CN112539340A - 水电解供氢加氢站设备选型方法 - Google Patents

水电解供氢加氢站设备选型方法 Download PDF

Info

Publication number
CN112539340A
CN112539340A CN201910895128.1A CN201910895128A CN112539340A CN 112539340 A CN112539340 A CN 112539340A CN 201910895128 A CN201910895128 A CN 201910895128A CN 112539340 A CN112539340 A CN 112539340A
Authority
CN
China
Prior art keywords
hydrogen
pressure
hydrogen storage
station
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910895128.1A
Other languages
English (en)
Other versions
CN112539340B (zh
Inventor
刘欢
甄永乾
丁莉丽
刘全桢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Safety Engineering Research Institute Co Ltd
Original Assignee
China Petroleum and Chemical Corp
Sinopec Qingdao Safety Engineering Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Qingdao Safety Engineering Institute filed Critical China Petroleum and Chemical Corp
Priority to CN201910895128.1A priority Critical patent/CN112539340B/zh
Publication of CN112539340A publication Critical patent/CN112539340A/zh
Application granted granted Critical
Publication of CN112539340B publication Critical patent/CN112539340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C5/00Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures
    • F17C5/06Methods or apparatus for filling containers with liquefied, solidified, or compressed gases under pressures for filling with compressed gases
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/025Special adaptations of indicating, measuring, or monitoring equipment having the pressure as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/04Methods for emptying or filling
    • F17C2227/046Methods for emptying or filling by even emptying or filling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/063Fluid distribution for supply of refueling stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及氢能源技术领域,具体涉及水电解供氢加氢站设备选型方法,所述水电解供氢加氢站设备选型方法包括:确定以下基本参数、确定电解水装置的数量n、确定氢气压缩机的排量和数量、根据氢气加注压力等级P,设置储氢系统的压力系统以及各级压力系统的储氢量比例、根据储氢系统压力等级P、储氢量比例和加氢站日加氢量m确定储氢系统、确定加氢机的数量;本发明针对水电解供氢加氢站这一典型具有普适性的加氢站工艺,提出了站内主要设备选型方法,为水电解供氢加氢站内设备选型以及加氢站设计建设提供依据。

Description

水电解供氢加氢站设备选型方法
技术领域
本发明涉及氢能源技术领域,具体涉及水电解供氢加氢站设备选型方法。
背景技术
燃料电池汽车以高压氢气为动力来源,燃烧产物只有水,具有能源效率高、排放无污染等优势。燃料电池汽车的大规模应用离不开加氢站的建设。对于临近氢气产地的加氢站,例如炼油厂、焦炉厂、电解厂等,可以较为便捷地采用管道供氢、液氢槽车或高压管束车提供充足的氢气。但是,对于偏远地区的加氢站,尤其是规模较小的加氢站,采用站外供氢方式从成本上是难以承受,这也是偏远地区加氢站建设的主要难题。
解决该难题的途径是采用站内供氢工艺,常见的站内制氢手段包括水电解制氢、天然气重整制氢及光解水制氢等。由于水电解制氢工艺成熟,产品氢气纯度高,可以达到99.999%以上,满足燃料电池汽车对氢气的质量要求,装置较为紧凑,实现了在无人值守下的高效运行,是站内制氢加氢站首选的制氢工艺。学位论文《加氢站水电解制氢装置控制系统设计》完成了加氢站水电解制氢设备控制系统的原理设计、控制系统的安全性设计及PLC程序的设计,然而未涉及到加氢站工艺及相关设备的选型。CN106637279A提出了一种制氢-加氢网络,该网络是基于移动式电解水制氢系统与固定式加氢站,也未对加氢站内工艺及设备选型提供详细的方法或建议。CN100534840C设计了一种通过电解水制氢、净化、压缩、储存及加注一体化的方法,侧重于逻辑控制程序的设计。
目前,由于国内外水电解供氢供氢的加氢站投用数量较少,相关设计经验较为欠缺;且水电解供氢供氢加氢站的工艺路线较为繁杂,技术难度较高;存在设备选型方法单一、不准确等问题,导致水电解供氢加氢站设计处理能力与运营效果不匹配,限制了水电解供氢供氢加氢站的设计及建设。
发明内容
本发明的目的是为了克服现有技术中水电解供氢加氢站设计处理能力与运营效果不匹配的不足,本发明提供一种水电解供氢供氢加氢站设备选型方法,该方法能够为水电解供氢供氢加氢站内设备选型以及水电解供氢加氢站设计建设提供依据。
为了实现上述目的,本发明提供一种水电解供氢加氢站设备选型方法,所述水电解供氢加氢站的设备包括:电解水系统、氢气压缩机、储氢系统和加氢机,所述电解水系统由若干个电解水装置组成,所述选型方法包括以下步骤:
S1:确定以下基本参数:1)加氢站日加氢量m;
2)判断加氢时间是否集中,判断方法如下:
如果车辆加氢时间集中在某几个固定时间段,则为集中,加氢站日工作时间T按照10小时计;否则为分散,加氢站日工作时间按16小时计;
3)确定加氢站每小时加氢量mT,计算公式为:
Figure BDA0002209955010000031
其中,m为加氢站日加氢量,T为加氢运行时间;
4)确定停机敏感性大小,若用户主要为公交车辆,则停机敏感性大,否则停机敏感性小;
5)氢气加注压力等级P;
S2:确定电解水装置的数量n;
Figure BDA0002209955010000032
式中[]为向上取整数运算符;
式中,V1为每台电解水装置每小时的产氢量;VH为电解水系统每小时的产氢量;
Figure BDA0002209955010000033
式中,m为加氢站日加注量,t为电解水系统每天平均运行时间;
S3:确定氢气压缩机的排量和数量;
当N≤25kW时,若停机敏感性大,则选择两台排量为VT的氢气压缩机;若停机敏感性小,则选择一台排量为VT的氢气压缩机;
当25kW<N≤60kW时,若停机敏感性大,则选择三台排量为VT/2的氢气压缩机;若停机敏感性小,则选择两台排量为VT/2的氢气压缩机;
当N>60kW时,若停机敏感性大,则选择三台排量为VT/2的氢气压缩机;若停机敏感性小,则选择两台排量为VT/2的氢气压缩机;
其中,VT为单位小时内压缩氢气体积,
Figure BDA0002209955010000041
N为氢气压缩机功率,
Figure BDA0002209955010000042
Ps为氢气压缩机进气绝对压力,单位为Pa;Pd为氢气压缩机排气绝对压力,单位为Pa;VT为单位小时内压缩氢气体积,单位为m3/s;
S4:根据氢气加注压力等级P,设置储氢系统的压力系统以及各级压力系统的储氢量比例,方法如下:
1)如果氢气加注压力等级为70MPa,则设置低压、中压、高压三级储氢系统,且低压、中压、高压三级储氢系统的储氢量比例为1~3:1~2:1;
2)如果氢气加注压力等级为35MPa和70MPa,则设置低压、中压、高压三级储氢系统,且低压、中压、高压三级储氢系统的储氢量比例为1~3:1~2:1;
3)如果氢气加注压力等级为35MPa,则设置低压、中压两级储氢系统,且低压、中压两级储氢系统的储氢量比例为1~2:1;
S5:根据储氢系统压力等级P、储氢量比例和加氢站日加氢量m确定储氢系统,方法如下:
1)若加氢站日加氢量m≤500kg且氢气加注压力等级为35MPa时,则设置2个低压储氢设备和1个中压储氢设备;
2)若加氢站日加氢量m≤500kg且氢气加注压力等级为70MPa时,则设置2个低压储氢设备、1个中压储氢设备和1个高压储氢设备;
3)若加氢站日加氢量500kg≤m<1000kg且氢气加注压力等级为35MPa时,则设置4个低压储氢设备和3个中压储氢设备;
4)若加氢站日加氢量500kg≤m<1000kg且氢气加注压力等级为70MPa时,则设置4个低压储氢设备、2个中压储氢设备和1个高压储氢设备;
S6:确定加氢机的数量
Figure BDA0002209955010000051
式中[]为向上取整数运算符,式中式中m1为氢气加注压力等级P为35MPa下的加氢量,m2为氢气加注压力等级P为70MPa下的加氢量,计算得到数值即为加氢机数量。
优选条件下,在步骤S1中,所述加氢站日加氢量m通过以下两种方法中的一种确定:
a)直接给出数值m;
b)通过加氢车辆的类型及数量计算:
m=5×Ni+20×N2+15×N3+m4
其中,N1为出租车的数量,N2为公交车的数量,N3为客运车的数量,m4为其它车辆用氢量的数量。
优选条件下,在步骤S4中,现有电解水装置每小时产氢量为50Nm3/h或100Nm3/h。
优选条件下,在步骤S4中,当氢气加注压力等级为70MPa时,所述低压、中压、高压三级储氢系统中:低压储氢罐的储氢设计压力为25MPa;中压储氢罐的储氢设计压力为45MPa;高压储氢罐的储氢设计压力为87.5MPa。
优选条件下,在步骤S4中,当氢气加注压力等级为35MPa和70MPa时,所述低压、中压、高压三级储氢系统中:低压储氢罐的储氢设计压力为25MPa;中压储氢罐的储氢设计压力为45MPa;高压储氢罐的储氢设计压力为87.5MPa。
优选条件下,在步骤S4中,当氢气加注压力等级为35MPa时,所述低压、中压两级储氢系统中:低压储氢罐的储氢设计压力为25MPa;中压储氢罐的储氢设计压力为45MPa。
优选条件下,步骤S5中,所述低压储氢设备为容积为5m3的储氢罐,其储氢设计压力为25MPa,最大储氢容量为88kg/车。
优选条件下,在步骤S5中,所述中压储氢设备为容积为5m3的储氢罐,其储氢设计压力为45MPa,最大储氢容量为145kg/罐。
优选条件下,在步骤S5中,所述高压储氢设备为容积为5m3的储氢罐,其储氢设计压力为87.5MPa,最大储氢容量为235kg/罐。
优选条件下,在步骤S7中,所述加氢机为单枪加氢机。
通过上述技术方案,本发明具有以下技术效果:
本发明针对水电解供氢加氢站这一典型具有普适性的加氢站工艺,提出了站内主要设备选型方法,建立了公式计算和工厂要求相结合的选型方法,适应于水电解供氢加氢站内主要设备:电解水系统、氢气压缩机、储氢系统和加氢机,从而为水电解供氢加氢站内设备选型以及加氢站设计建设提供依据。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明的电解水供氢加氢站适用于日加注量m<1000kg的加氢站,当加氢站的日加注量m≥1000kg时,则不适用电解水供氢加氢站。
本发明提供一种水电解供氢加氢站设备选型方法,所述水电解供氢加氢站的设备包括:电解水系统、氢气压缩机、储氢系统和加氢机,所述电解水系统由若干个电解水装置组成,所述选型方法包括以下步骤:
S1:确定以下基本参数:
1)加氢站日加氢量m;
通过工程要求及现场调研明确拟建加氢站的日平均加氢量m,加氢站日加氢量m可由以下两种方法确定:
a)直接给出数值m;
b)通过加氢车辆的类型及数量计算:
m=5×N1+20×N2+15×N3+m4
其中,N1为出租车的数量,N2为公交车的数量,N3为客运车的数量,m4为其它车辆用氢量的数量。
2)判断加氢时间是否集中,判断方法如下:
如果车辆加氢时间集中在某几个固定时间段,则为集中,加氢站日工作时间T按照10小时计;否则为分散,加氢站日工作时间按16小时计;
3)确定加氢站每小时加氢量mT,计算公式为:
Figure BDA0002209955010000081
其中,m为加氢站日加氢量,T为加氢运行时间;
4)确定停机敏感性大小,若用户主要为公交车辆,则停机敏感性大,否则停机敏感性小;
5)氢气加注压力等级P;
S2:确定电解水装置的数量n;
Figure BDA0002209955010000082
式中[]为向上取整数运算符;
式中,V1为每台电解水装置每小时的产氢量;VH为电解水系统每小时的产氢量;
Figure BDA0002209955010000083
式中,m为加氢站日加注量,t为电解水系统每天平均运行时间;现有电解水装置每小时产氢量为50Nm3/h或100Nm3/h。
S3:确定氢气压缩机的排量和数量;
当N≤25kW时,若停机敏感性大,则选择两台排量为VT的氢气压缩机;若停机敏感性小,则选择一台排量为VT的氢气压缩机;
当25kW<N≤60kW时,若停机敏感性大,则选择三台排量为VT/2的氢气压缩机;若停机敏感性小,则选择两台排量为VT/2的氢气压缩机;
当N>60kW时,若停机敏感性大,则选择三台排量为VT/2的氢气压缩机;若停机敏感性小,则选择两台排量为VT/2的氢气压缩机;
其中,VT为单位小时内压缩氢气体积,
Figure BDA0002209955010000091
N为氢气压缩机功率,
Figure BDA0002209955010000092
Ps为氢气压缩机进气绝对压力,单位为Pa;Pd为氢气压缩机排气绝对压力,单位为Pa;VT为单位小时内压缩氢气体积,单位为m3/s;
S4:根据氢气加注压力等级P,设置储氢系统的压力系统以及各级压力系统的储氢量比例,方法如下:
1)如果氢气加注压力等级为70MPa,则设置低压、中压、高压三级储氢系统,且低压、中压、高压三级储氢系统的储氢量比例为1~3:1~2:1,在所述低压、中压、高压三级储氢系统中:低压储氢罐的储氢设计压力为25MPa;中压储氢罐的储氢设计压力为45MPa;高压储氢罐的储氢设计压力为87.5MPa;
2)如果氢气加注压力等级为35MPa和70MPa,则设置低压、中压、高压三级储氢系统,且低压、中压、高压三级储氢系统的储氢量比例为1~3:1~2:1;在所述低压、中压、高压三级储氢系统中:低压储氢罐的储氢设计压力为25MPa;中压储氢罐的储氢设计压力为45MPa;高压储氢罐的储氢设计压力为87.5MPa;
3)如果氢气加注压力等级为35MPa,则设置低压、中压两级储氢系统,且低压、中压两级储氢系统的储氢量比例为1~2:1;在所述低压、中压两级储氢系统中:低压储氢罐的储氢设计压力为25MPa;中压储氢罐的储氢设计压力为45MPa。
本发明中,所述储氢设计压力为储氢设备(低压储氢罐、中压储氢罐或高压储氢罐)的最高储氢压力,即储氢设备的实际储氢压力≤设计压力。
S5:根据储氢系统压力等级P、储氢量比例和加氢站日加氢量m确定储氢系统,方法如下:
1)若加氢站日加氢量m≤500kg且氢气加注压力等级为35MPa时,则设置2个低压储氢设备和1个中压储氢设备;
2)若加氢站日加氢量m≤500kg且氢气加注压力等级为70MPa时,则设置2个低压储氢设备、1个中压储氢设备和1个高压储氢设备;
3)若加氢站日加氢量500kg≤m<1000kg且氢气加注压力等级为35MPa时,则设置4个低压储氢设备和3个中压储氢设备;
4)若加氢站日加氢量500kg≤m<1000kg且氢气加注压力等级为70MPa时,则设置4个低压储氢设备、2个中压储氢设备和1个高压储氢设备;
本发明中,所述低压储氢设备为容积为5m3的储氢罐,其储氢设计压力为25MPa,最大储氢容量为88kg/车;所述中压储氢设备为容积为5m3的储氢罐,其储氢设计压力为45MPa,最大储氢容量为145kg/罐;所述高压储氢设备为容积为5m3的储氢罐,其储氢设计压力为87.5MPa,最大储氢容量为235kg/罐。
S6:确定加氢机的数量
Figure BDA0002209955010000101
式中[]为向上取整数运算符,式中式中m1为氢气加注压力等级P为35MPa下的加氢量,m2为氢气加注压力等级P为70MPa下的加氢量,计算得到数值即为加氢机数量。
以下通过实施例对本发明进行详细说明。
实施例1
某县域城市拟建设一座公交车示范型加氢站但周围无氢源可供采购,氢气加注压力等级为35MPa,氢气加注时间集中,主要服务对象为:公交车30台,其它车辆用氢量150kg(单位:kg)。
根据以上规划条件,可选用电解水供氢工艺建设加氢站,站内设备选型实施方式如下:
一、输入条件
m=5×N1+20×N2+15×N3+m4
(1)加氢站日供氢量m=20×30+150=750kg
(2)加氢站氢气加注时间集中,T=10h;
(3)加氢站停机敏感性大;
(4)氢气加注压力等级为35MPa;
二、确定电解水系统所需电解水装置的数量
加氢站日加注量m=750kg,则适宜采用电解水供氢作为加氢站氢气来源;
计算电解水装置每小时产氢量VH(单位:m3/h):
Figure BDA0002209955010000111
式中,m=750,t=12h,代入上式计算得到VH=687.5m3/h;
现有的电解水设备产氢量为100m3/h,因此,n=[687.5m3/h/100m3/h]=7。
因此,该该加氢站选用7套处理量均为100m3/h电解水设备。
三、氢气压缩机选型
(1)单位小时内氢气压缩量VT=75/7.5=10m3/h=0.00278m3/s;
(2)将进气绝对压力为Ps=101×105Pa,出气绝对压力为Pd=451×105Pa,代入公式
Figure BDA0002209955010000121
得N=16.8kW≤25kW;
由于停运敏感性较高,因此选用两台排气不小于10m3/h的氢气压缩机。
四、根据氢气加注压力等级P,设置储氢系统的压力系统以及各级压力系统的储氢量比例,方法如下:
氢气加注压力等级为35MPa,设置低压、中压两级储氢系统,低压储氢罐设计压力为25MPa,中压储氢罐设计压力为45MPa。
加氢站日供氢量m为750kg,氢气加注压力等级为35MPa,则储氢系统设置如下:低压储氢罐设计压力为25MPa,可选用水容积为5m3的储氢罐四座,单罐储氢容量为88kg,共储氢352kg;中压储氢设备选用水容积为5m3的储氢罐三座,设计压力为45MPa,单罐储氢容量为145kg,共储氢435kg,储氢总容量为787kg。
五、加氢机设备选型
加氢机为单枪机,对于加注压力等级为35MPa的加氢机,日加氢量为200kg,对于加注压力等级为70MPa的加氢机,日加氢量为350kg,则加氢机数量计算公式为:
加氢机数量=[m1/200]+[m2/350],式中[]为向上取整数运算符,式中m1为35MPa压力等级加氢量为750kg,无70MPa压力等级下的氢气加注,即m2=0,代入公式得到加氢机数量为4台。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (10)

1.水电解供氢加氢站设备选型方法,所述水电解供氢加氢站的设备包括:电解水系统、氢气压缩机、储氢系统和加氢机,所述电解水系统由若干个电解水装置组成,其特征在于,所述选型方法包括以下步骤:
S1:确定以下基本参数:1)加氢站日加氢量m;
2)判断加氢时间是否集中,判断方法如下:
如果车辆加氢时间集中在某几个固定时间段,则为集中,加氢站日工作时间T按照10小时计;否则为分散,加氢站日工作时间按16小时计;
3)确定加氢站每小时加氢量mT,计算公式为:
Figure FDA0002209955000000011
其中,m为加氢站日加氢量,T为加氢运行时间;
4)确定停机敏感性大小,若用户主要为公交车辆,则停机敏感性大,否则停机敏感性小;
5)氢气加注压力等级P;
S2:确定电解水装置的数量n;
Figure FDA0002209955000000012
式中[]为向上取整数运算符;
式中,V1为每台电解水装置每小时的产氢量;VH为电解水系统每小时的产氢量;
Figure FDA0002209955000000013
式中,m为加氢站日加注量,t为电解水系统每天平均运行时间;
S3:确定氢气压缩机的排量和数量;
当N≤25kW时,若停机敏感性大,则选择两台排量为VT的氢气压缩机;若停机敏感性小,则选择一台排量为VT的氢气压缩机;
当25kW<N≤60kW时,若停机敏感性大,则选择三台排量为VT/2的氢气压缩机;若停机敏感性小,则选择两台排量为VT/2的氢气压缩机;
当N>60kW时,若停机敏感性大,则选择三台排量为VT/2的氢气压缩机;若停机敏感性小,则选择两台排量为VT/2的氢气压缩机;
其中,VT为单位小时内压缩氢气体积,
Figure FDA0002209955000000021
N为氢气压缩机功率,
Figure FDA0002209955000000022
Ps为氢气压缩机进气绝对压力,单位为Pa;Pd为氢气压缩机排气绝对压力,单位为Pa;VT为单位小时内压缩氢气体积,单位为m3/s;
S4:根据氢气加注压力等级P,设置储氢系统的压力系统以及各级压力系统的储氢量比例,方法如下:
1)如果氢气加注压力等级为70MPa,则设置低压、中压、高压三级储氢系统,且低压、中压、高压三级储氢系统的储氢量比例为1~3:1~2:1;
2)如果氢气加注压力等级为35MPa和70MPa,则设置低压、中压、高压三级储氢系统,且低压、中压、高压三级储氢系统的储氢量比例为1~3:1~2:1;
3)如果氢气加注压力等级为35MPa,则设置低压、中压两级储氢系统,且低压、中压两级储氢系统的储氢量比例为1~2:1;
S5:根据储氢系统压力等级P、储氢量比例和加氢站日加氢量m确定储氢系统,方法如下:
1)若加氢站日加氢量m≤500kg且氢气加注压力等级为35MPa时,则设置2个低压储氢设备和1个中压储氢设备;
2)若加氢站日加氢量m≤500kg且氢气加注压力等级为70MPa时,则设置2个低压储氢设备、1个中压储氢设备和1个高压储氢设备;
3)若加氢站日加氢量500kg≤m<1000kg且氢气加注压力等级为35MPa时,则设置4个低压储氢设备和3个中压储氢设备;
4)若加氢站日加氢量500kg≤m<1000kg且氢气加注压力等级为70MPa时,则设置4个低压储氢设备、2个中压储氢设备和1个高压储氢设备;
S6:确定加氢机的数量
Figure FDA0002209955000000031
式中[]为向上取整数运算符,式中式中m1为氢气加注压力等级P为35MPa下的加氢量,m2为氢气加注压力等级P为70MPa下的加氢量,计算得到数值即为加氢机数量。
2.根据权利要求1所述的水电解供氢加氢站设备选型方法,其中,在步骤S1中,所述加氢站日加氢量m通过以下两种方法中的一种确定:
a)直接给出数值m;
b)通过加氢车辆的类型及数量计算:
m=5×N1+20×N2+15×N3+m4
其中,N1为出租车的数量,N2为公交车的数量,N3为客运车的数量,m4为其它车辆用氢量的数量。
3.根据权利要求1所述的水电解供氢加氢站设备选型方法,其中,在步骤S4中,现有电解水装置每小时产氢量为50Nm3/h或100Nm3/h。
4.根据权利要求1所述的水电解供氢加氢站设备选型方法,其中,在步骤S4中,当氢气加注压力等级为70MPa时,所述低压、中压、高压三级储氢系统中:
低压储氢罐的储氢设计压力为25MPa;中压储氢罐的储氢设计压力为45MPa;高压储氢罐的储氢设计压力为87.5MPa。
5.根据权利要求1所述的水电解供氢加氢站设备选型方法,其中,在步骤S4中,当氢气加注压力等级为35MPa和70MPa时,所述低压、中压、高压三级储氢系统中:
低压储氢罐的储氢设计压力为25MPa;中压储氢罐的储氢设计压力为45MPa;高压储氢罐的储氢设计压力为87.5MPa。
6.根据权利要求1、4或5所述的水电解供氢加氢站设备选型方法,其中,在步骤S4中,当氢气加注压力等级为35MPa时,所述低压、中压两级储氢系统中:
低压储氢罐的储氢设计压力为25MPa;中压储氢罐的储氢设计压力为45MPa。
7.根据权利要求1所述的水电解供氢加氢站设备选型方法,其中,在步骤S5中,所述低压储氢设备为容积为5m3的储氢罐,其储氢设计压力为25MPa,最大储氢容量为88kg/车。
8.根据权利要求1所述的水电解供氢加氢站设备选型方法,其中,在步骤S5中,所述中压储氢设备为容积为5m3的储氢罐,其储氢设计压力为45MPa,最大储氢容量为145kg/罐。
9.根据权利要求1所述的水电解供氢加氢站设备选型方法,其中,在步骤S5中,所述高压储氢设备为容积为5m3的储氢罐,其储氢设计压力为87.5MPa,最大储氢容量为235kg/罐。
10.根据权利要求1所述的水电解供氢加氢站设备选型方法,其中,在步骤S7中,所述加氢机为单枪加氢机。
CN201910895128.1A 2019-09-20 2019-09-20 水电解供氢加氢站设备选型方法 Active CN112539340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910895128.1A CN112539340B (zh) 2019-09-20 2019-09-20 水电解供氢加氢站设备选型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910895128.1A CN112539340B (zh) 2019-09-20 2019-09-20 水电解供氢加氢站设备选型方法

Publications (2)

Publication Number Publication Date
CN112539340A true CN112539340A (zh) 2021-03-23
CN112539340B CN112539340B (zh) 2022-07-29

Family

ID=75012734

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910895128.1A Active CN112539340B (zh) 2019-09-20 2019-09-20 水电解供氢加氢站设备选型方法

Country Status (1)

Country Link
CN (1) CN112539340B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418907A (zh) * 2008-11-11 2009-04-29 同济大学 外供氢型加氢站的高压供氢系统
CN104776312A (zh) * 2015-04-20 2015-07-15 中国石油化工股份有限公司 L-cng加气站设备选型方法
CN104791601A (zh) * 2015-04-20 2015-07-22 中国石油化工股份有限公司 Cng加气子站设备选型方法
CN104864269A (zh) * 2015-04-20 2015-08-26 中国石油化工股份有限公司 Cng常规站设备选型方法
CN106015926A (zh) * 2016-07-12 2016-10-12 中国石油化工股份有限公司 加氢站氢气压缩储气、充气系统
CN207246782U (zh) * 2017-12-27 2018-04-17 深圳市凯豪达氢能源有限公司 制氢加氢站
CN207716084U (zh) * 2017-11-23 2018-08-10 郑州宇通客车股份有限公司 一种加氢机
CN108716614A (zh) * 2018-06-06 2018-10-30 安徽锦美碳材科技发展有限公司 一种分布式电解水制氢用于氢动力供氢的解决方案
CN109140226A (zh) * 2018-10-17 2019-01-04 东方电气集团东方锅炉股份有限公司 一种适用于35或70MPa加注压力的加氢方法和系统
CN109163214A (zh) * 2018-08-15 2019-01-08 国家电投集团氢能科技发展有限公司 加氢站
CN208566177U (zh) * 2018-05-02 2019-03-01 赫普科技发展(北京)有限公司 一种分布式电解制氢加氢站
CN109945067A (zh) * 2019-03-21 2019-06-28 浙江昊凡科技有限公司 一种加氢站氢能源快速充装的控制方法及系统

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418907A (zh) * 2008-11-11 2009-04-29 同济大学 外供氢型加氢站的高压供氢系统
CN104776312A (zh) * 2015-04-20 2015-07-15 中国石油化工股份有限公司 L-cng加气站设备选型方法
CN104791601A (zh) * 2015-04-20 2015-07-22 中国石油化工股份有限公司 Cng加气子站设备选型方法
CN104864269A (zh) * 2015-04-20 2015-08-26 中国石油化工股份有限公司 Cng常规站设备选型方法
CN106015926A (zh) * 2016-07-12 2016-10-12 中国石油化工股份有限公司 加氢站氢气压缩储气、充气系统
CN207716084U (zh) * 2017-11-23 2018-08-10 郑州宇通客车股份有限公司 一种加氢机
CN207246782U (zh) * 2017-12-27 2018-04-17 深圳市凯豪达氢能源有限公司 制氢加氢站
CN208566177U (zh) * 2018-05-02 2019-03-01 赫普科技发展(北京)有限公司 一种分布式电解制氢加氢站
CN108716614A (zh) * 2018-06-06 2018-10-30 安徽锦美碳材科技发展有限公司 一种分布式电解水制氢用于氢动力供氢的解决方案
CN109163214A (zh) * 2018-08-15 2019-01-08 国家电投集团氢能科技发展有限公司 加氢站
CN109140226A (zh) * 2018-10-17 2019-01-04 东方电气集团东方锅炉股份有限公司 一种适用于35或70MPa加注压力的加氢方法和系统
CN109945067A (zh) * 2019-03-21 2019-06-28 浙江昊凡科技有限公司 一种加氢站氢能源快速充装的控制方法及系统

Also Published As

Publication number Publication date
CN112539340B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Micena et al. Solar-powered Hydrogen Refueling Stations: A techno-economic analysis
CN100545011C (zh) 车载制氢加氢站
CN111159624B (zh) 一种计算新汽和抽汽联合供热机组供热煤耗率的方法
CN103524299B (zh) 一种合成甲醇和合成甲烷联产设备
CN103426032A (zh) 一种热电联产机组的经济优化调度方法
CN106090599A (zh) 氢能供应链
CN112539338B (zh) 液氢供氢加氢站设备选型方法
CN112539337B (zh) 高压管束车供氢加氢站设备选型方法
CN115307054B (zh) 一种基于微网余电制氢的加氢站设备容量优化配置方法
CN109972161A (zh) 一种基于污水处理厂的分布式发电制氢系统
CN104864269B (zh) Cng常规站设备选型方法
CN112539340B (zh) 水电解供氢加氢站设备选型方法
CN113405025A (zh) 一种天然气稳定掺氢控制方法及应用
CN205118654U (zh) 回收lng储罐产生的bog做为制氢燃料气的系统
CN202812779U (zh) 一种cng管束式集装箱
CN112539339B (zh) 天然气重整供氢加氢站设备选型方法
CN216591080U (zh) 氢气增压输出系统
CN110425413A (zh) 一种大规模低能耗阶梯储氢系统及方法
CN214572257U (zh) 一种可再生能源制氢的氢气回收装置系统
CN110425416B (zh) 一种小规模低能耗阶梯储氢系统及方法
CN210768963U (zh) 一种核电厂空气分离装置调峰系统
Rei et al. The Influence of the Hydrogen Supply Modes on a Hydrogen Refueling Station
CN115204546A (zh) 考虑建设与运行成本的电解制氢加氢站制氢及储氢配置方法
CN214840081U (zh) 一种加氢综合能源站
CN201334445Y (zh) 用大规模非并网风电进行甲醇生产的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220713

Address after: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Applicant after: CHINA PETROLEUM & CHEMICAL Corp.

Applicant after: Sinopec Safety Engineering Research Institute Co.,Ltd.

Address before: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Applicant before: CHINA PETROLEUM & CHEMICAL Corp.

Applicant before: SINOPEC Research Institute OF SAFETY ENGINEERING

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant