CN112551484A - 一种利用超级电容器作为寄存器的人工光合作用处理方法 - Google Patents

一种利用超级电容器作为寄存器的人工光合作用处理方法 Download PDF

Info

Publication number
CN112551484A
CN112551484A CN202011288720.4A CN202011288720A CN112551484A CN 112551484 A CN112551484 A CN 112551484A CN 202011288720 A CN202011288720 A CN 202011288720A CN 112551484 A CN112551484 A CN 112551484A
Authority
CN
China
Prior art keywords
energy
water
semiconductor
electrons
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011288720.4A
Other languages
English (en)
Inventor
张林楠
张宇航
宋青岳
纪盈
马志鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Technology
Original Assignee
Shenyang University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Technology filed Critical Shenyang University of Technology
Priority to CN202011288720.4A priority Critical patent/CN112551484A/zh
Publication of CN112551484A publication Critical patent/CN112551484A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0203Preparation of oxygen from inorganic compounds
    • C01B13/0207Water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种模拟天然绿叶的光合作用,利用超级电容器作为能量寄存单元,创造出一个与之相似的人工催化合成系统,利用太阳光在催化剂作用下吸收二氧化碳,产生清洁燃料氢和甲醇并放出氧气。包括光收集、水分子离解、电荷存储分离和产生清洁燃料氢和甲醇的四个基本步骤。建立了一个包括能源收集、转换和运输的仿生物合成系统,有助于太阳能、材料科学、纳米技术和光子学等绿色能源相关领域的创新和发展。

Description

一种利用超级电容器作为寄存器的人工光合作用处理方法
一、技术领域
本发明涉及一种模拟天然绿叶的光合作用,利用超级电容器作为能量寄存单元,创造出一个与之相似的人工催化合成系统,利用太阳光在催化剂作用下吸收二氧化碳,产生清洁燃料氢和甲醇并放出氧气。
二、背景技术
光合作用广泛存在于自然界,以绿色植物、海藻和蓝细菌等为依托,借助太阳光,通过叶绿体收集太阳光能,将二氧化碳和水转化成富有能量的有机化合物,并释放出氧气。其中最为关键的一步是由光驱动将水分子裂解为氧气、氢离子和电子的反应,这一反应向地球上所有复杂的生命提供能量和氧气,可以说是光合作用的核心。绿色植物依靠这一反应实现了地球上最成功的光转化机制——原初光能转换过程的量子效率几乎是100%。
模拟天然绿叶的光合作用,创造出一个与之相似的人工系统,包括光收集、水分子离解、电荷存储分离和产生清洁燃料氢和甲醇的四个基本步骤。
三、发明内容
发明目的
模拟天然绿叶的光合作用,创造出一个与之相似的人工系统,利用太阳光在催化剂作用下吸收二氧化碳,产生清洁燃料氢和甲醇并放出氧气。
技术方案
一种利用超级电容器作为寄存器的人工光合作用处理方法,其特征在于:模拟天然绿叶的光合作用,创造出一个与之相似的人工系统,包括光收集、水分子离解、电荷分离和产生清洁燃料氢和甲醇的四个基本步骤:
步骤A:光能的吸收、传递和转换,TiO2/Fe2O3复合薄膜催化剂,催化分解水的催化反应,光辐射在半导体上,当辐射的能量大于或相当于半导体的禁带宽度时,半导体内电子受激发从价带跃迁到导带,而空穴则留在价带,使电子和空穴发生分离,然后分别在半导体的不同位置将水还原成氢气,结合二氧化碳还原,将水氧化成氧气;
步骤B:模仿电子传递和光合磷酸化,形成可短时储存电子和光转化能的微超级电容装置作为协调分解水的催化反应和二氧化碳还原过程的界面介质;
步骤C:二氧化碳还原,光生电子和空穴迁移到表面后,可分别驱动不同的半反应:将CO2还原成HCOOH,CH3OH或其他小分子有机物,把活跃的化学能转变为稳定的化学能(固定CO2,形成糖类)。
步骤D:循环半反应,回步骤A,将水氧化成O2。
附图说明:
图1为本发明的流程图。
优点及效果
第一,多重催化基团由于紧密压缩,分子间可以共享光激发。这种特质被称为“量子相干(quantum coherence)”,结果表明可以显著地提高能量传递效率。
第二,模仿电子传递和光合磷酸化,形成可短时储存电子和光转化能的微超级电容装置作为协调分解水的催化反应和二氧化碳还原过程的界面介质,设备建造和运行非常简便,设备成本极低。
第三,建立了一个包括能源收集、转换和运输的仿生物合成系统,将鞭策太阳能、材料科学、纳米技术和光子学等绿色能源相关领域的创新和发展。
四、具体实施方式
1)光能的吸收、传递和转换,TiO2/Fe2O3复合薄膜催化剂,催化分解水的催化反应,光辐射在半导体上,当辐射的能量大于或相当于半导体的禁带宽度时,半导体内电子受激发从价带跃迁到导带,而空穴则留在价带,使电子和空穴发生分离,然后分别在半导体的不同位置将水还原成氢气,结合二氧化碳还原,将水氧化成氧气;
2)模仿电子传递和光合磷酸化,形成可短时储存电子和光转化能的微超级电容装置作为协调分解水的催化反应和二氧化碳还原过程的界面介质;
3)二氧化碳还原,光生电子和空穴迁移到表面后,可分别驱动不同的半反应:将CO2还原成HCOOH,CH3OH或其他小分子有机物,把活跃的化学能转变为稳定的化学能(固定CO2,形成糖类)。
4)循环半反应,回步骤1,将水氧化成O2
实施例1
本发明利用太阳光直接催化分解水,为适应太阳光的能量分布规律,例如选用反应池的规格一般为1000W/m2,水的解离能5×108kJ/m3,根据能量要求,解离1m3水,则需要10座1m×1m反应单元串联。具体实施方式按工艺流程如下:
利用TiO2/Fe2O3复合薄膜催化剂,催化分解水的催化反应,光辐射在半导体上,当辐射的能量大于或相当于半导体的禁带宽度时,半导体内电子受激发从价带跃迁到导带,而空穴则留在价带,使电子和空穴发生分离,然后分别在半导体的不同位置将水还原成氢气,结合二氧化碳还原,将水氧化成氧气;利用离子分离膜和纳滤分离膜,模仿电子传递和光合磷酸化,形成可短时储存电子和光转化能的微超级电容装置作为协调分解水的催化反应和二氧化碳还原过程的界面介质;光生电子和空穴迁移到表面后,可分别驱动不同的半反应:将CO2还原成HCOOH,CH3OH或其他小分子有机物,把活跃的化学能转变为稳定的化学能(固定CO2,形成糖类)。循环半反应,回步骤1,将水氧化成O2

Claims (1)

1.一种利用超级电容器作为寄存器的人工光合作用处理方法,其特征在于:模拟天然绿叶的光合作用,创造出一个与之相似的人工系统,包括光收集、水分子离解、电荷分离和产生清洁燃料氢和甲醇的四个基本步骤:
步骤A:光能的吸收、传递和转换:TiO2/Fe2O3复合薄膜催化剂,催化分解水的催化反应,光辐射在半导体上,当辐射的能量大于或相当于半导体的禁带宽度时,半导体内电子受激发从价带跃迁到导带,而空穴则留在价带,使电子和空穴发生分离,然后分别在半导体的不同位置将水还原成氢气,结合二氧化碳还原,将水氧化成氧气;
步骤B:模仿电子传递和光合磷酸化:形成可短时储存电子和光转化能的微超级电容装置作为协调分解水的催化反应和二氧化碳还原过程的界面介质;
步骤C:二氧化碳还原:光生电子和空穴迁移到表面后,可分别驱动不同的半反应:将CO2还原成HCOOH,CH3OH或其他小分子有机物,把活跃的化学能转变为稳定的化学能;
步骤D:循环半反应:回步骤A,将水氧化成O2。
CN202011288720.4A 2020-11-17 2020-11-17 一种利用超级电容器作为寄存器的人工光合作用处理方法 Pending CN112551484A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011288720.4A CN112551484A (zh) 2020-11-17 2020-11-17 一种利用超级电容器作为寄存器的人工光合作用处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011288720.4A CN112551484A (zh) 2020-11-17 2020-11-17 一种利用超级电容器作为寄存器的人工光合作用处理方法

Publications (1)

Publication Number Publication Date
CN112551484A true CN112551484A (zh) 2021-03-26

Family

ID=75044159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011288720.4A Pending CN112551484A (zh) 2020-11-17 2020-11-17 一种利用超级电容器作为寄存器的人工光合作用处理方法

Country Status (1)

Country Link
CN (1) CN112551484A (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060130986A (ko) * 2005-06-14 2006-12-20 한국전기연구원 교육용 인공광합성 태양전지의 구조 및 그의 조립방법
US20100133110A1 (en) * 2008-10-08 2010-06-03 Massachusetts Institute Of Technology Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other, electrochemical techniques
CN102676573A (zh) * 2011-03-15 2012-09-19 中国科学院植物研究所 光合作用相关的蛋白ppd1的应用
CN104016301A (zh) * 2014-06-16 2014-09-03 广西大学 电场诱导制备氢气的方法
CN105728048A (zh) * 2016-01-29 2016-07-06 苏州科技学院 一种人工光合作用系统及其应用
CN106222685A (zh) * 2016-08-22 2016-12-14 南京航空航天大学 一种光电催化水分解用的wo3‑ldh复合薄膜的制备方法
CN107096537A (zh) * 2017-04-27 2017-08-29 扬州大学 一种Fe2O3掺杂TiO2负载膨胀珍珠岩的漂浮型环境修复材料及其制备方法
CN107845848A (zh) * 2017-11-02 2018-03-27 河北工业大学 用于人工光合作用的氮化镓基器件及其制备方法
CN109312478A (zh) * 2016-06-07 2019-02-05 富士胶片株式会社 光催化剂电极、人工光合作用模块及人工光合作用装置
CN110511948A (zh) * 2019-09-18 2019-11-29 华中农业大学 一种控制番茄光合作用与光呼吸的基因及其应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060130986A (ko) * 2005-06-14 2006-12-20 한국전기연구원 교육용 인공광합성 태양전지의 구조 및 그의 조립방법
US20100133110A1 (en) * 2008-10-08 2010-06-03 Massachusetts Institute Of Technology Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other, electrochemical techniques
CN102676573A (zh) * 2011-03-15 2012-09-19 中国科学院植物研究所 光合作用相关的蛋白ppd1的应用
CN104016301A (zh) * 2014-06-16 2014-09-03 广西大学 电场诱导制备氢气的方法
CN105728048A (zh) * 2016-01-29 2016-07-06 苏州科技学院 一种人工光合作用系统及其应用
CN109312478A (zh) * 2016-06-07 2019-02-05 富士胶片株式会社 光催化剂电极、人工光合作用模块及人工光合作用装置
CN106222685A (zh) * 2016-08-22 2016-12-14 南京航空航天大学 一种光电催化水分解用的wo3‑ldh复合薄膜的制备方法
CN107096537A (zh) * 2017-04-27 2017-08-29 扬州大学 一种Fe2O3掺杂TiO2负载膨胀珍珠岩的漂浮型环境修复材料及其制备方法
CN107845848A (zh) * 2017-11-02 2018-03-27 河北工业大学 用于人工光合作用的氮化镓基器件及其制备方法
CN110511948A (zh) * 2019-09-18 2019-11-29 华中农业大学 一种控制番茄光合作用与光呼吸的基因及其应用

Similar Documents

Publication Publication Date Title
Martino et al. Main hydrogen production processes: An overview
Yaashikaa et al. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products
Chaubey et al. A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources
Nguyen et al. Recent developments in the design of photoreactors for solar energy conversion from water splitting and CO2 reduction
Kumaravel et al. A short review on hydrogen, biofuel, and electricity production using seawater as a medium
Colmenares et al. Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds
Centi et al. Towards solar fuels from water and CO2
Taheri Najafabadi CO2 chemical conversion to useful products: an engineering insight to the latest advances toward sustainability
CN104328046B (zh) 微生物电化学系统还原二氧化碳产乙酸的装置与方法
Gouda et al. Metal-organic framework as a heterogeneous catalyst for biodiesel production: A review
Akhter et al. Environmental issues regarding CO2 and recent strategies for alternative fuels through photocatalytic reduction with titania-based materials
EP2624949B1 (en) Recycling carbon dioxide via capture and temporary storage to produce renewable fuels and derived products
Aresta et al. What catalysis can do for boosting CO2 utilization
CN104213148B (zh) 电场诱导使水和co2转化成有机聚合物的方法
Barrio et al. Bioinspired and bioderived aqueous electrocatalysis
Liu et al. Efficient Biomass Fuel Cell Powered by Sugar with Photo‐and Thermal‐Catalysis by Solar Irradiation
Lam et al. Comproportionation of CO2 and cellulose to formate using a floating semiconductor‐enzyme photoreforming catalyst
Mul et al. Functioning devices for solar to fuel conversion
KR101590535B1 (ko) 태양광을 이용한 이산화탄소의 환원 장치 및 환원 방법
Harahap et al. Acetate production from syngas produced from lignocellulosic biomass materials along with gaseous fermentation of the syngas: a review
Mohtaram et al. Enhancement strategies in CO2 conversion and management of biochar supported photocatalyst for effective generation of renewable and sustainable solar energy
CN112551484A (zh) 一种利用超级电容器作为寄存器的人工光合作用处理方法
Markandan et al. A Review on the Progress in Chemo-Enzymatic Processes for CO2 Conversion and Upcycling
US9662608B2 (en) Methods and systems for capturing carbon dioxide and producing a fuel using a solvent including a nanoparticle organic hybrid material and a secondary fluid
CN112337298A (zh) 一种富氧烟气制碳氢燃料协同脱硫的光催化反应器及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210326