1.5ml/min分析和半制备性HPLC。洗脱柱是在270nm波峰处监测每个样本和单个多酚或化合物的紫外吸光度通过与HPLC滞留时间的比较,收集和鉴定峰处所在的真实化合物,理化性质和紫外,i.r.,MS,1H-NMR还有13C-NMR谱分析。
二、结果
利用先进的化学分析技术对天然药物的实际成分(主要是各种植物来源的化合物)进行全面的分析和表征是至关重要的。这样,就需要建立合适的方法来表征GSE中的生物活性化合物。基于飞行时间质谱(QTOF)技术允许的精确质量和串联质谱对于元素组成的准确分析至关重要,发明人在这里需要获得有关包括小数在内的精确质量。
使用这一强大的技术,发明人分析了GSE中分布的16种主要化合物:1)酚酸;(2)多酚黄酮类化合物(包括原花青素和其它类黄酮);(3)其它化合物(如槲皮素及其衍生物)。发明人的数据显示了GSE的基峰色谱图(BPC)(图47),观察到的主要峰列于GSE成分总表中(下表3)。考虑到洗脱顺序,所有化合物的特征可用于解释它们由QTOF-MS获得的质谱数据。
表3:经过HPLC-ESI-QTOF-MS成分鉴定获得的GSE中各有效成分的具体信息,包括名称、比例(重量百分比)和分子公式
Figure BDA0002825795260000351
Figure BDA0002825795260000361
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种筛选具有抗衰老潜力天然产物的方法,其包括:
(1)将候选天然产物与衰老细胞进行第一接触处理,之后将未经过所述第一接触处理的衰老细胞和经过所述第一接触处理后的衰老细胞进行细胞增殖检测,同时将对照细胞和经过所述第一接触处理后的衰老细胞进行细胞凋亡检测,所述第一接触处理是在96孔板中进行的,所述第一接触处理中所述衰老细胞的密度为4500-5500个/孔(优选5000个/孔),所述第一接触处理的时间为5-10天(优选7天),所述衰老细胞是通过将所述对照细胞进行衰老诱导处理后获得的;
所述细胞增殖检测和细胞凋亡检测后,同时满足以下条件的候选天然产物为初筛天然产物:
A、所述细胞增殖检测后,经过所述第一接触处理后的衰老细胞与未经过所述第一接触处理的衰老细胞相比,检测结果具有显著性差异(P<0.05);
B、所述细胞凋亡检测后,经过所述第一接触处理后的衰老细胞与对照细胞相比,检测结果具有显著性差异(P<0.05);
(2)将所述初筛天然产物与衰老细胞进行第二接触处理,之后将未经过所述第二接触处理的衰老细胞和经过所述第二接触处理后的衰老细胞进行细胞增殖检测,同时将对照细胞和经过所述第二接触处理后的衰老细胞进行细胞凋亡检测,所述第二接触处理是在96孔板中进行的,所述第二接触处理中所述衰老细胞的密度为15000-25000个/孔(优选20000个/孔),所述第二接触处理的时间为25-35天(优选30天),所述衰老细胞是通过将所述对照细胞进行衰老诱导处理后获得的;
所述细胞增殖检测和细胞凋亡检测后,同时满足以下条件的初筛天然产物为目标天然产物:
A、所述细胞增殖检测后,经过所述第二接触处理后的衰老细胞与未经过所述第二接触处理的衰老细胞相比,检测结果具有显著性差异(P<0.05);
B、所述细胞凋亡检测后,经过所述第二接触处理后的衰老细胞与对照细胞相比,检测结果具有显著性差异(P<0.05)。
2.权利要求1的方法,其中,所述衰老处理为化疗药物处理或辐射处理;
优选地,所述化疗药物为博莱霉素(BLEO);
更优选地,所述博莱霉素(BLEO)的处理浓度为40-60μg/mL(优选50μg/mL);
或者,所述对照细胞为人源前列腺原代基质细胞系(如PSC27);
或者,所述第一接触处理和所述第二接触处理的培养基为DMEM(10%FBS)。
3.权利要求1的方法,其中,所述第一接触处理中,所述候选天然产物的浓度为1μM-lmM(优选1μM-50μM);
或者,所述第二接触处理中,所述初筛天然产物的浓度为1μM-l mM(优选1μM-50μM)。
4.权利要求1的方法,其中,所述细胞增殖检测是利用CCK-8Cell Counting Kit试剂盒进行的;
或者,所述细胞凋亡检测是利用Caspase 3/7activity kit(Promega)进行的。
5.权利要求2的方法,其中,所述第一接触处理中,所述培养基和所述候选天然产物每两天更换一次;
或者,所述第二接触处理中,所述培养基和所述初筛天然产物每两天更换一次。
6.组合物,其包含葡萄籽提取物,所述葡萄籽提取物的浓度为1-1.5μM(优选1.25μM)或者5-50μM(优选5-25μM,更优选25μM)。
7.组合物在制备试剂中的用途,所述试剂用于抑制SASP标志因子的表达,所述组合物包含葡萄籽提取物,所述葡萄籽提取物的浓度为1-1.5μM(优选1.25μM);
优选地,所述SASP因子选自肿瘤坏死因子-α(TNF-α)、白细胞介素6(IL-6)、白细胞介素8(IL-8)、白细胞介素1α(IL-1α)、白细胞介素1β(IL-1β)、基质金属蛋白酶(MMP,如MMP3)、粒细胞-巨噬细胞集落刺激因子(GM-CSF)、纤溶酶原激活物抑制因子-1(PAI1)、趋化因子(CXC,如CXCL3)、双向调节因子(AREG)、丝氨酸肽酶抑制因子Kazal型1(SPINK1),或其任何组合。
8.组合物在制备试剂中的用途,所述试剂用于消除衰老细胞,所述组合物包含葡萄籽提取物,所述葡萄籽提取物的浓度为5-50μM(优选5-25μM,更优选25μM);
优选地,所述试剂通过诱导衰老细胞凋亡来清除衰老细胞;
优选地,所述试剂用于诱导衰老细胞凋亡。
9.组合物,其包含葡萄籽提取物和米托蒽醌(MIT);
优选地,所述葡萄籽提取物和所述米托蒽醌(MIT)的质量比为10:0.1-10:0.3(优选为10:0.2)。
10.权利要求9的组合物在制备药物、食品或保健品中的用途,所述药物、食品或保健品用于治疗和/或预防癌症;
优选地,所述癌症为与衰老相关的癌症;
优选地,所述癌症为前列腺癌。
CN202011428651.2A 2020-12-09 2020-12-09 一种筛选具有抗衰老潜力天然产物的方法 Active CN112553288B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202011428651.2A CN112553288B (zh) 2020-12-09 2020-12-09 一种筛选具有抗衰老潜力天然产物的方法
PCT/CN2021/130639 WO2022121627A1 (zh) 2020-12-09 2021-11-15 一种筛选具有抗衰老潜力天然产物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011428651.2A CN112553288B (zh) 2020-12-09 2020-12-09 一种筛选具有抗衰老潜力天然产物的方法

Publications (2)

Publication Number Publication Date
CN112553288A true CN112553288A (zh) 2021-03-26
CN112553288B CN112553288B (zh) 2022-06-07

Family

ID=75060715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011428651.2A Active CN112553288B (zh) 2020-12-09 2020-12-09 一种筛选具有抗衰老潜力天然产物的方法

Country Status (2)

Country Link
CN (1) CN112553288B (zh)
WO (1) WO2022121627A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022083748A1 (zh) * 2020-10-22 2022-04-28 汤臣倍健股份有限公司 葡萄籽提取物在制备靶向清除肿瘤微环境衰老细胞及抑制肿瘤的药物中的用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104997774A (zh) * 2009-04-10 2015-10-28 齐海燕 新的抗衰老试剂及其鉴别方法
US20200306334A1 (en) * 2017-12-15 2020-10-01 Tsukasa Nagao Health food and cosmetics for increasing the amount of apoptosis cells and decreasing the amount of necrosis cells and a method of manufacturing a sprout-forcing grape seed-derived ingredient for increasing the amount of apoptosis cells and decreasing the amount of necrosis cells

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0110940B1 (pt) * 2000-05-12 2015-04-28 Krister Olson Bengt Composições de extratos marinhos e de plantas combinados e uso das mesmas.
US20200232972A1 (en) * 2017-07-18 2020-07-23 Shiseido Company, Ltd. Method for screening anti-aging substances
KR102175470B1 (ko) * 2018-10-18 2020-11-06 (주)아모레퍼시픽 노화 모델 피부세포주의 제조방법, 그 방법에 의해 제조된 피부세포주 및 그 피부세포주를 이용한 항노화 물질의 스크리닝 방법
CN110478488B (zh) * 2019-09-26 2021-12-07 上海交通大学医学院附属上海儿童医学中心 葡萄籽原花青素在制备癌症化疗方案的联用药物中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104997774A (zh) * 2009-04-10 2015-10-28 齐海燕 新的抗衰老试剂及其鉴别方法
US20200306334A1 (en) * 2017-12-15 2020-10-01 Tsukasa Nagao Health food and cosmetics for increasing the amount of apoptosis cells and decreasing the amount of necrosis cells and a method of manufacturing a sprout-forcing grape seed-derived ingredient for increasing the amount of apoptosis cells and decreasing the amount of necrosis cells

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
徐谊朝等: "米托蒽醌免疫脂质体的制备及对前列腺癌的体外作用", 《中国现代医学杂志》 *
郑文鸽等: "衰老相关分泌表型的作用机制及相关药物研究进展", 《药学学报》 *
黄婷婷等: "葡萄籽提取物对前列腺癌PC-3细胞的生长抑制作用", 《中华男科学杂志》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022083748A1 (zh) * 2020-10-22 2022-04-28 汤臣倍健股份有限公司 葡萄籽提取物在制备靶向清除肿瘤微环境衰老细胞及抑制肿瘤的药物中的用途

Also Published As

Publication number Publication date
CN112553288B (zh) 2022-06-07
WO2022121627A1 (zh) 2022-06-16

Similar Documents

Publication Publication Date Title
Liu et al. Anti-angiogenic effect of Shikonin in rheumatoid arthritis by downregulating PI3K/AKT and MAPKs signaling pathways
Kim et al. Dihydrotanshinone‐Induced NOX5 Activation Inhibits Breast Cancer Stem Cell through the ROS/Stat3 Signaling Pathway
Wang et al. Increased infiltrated macrophages in benign prostatic hyperplasia (BPH): role of stromal androgen receptor in macrophage-induced prostate stromal cell proliferation
Liu et al. Hesperetin suppresses RANKL‐induced osteoclastogenesis and ameliorates lipopolysaccharide‐induced bone loss
Jia et al. Tetramethylpyrazine inhibits tumor growth of lung cancer through disrupting angiogenesis via BMP/Smad/Id-1 signaling
WO2019037658A1 (zh) 新型的肿瘤微环境相关靶点tak1及其在抑制肿瘤中的应用
Nasrolahi et al. Signaling pathways governing glioma cancer stem cells behavior
CN112870238B (zh) 可可提取物在制备抵抗衰老及抑制肿瘤的药物中的应用
Fan et al. RETRACTED: Emodin protects hyperglycemia-induced injury in PC-12 cells by up-regulation of miR-9
Xing et al. Fufang Xueshuantong protects retinal vascular endothelial cells from high glucose by targeting YAP
CN112553288B (zh) 一种筛选具有抗衰老潜力天然产物的方法
Wei et al. ShenKang injection attenuates renal fibrosis by inhibiting EMT and regulating the Wnt/β‐catenin pathway
Zou et al. Wnt inhibitory factor 1 ameliorated diabetic retinopathy through the AMPK/mTOR pathway‐mediated mitochondrial function
CN114377067B (zh) 葡萄籽提取物在制备靶向清除肿瘤微环境衰老细胞及抑制肿瘤的药物中的用途
WO2022166839A1 (zh) 银杏叶提取物在制备靶向衰老细胞、抑制肿瘤或延长寿命的药物中的应用
WO2022166841A1 (zh) 藤茶提取物在制备靶向衰老细胞、抑制肿瘤或延长寿命的药物中的应用
Cheng et al. HDAC1 mediates epithelial–mesenchymal transition and promotes cancer cell invasion in glioblastoma
WO2022166769A1 (zh) 一种下调衰老相关分泌表型的抗衰老组合药物及其应用
Chen et al. Melatonin Maintains Homeostasis and Potentiates the Anti-inflammatory Response in Staphylococcus aureus-Induced Mastitis through microRNA-16b/YAP1
WO2024067604A1 (zh) 丹参酚酸a(saa)作为新型抗衰老药物原料在细胞衰老、肿瘤治疗与延长寿命中的应用
CN117205198B (zh) 丹参酚酸c(sac)作为新型抗衰老药物原料在细胞衰老、肿瘤治疗与延长寿命中的应用
Carling et al. Alzheimer's disease-linked risk alleles elevate microglial cGAS-associated senescence and neurodegeneration in a tauopathy model
Lu et al. Overexpression of HSP27 accelerates stress‐induced gastric ulcer healing via the CXCL12/CXCR4 axis
WO2022165868A1 (zh) 一种下调衰老相关分泌表型的抗衰老植物多酚类药物及其应用
CN117205197A (zh) 丹参酚酸b(sab)作为新型抗衰老药物原料在细胞衰老、肿瘤治疗与延长寿命中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant