CN112531696B - 一种考虑用户需求响应的冷热电联供系统优化调度方法 - Google Patents

一种考虑用户需求响应的冷热电联供系统优化调度方法 Download PDF

Info

Publication number
CN112531696B
CN112531696B CN202011376116.7A CN202011376116A CN112531696B CN 112531696 B CN112531696 B CN 112531696B CN 202011376116 A CN202011376116 A CN 202011376116A CN 112531696 B CN112531696 B CN 112531696B
Authority
CN
China
Prior art keywords
energy
load
electric
user
consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011376116.7A
Other languages
English (en)
Other versions
CN112531696A (zh
Inventor
黄欢
吴建蓉
杨琪
马晓红
毛先胤
吕乾勇
张英
班国邦
牛唯
杨柳青
许逵
邹雕
彭敏放
孙洪博
蔡紫婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Power Grid Co Ltd
Original Assignee
Guizhou Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Power Grid Co Ltd filed Critical Guizhou Power Grid Co Ltd
Priority to CN202011376116.7A priority Critical patent/CN112531696B/zh
Publication of CN112531696A publication Critical patent/CN112531696A/zh
Application granted granted Critical
Publication of CN112531696B publication Critical patent/CN112531696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/906Clustering; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06313Resource planning in a project environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Power Engineering (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Health & Medical Sciences (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Primary Health Care (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Educational Administration (AREA)
  • Data Mining & Analysis (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种考虑用户需求响应行为的冷热电联供系统优化调度方法,它包括:搭建冷热电联供系统;构建增大可再生能源就地消纳的控制方法;基于HEMS对用户侧负荷进行优化控制,分析用户负荷的耗能特性和使用特征对负荷进行分类,将家用负荷分为电负荷、冷负荷和热负荷;同时考虑电动汽车和蓄电池的充放电功能,在分类的基础上针对不同种类负荷的运行特性进行分析计算;结合CCHP系统和用户侧负荷优化控制的联合优化控制;针对模型中光伏和风电出力的不确定性,基于多场景技术进行分析和处理;解决了现有需求侧资源不能有效利用、电负荷峰谷差过大、可再生能源就地消纳率不高以及化石能源消耗占比高的问题。

Description

一种考虑用户需求响应的冷热电联供系统优化调度方法
技术领域
本发明属于综合能源系统优化调度技术,尤其涉及一种考虑用户需求响应行为的冷热电联供系统优化调度方法。
背景技术
能源是社会发展的重要物质基础。随着全球经济的快速发展,能源消耗量不断增加,煤炭、石油、天然气等化石能源作为主要的能源利用形式,由于被过度开采利用,导致了温室效应、酸雨等一系列环境问题。因此,如何优化能源消耗结构,尽可能开发利用多种新能源和可再生能源,提高能效,降低环境污染成为亟需解决的问题。基于此,综合能源系统的概念应运而生。其是指在一定的区域范围内,通过对包含常规能源和新能源在内的多种能源进行互补利用,来满足终端用户的用能需求。冷热电联供系统(Combined Cooling,Heating and Power,CCHP)作为一种新型综合能源系统,以能够同时为用户侧提供冷、热、电能的突出优势受到广泛关注。目前,美国、日本、英国等发达国家已对CCHP系统进行了许多研究和应用,而中国起步相对较晚,研究尚处于初期阶段。现今针对CCHP系统的研究,包括系统建模、求解优化及性能评价等方面,尚且存在以下问题:(1)可再生能源技术的快速发展,使得越来越多的可再生能源发电接入系统。这些可再生能源发电出力的不确定性,直接影响到系统优化运行和结果的精确性及可靠性。(2)可再生能源发出的电力,可供系统和用户侧电负荷使用,也可以售往电网,在进行优化时,亟需一种能有效促进可再生能源就地消纳的方法策略。(3)如何优化能源结构,尽可能开发利用多种新能源,降低化石能效消耗占比,实现多种能源互补利用,在同时满足用户多种能源需求的同时进行高效供能是值得考虑的问题。
随着生活水平的提高,居民开始追求更为便捷和智能化的用能方式。同时,居民耗电量的不断增大,也使得电负荷峰谷差增大,给电网造成了巨大供电压力,也给其安全、稳定运行带来了巨大挑战。因此探寻一种更为合理、舒适、智能的用能方式成为大家的期望。目前,微软、谷歌、丰田等企业正在大力研发一种家庭智能化网络控制系统——家庭能量管理系统(Home Energy Management System,HEMS),它可以根据环境信息、价格信息以及用户的次日用能计划,对家用负荷进行优化调度和直接控制。基于HEMS的用户需求响应行为,使得家用负荷成为一种可控资源。家用负荷耗能高,可控性大,若能对这种资源加以利用,可有效降低峰谷差,缓解电网供电压力,提高电网稳定性。因此,充分利用用户需求响应行为进行综合能源系统优化调度是一个十分重要的研究。目前,有关这方面的研究成果极少,如何协调综合能源系统多能互补方式和用户需求响应行为,在满足用户个性化用能需求的基础上,优化用户用能方案,指导用户合理用能,有效改善能源消耗结构,降低环境污染具有重要的意义。
发明内容
本发明要解决的技术问题是:提供一种考虑用户需求响应行为的冷热电联供系统优化调度方法,同时提出一种可以增大可再生能源就地消纳的方法,以解决现有需求侧资源不能有效利用、电负荷峰谷差过大、可再生能源就地消纳率不高以及化石能源消耗占比高的问题。
本发明技术方案是:
一种考虑用户需求响应行为的冷热电联供系统优化调度方法,它包括:
步骤1、搭建冷热电联供系统;
步骤2、构建增大可再生能源就地消纳的控制方法;
步骤3、基于HEMS对用户侧负荷进行优化控制,分析用户负荷的耗能特性和使用特征对负荷进行分类,将家用负荷分为电负荷、冷负荷和热负荷;同时考虑电动汽车和蓄电池的充放电功能,在分类的基础上针对不同种类负荷的运行特性进行分析计算;
步骤4、结合CCHP系统和用户侧负荷优化控制的联合优化控制;
步骤5、针对模型中光伏和风电出力的不确定性,基于多场景技术进行分析和处理。
步骤1所述冷热电联供系统包括:包含光电、风电可再生能源发电,同时考虑天然气、生物质能和地热能的利用,燃气锅炉消耗天然气产生热能,燃气轮机消耗天然气产生电能,同时产生大量的烟气;餐厨垃圾经厌氧发酵后产生沼气,利用沼气内燃机消耗沼气进行发电;各类燃气机运行过程中产生的余热,经余热回收系统回收,以实现能量的梯级利用;地源热泵用浅层地热能作为热源以实现地热能的利用;电制冷机消耗电能产生冷能;当系统中产生的热能大于需求时,多余热能存储到蓄能装置或耗散在大气中;当产生的热能小于需求时,蓄能装置释放能量;吸收式制冷机作为一种冷热能转换设备吸收热能转化为冷能,以满足用户冷负荷需求;系统优先利用居民区里的生物质能和地热能,当不能满足用户用能需求时再考虑购入电能和天然气。
步骤2所述构建增大可再生能源就地消纳的控制方法包括:当系统发电量之和大于耗电量和电负荷需求时:(1)蓄电池处于满电状态,此时蓄电池不充电,多余电量售往电网;(2)蓄电池不处于满电状态,此时强行令蓄电池进行充电,消耗多余发电量,从而增大可再生能源就地消纳。
步骤2所述构建增大可再生能源就地消纳的控制方法包括:当发电量之和小于耗电量和电负荷需求时:(1)蓄电池电量为0,此时蓄电池不放电,所缺电量从电网购入;(2)蓄电池电量不为0,此时强行令蓄电池进行放电,弥补所缺电量。
步骤3所述考虑电动汽车和蓄电池的充放电功能,在分类的基础上针对不同种类负荷的运行特性进行分析计算的方法包括:
步骤3.1、负荷的频繁投切行为:引入中断次数和中断时间间隔进行描述;
Figure BDA0002808247500000031
Figure BDA0002808247500000032
Figure BDA0002808247500000033
Figure BDA0002808247500000041
式中:μi,t为设备i在t时段的状态变量,μi,t=1时表示设备运行,μi,t=0时设备不运行;设备的允许起止运行时间为
Figure BDA0002808247500000042
Ni为设备i的中断次数;
Figure BDA0002808247500000043
为最大允许中断次数;Di为最小中断时间间隔;
Figure BDA0002808247500000044
为最小允许中断间隔时间;
步骤3.2、冷热负荷具有时间不可控性,在满足用户舒适度的基础上在允许的温度范围内进行调控;
步骤3.3、设备间的关联性分析,包括使用时间存在先后顺序的设备以及使用时间具有重合的设备,通过利用设备的典型日数据,计算关联度来进行约束;计算步骤如下:
(1)计算各设备之间的关联度:在典型日数据中,若设备m的启停时间分别为
Figure BDA0002808247500000045
Figure BDA0002808247500000046
设备n的启停时间分别为
Figure BDA0002808247500000047
Figure BDA0002808247500000048
则:
Figure BDA0002808247500000049
其中,δmn为设备m和设备n的关联度;
Figure BDA00028082475000000410
时,设备m与设备n的使用时间重叠;
Figure BDA00028082475000000411
时设备m与设备n的使用时间不重叠,此时rmn=0;
(2)利用关联度对设备的启、停时间进行修正:
Figure BDA00028082475000000412
其中,
Figure BDA00028082475000000413
为设备n的优化启动时间,N为与设备m有关联性且典型运行时间重叠的设备个数;
步骤3.4、考虑电动汽车的出行计划。在出行时段,电动汽车的电量
Figure BDA00028082475000000414
与前一时段的电量
Figure BDA00028082475000000415
及行驶的里程数有关,如式(7),
Figure BDA00028082475000000416
为电动汽车出行时段行驶的里程数,ξEV为每千米耗电量。
Figure BDA00028082475000000417
步骤4所述结合CCHP系统和用户侧负荷优化控制的联合优化控制包括:首先,根据用户的习惯用能方式,计算各时段单位供能价格;然后根据单位供能价格进行用户侧负荷优化,得到更为合理的用户用能方案,指导用户进行合理用能;最后,根据负荷优化后用户的冷热电消耗值,对CCHP系统进行优化,从而得到各设备最佳出力、与电网交互的电功率、天然气购买量、地热能消耗量、生物质能消耗量以及系统成本。
步骤5所述针对模型中光伏和风电出力的不确定性,基于多场景技术进行分析和处理时,光照强度拟服从Beta分布,风速拟服从Weiull分布,采用拉丁超立方采样场景生成和同步回代场景削减来处理系统的不确定性。
采用拉丁超立方采样场景生成方法包括:
步骤5.1、构建概率分布函数F(x);
步骤5.2、将函数F(x)划分为N个等概率子区间;
步骤5.3、在子区间内进行随机抽样:
Figure BDA0002808247500000051
步骤5.4、进行逆变换,得到样本值:
xk=F-1(δk)。
场景削减的方法包括:
步骤5.5、初始化,场景概率为:
Figure BDA0002808247500000052
步骤5.6、计算任意二个场景(xi,xj)的Kantorovich范数距离
Figure BDA0002808247500000053
步骤5.7、寻找与场景xi距离最近的场景xj,计算
Figure BDA0002808247500000054
步骤5.8、选出最小的PKDi,剔除场景xi,更新场景xj的概率
ρj=ρji
本发明有益效果:
本发明充分利用了需求侧资源,基于HEMS优化用户需求响应行为,以达到降低电负荷峰谷差的目的,同时提出了结合CCHP系统和用户侧负荷优化控制的联合优化方法及流程;CCHP系统充分考虑了天然气、地热能和生物质能的利用,并将光伏发电和风力发电纳入,针对可再生能源就地消纳不高的情况,提出了相应的控制策略。解决了现有需求侧资源不能有效利用、电负荷峰谷差过大、可再生能源就地消纳率不高以及化石能源消耗占比高的问题。
附图说明
图1为CCHP系统框架示意图;
图2为可再生能源就地消纳控制方法示意图;
图3为结合CCHP系统和用户侧负荷优化控制的联合优化流程图;
图4为场景生成及削减流程图。
具体实施方式
一种考虑用户需求响应行为的冷热电联供系统优化调度方法,它包括:
步骤1、搭建CCHP系统模型,如图1所示。系统中包含光电、风电等可再生能源发电,同时充分考虑了天然气、生物质能和地热能的利用。燃气锅炉消耗天然气产生热能,燃气轮机消耗天然气产生电能,同时产生大量的高温烟气。餐厨垃圾经厌氧发酵后产生沼气,利用沼气内燃机消耗沼气进行发电。各类燃气机运行过程中产生的大量余热,经余热回收系统回收,以实现能量的梯级利用。地源热泵用浅层地热能作为热源以实现地热能的利用。电制冷机消耗电能产生冷能。当系统中产生的热能大于需求时,多余热能存储到蓄能装置或耗散在大气中;当产生的热能小于需求时,蓄能装置释放能量。吸收式制冷机作为一种冷热能转换设备,可以吸收热能转化为冷能,以满足用户冷负荷需求。系统优先利用居民区里的生物质能和地热能,当其不能满足用户用能需求时,再考虑购入电能和天然气。各设备间的能量流动关系如图1所示,不同颜色箭头代表不同种类能量流动方向。
步骤2、针对CCHP系统中可再生能源就地消纳率不高的情况,提出一种可以增大可再生能源就地消纳的控制策略,如图2所示。当系统发电量之和大于耗电量和电负荷需求时:(1)蓄电池处于满电状态,此时蓄电池不充电,多余电量售往电网;(2)蓄电池不处于满电状态,此时强行令蓄电池进行充电,消耗多余发电量,从而增大可再生能源就地消纳。当发电量之和小于耗电量和电负荷需求时:(1)蓄电池电量为0,此时蓄电池不放电,所缺电量从电网购入;(2)蓄电池电量不为0,此时强行令蓄电池进行放电,弥补所缺电量。图2中,
Figure BDA0002808247500000071
为系统发电量,
Figure BDA0002808247500000072
为系统耗电量,
Figure BDA0002808247500000073
为CCHP系统与电网交互的电能,
Figure BDA0002808247500000074
分别为用户所需电负荷,SB,max为蓄电池的电量上限;
Figure BDA0002808247500000075
分别为蓄电池的充、放电状态变量;
Figure BDA0002808247500000076
分别为蓄电池的充、放电功率。
步骤3、考虑用户需求响应行为,基于HEMS对用户侧负荷进行优化控制,充分分析用户负荷的耗能特性和使用特征,对负荷进行精细化分类。研究考虑电负荷的可控性与不可控性、可中断性与不可中断性,将家用负荷分为电负荷、冷负荷和热负荷,同时充分考虑电动汽车和蓄电池的充放电功能。在分类的基础上针对不同种类负荷的运行特性进行分析:
a)负荷的频繁投切行为:引入中断次数和中断时间间隔进行描述。
Figure BDA0002808247500000077
Figure BDA0002808247500000078
Figure BDA0002808247500000079
Figure BDA00028082475000000710
其中,μi,t为设备i在t时段的状态变量,μi,t=1时表示设备运行,μi,t=0时设备不运行;设备的允许起止运行时间为
Figure BDA00028082475000000711
Ni为设备i的中断次数;
Figure BDA00028082475000000712
为最大允许中断次数;Di为最小中断时间间隔;
Figure BDA00028082475000000713
为最小允许中断间隔时间。
b)冷热负荷具有时间不可控性,考虑在满足用户舒适度的基础上在允许的温度范围内进行调控。
c)设备间的关联性分析,包括使用时间存在严格先后顺序的设备以及使用时间具有部分重合的设备,通过利用设备的典型日数据,计算关联度来进行约束。计算步骤如下:
(1)计算各设备之间的关联度。在典型日数据中,若设备m的启停时间分别为
Figure BDA0002808247500000081
Figure BDA0002808247500000082
设备n的启停时间分别为
Figure BDA0002808247500000083
Figure BDA0002808247500000084
则:
Figure BDA0002808247500000085
其中,δmn为设备m和设备n的关联度;
Figure BDA0002808247500000086
时,设备m与设备n的使用时间重叠;
Figure BDA0002808247500000087
时设备m与设备n的使用时间不重叠,此时rmn=0。
(2)利用关联度对设备的启、停时间进行修正:
Figure BDA0002808247500000088
其中,
Figure BDA0002808247500000089
为设备n的优化启动时间,N为与设备m有关联性且典型运行时间重叠的设备个数。
d)考虑电动汽车的出行计划。在出行时段,电动汽车的电量
Figure BDA00028082475000000810
与前一时段的电量
Figure BDA00028082475000000811
及行驶的里程数有关,如式(7),
Figure BDA00028082475000000812
为电动汽车出行时段行驶的里程数,ξEV为每千米耗电量。
Figure BDA00028082475000000813
步骤4、提出结合CCHP系统和用户侧负荷优化控制的联合优化方法及流程,如图3所示。首先,根据用户的习惯用能方式,计算各时段单位供能价格。然后根据单位供能价格,进行用户侧负荷优化,得到更为合理的用户用能方案,以指导用户进行合理用能。最后,根据负荷优化后用户的冷热电消耗值,对CCHP系统进行优化,从而得到各设备最佳出力、与电网交互的电功率、天然气购买量、地热能消耗量、生物质能消耗量以及系统成本。
步骤5、针对模型中光伏和风电出力的不确定性,基于多场景技术进行分析和处理。光照强度拟服从Beta分布,风速拟服从Weiull分布,采用拉丁超立方采样场景生成和同步回代场景削减来处理系统的不确定性,流程如图4所示。
以下结合算例对本发明的实施进一步详细说明。
一种考虑用户需求响应行为的冷热电联供系统优化调度方法,具体如下:
1、模型搭建及方案设置
所搭建模型如图1-图4所示,为证明本发明的有效性,设置三种方案进行对比分析。方案一:采用CCHP系统进行综合供能,用户侧不进行负荷优化调度;方案二:采用冷热电分供系统供能,系统中冷、热、电三种能量独立供应,燃气轮机和沼气内燃机运行产生的余热不进行回收,用户侧进行负荷优化调度;方案三:供能侧采用CCHP系统进行综合供能,用户侧进行负荷优化调度,即本专利所提模型和方法。对三种方案进行计算,得到各方案下的成本情况如表1所示。
2、结果分析
表1 三种方案的成本比较
Figure BDA0002808247500000091
对比方案一和方案三,对用户负荷进行优化后,用户用能成本、电负荷平坦度成本急剧降低,说明对用户负荷进行优化能有效降低电负荷峰谷差、节约用户用能费用;环境成本稍有降低,说明能降低环境污染但效果不明显。对比方案二和方案三,说明采用CCHP系统进行多种能源互补利用,能有效降低成本,降低电负荷峰谷差,减少环境污染。综上,本专利提出的考虑用户需求响应行为的冷热电联供系统优化调度方法适用且能有效的降低电负荷峰谷差、节约用户用能费用和减少环境污染。
以上所述仅为本发明的较佳实施例唯一,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种考虑用户需求响应的冷热电联供系统优化调度方法,它包括:
步骤1、搭建冷热电联供系统;
步骤1所述冷热电联供系统包括:包含光电、风电可再生能源发电,同时考虑天然气、生物质能和地热能的利用,燃气锅炉消耗天然气产生热能,燃气轮机消耗天然气产生电能,同时产生大量的烟气;餐厨垃圾经厌氧发酵后产生沼气,利用沼气内燃机消耗沼气进行发电;各类燃气机运行过程中产生的余热,经余热回收系统回收,以实现能量的梯级利用;地源热泵用浅层地热能作为热源以实现地热能的利用;电制冷机消耗电能产生冷能;当系统中产生的热能大于需求时,多余热能存储到蓄能装置或耗散在大气中;当产生的热能小于需求时,蓄能装置释放能量;吸收式制冷机作为一种冷热能转换设备吸收热能转化为冷能,以满足用户冷负荷需求;系统优先利用居民区里的生物质能和地热能,当不能满足用户用能需求时再考虑购入电能和天然气;
步骤2、构建增大可再生能源就地消纳的控制方法;
步骤2所述构建增大可再生能源就地消纳的控制方法包括:当系统发电量之和大于耗电量和电负荷需求时:(1)蓄电池处于满电状态,此时蓄电池不充电,多余电量售往电网;(2)蓄电池不处于满电状态,此时强行令蓄电池进行充电,消耗多余发电量,从而增大可再生能源就地消纳;
步骤3、基于HEMS对用户侧负荷进行优化控制,分析用户负荷的耗能特性和使用特征对负荷进行分类,将家用负荷分为电负荷、冷负荷和热负荷;同时考虑电动汽车和蓄电池的充放电功能,在分类的基础上针对不同种类负荷的运行特性进行分析计算;
步骤3所述考虑电动汽车和蓄电池的充放电功能,在分类的基础上针对不同种类负荷的运行特性进行分析计算的方法包括:
步骤3.1、负荷的频繁投切行为:引入中断次数和中断时间间隔进行描述;
Figure FDA0003748960840000011
Figure FDA0003748960840000021
Figure FDA0003748960840000022
Figure FDA0003748960840000023
式中:μi,t为设备i在t时段的状态变量,μi,t=1时表示设备运行,μi,t=0时设备不运行;设备的允许起止运行时间为Ti start、Ti end;Ni为设备i的中断次数;Ni max为最大允许中断次数;Di为最小中断时间间隔;Di min为最小允许中断间隔时间;
步骤3.2、冷热负荷具有时间不可控性,在满足用户舒适度的基础上在允许的温度范围内进行调控;
步骤3.3、设备间的关联性分析,包括使用时间存在先后顺序的设备以及使用时间具有重合的设备,通过利用设备的典型日数据,计算关联度来进行约束;计算步骤如下:(1)计算各设备之间的关联度:在典型日数据中,若设备m的启停时间分别为
Figure FDA0003748960840000024
Figure FDA0003748960840000025
设备n的启停时间分别为
Figure FDA0003748960840000026
Figure FDA0003748960840000027
则:
Figure FDA0003748960840000028
其中,δmn为设备m和设备n的关联度;
Figure FDA0003748960840000029
时,设备m与设备n的使用时间重叠;
Figure FDA0003748960840000031
时设备m与设备n的使用时间不重叠,此时rmn=0;
(2)利用关联度对设备的启、停时间进行修正:
Figure FDA0003748960840000032
其中,
Figure FDA0003748960840000033
为设备n的优化启动时间,N为与设备m有关联性且典型运行时间重叠的设备个数;
步骤3.4、考虑电动汽车的出行计划,在出行时段,电动汽车的电量
Figure FDA0003748960840000034
与前一时段的电量
Figure FDA0003748960840000035
及行驶的里程数有关,如式(7),
Figure FDA0003748960840000036
为电动汽车出行时段行驶的里程数,ξEV为每千米耗电量:
Figure FDA0003748960840000037
步骤4、结合CCHP系统和用户侧负荷优化控制的联合优化控制;
步骤4所述结合CCHP系统和用户侧负荷优化控制的联合优化控制包括:首先,根据用户的习惯用能方式,计算各时段单位供能价格;然后根据单位供能价格进行用户侧负荷优化,得到更为合理的用户用能方案,指导用户进行合理用能;最后,根据负荷优化后用户的冷热电消耗值,对CCHP系统进行优化,从而得到各设备最佳出力、与电网交互的电功率、天然气购买量、地热能消耗量、生物质能消耗量以及系统成本;
步骤5、针对模型中光伏和风电出力的不确定性,基于多场景技术进行分析和处理;
步骤5所述针对模型中光伏和风电出力的不确定性,基于多场景技术进行分析和处理时,光照强度拟服从Beta分布,风速拟服从Weiull分布,采用拉丁超立方采样场景生成和同步回代场景削减来处理系统的不确定性。
2.根据权利要求1所述的一种考虑用户需求响应的冷热电联供系统优化调度方法,其特征在于:步骤2所述构建增大可再生能源就地消纳的控制方法包括:当发电量之和小于耗电量和电负荷需求时:(1)蓄电池电量为0,此时蓄电池不放电,所缺电量从电网购入;(2)蓄电池电量不为0,此时强行令蓄电池进行放电,弥补所缺电量。
3.根据权利要求1所述的一种考虑用户需求响应的冷热电联供系统优化调度方法,其特征在于:采用拉丁超立方采样场景生成方法包括:
步骤5.1、构建概率分布函数F(x);
步骤5.2、将函数F(x)划分为N个等概率子区间;
步骤5.3、在子区间内进行随机抽样:
Figure FDA0003748960840000041
步骤5.4、进行逆变换,得到样本值:
xk=F-1k)。
4.根据权利要求1所述的一种考虑用户需求响应的冷热电联供系统优化调度方法,其特征在于:场景削减的方法包括:
步骤5.5、初始化,场景概率为:
Figure FDA0003748960840000042
步骤5.6、计算任意二个场景(xi,xj)的Kantorovich范数距离
Figure FDA0003748960840000043
步骤5.7、寻找与场景xi距离最近的场景xj,计算
Figure FDA0003748960840000044
步骤5.8、选出最小的PKDi,剔除场景xi,更新场景xj的概率
ρj=ρjj
CN202011376116.7A 2020-11-30 2020-11-30 一种考虑用户需求响应的冷热电联供系统优化调度方法 Active CN112531696B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011376116.7A CN112531696B (zh) 2020-11-30 2020-11-30 一种考虑用户需求响应的冷热电联供系统优化调度方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011376116.7A CN112531696B (zh) 2020-11-30 2020-11-30 一种考虑用户需求响应的冷热电联供系统优化调度方法

Publications (2)

Publication Number Publication Date
CN112531696A CN112531696A (zh) 2021-03-19
CN112531696B true CN112531696B (zh) 2022-12-23

Family

ID=74995363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011376116.7A Active CN112531696B (zh) 2020-11-30 2020-11-30 一种考虑用户需求响应的冷热电联供系统优化调度方法

Country Status (1)

Country Link
CN (1) CN112531696B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517709B (zh) * 2021-04-28 2022-07-26 青岛理工大学 一种户用电能存储系统的控制和管理方法
CN113922383B (zh) * 2021-11-15 2023-05-19 国网四川省电力公司电力科学研究院 一种考虑负荷特性的分布式低压减载加速动作方法及装置
CN114493048A (zh) * 2022-04-06 2022-05-13 国网江西省电力有限公司经济技术研究院 基于需求响应机制的综合能源系统优化调度方法及装置
CN115173415B (zh) * 2022-09-07 2022-12-06 华电电力科学研究院有限公司 一种综合能源系统及优化调控方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019652A (ja) * 2010-07-09 2012-01-26 Sony Corp 電力コントロール装置および電力コントロール方法
US9146547B2 (en) * 2011-07-20 2015-09-29 Nec Laboratories America, Inc. Optimal energy management of a rural microgrid system using multi-objective optimization
WO2015077754A1 (en) * 2013-11-25 2015-05-28 Siemens Corporation A statistical approach to modeling and forecast of cchp energy and cooling demand and optimization cchp control setpoints
CN109962476A (zh) * 2019-02-01 2019-07-02 中国电力科学研究院有限公司 一种微电网中源网荷储互动能量管理办法和装置
CN110689189B (zh) * 2019-09-24 2023-05-09 国网天津市电力公司 考虑供能侧和需求侧的冷热电联合供需平衡优化调度方法
CN111815159A (zh) * 2020-07-07 2020-10-23 江南大学 一种基于bpso和综合储能策略的hems调度方法

Also Published As

Publication number Publication date
CN112531696A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
CN112531696B (zh) 一种考虑用户需求响应的冷热电联供系统优化调度方法
Liu et al. Two-phase collaborative optimization and operation strategy for a new distributed energy system that combines multi-energy storage for a nearly zero energy community
CN111342451A (zh) 促进可再生能源消纳的园区综合能源系统经济配置方法
CN112736939B (zh) 掺氢天然气综合能源系统制氢储氢装置优化容量配置方法
CN106786509B (zh) 大规模风电并网下基于多场景模拟的热-电联合调度方法
CN103151797A (zh) 基于多目标调度模型的并网运行方式下微网能量控制方法
CN110941799B (zh) 一种考虑系统综合不确定性因素的能量枢纽随机规划方法
CN112464477A (zh) 计及需求响应的多能耦合综合能源运行仿真方法
CN104361416A (zh) 一种考虑大规模电动汽车接入的电网双层优化调度方法
CN107358345A (zh) 计及需求侧管理的分布式冷热电联供系统优化运行方法
Wang et al. A hybrid operating strategy of combined cooling, heating and power system for multiple demands considering domestic hot water preferentially: A case study
CN114091728A (zh) 一种基于江水源热泵的供能系统优化调度方法和系统
Guan et al. Optimal configuration and operation of multi-energy complementary distributed energy systems
Guo et al. Operation optimization of integrated energy system from the perspective of sustainable development
CN114757388A (zh) 一种基于改进nsga-iii的区域综合能源系统设备容量优化方法
CN109255487A (zh) 一种基于标准化矩阵模型的综合能源系统优化方法
Viesi et al. Multi-objective optimization of an energy community: an integrated and dynamic approach for full decarbonisation in the European Alps
Hu et al. Economic and environmental analysis of coupling waste-to-power technology to integrated energy system (IES) using a two-layer optimization method
Chen et al. Flexible dispatching method for park‐level integrated energy systems considering energy cascade utilization
CN114091917A (zh) 冷热电联供型微电网动态环保经济调度方法及系统
Zhang et al. Optimized Configuration of Integrated Energy System Considering the Access and Operation of Renewable Energy
Wang et al. Integrated evaluation criteria of economic benefit and energy value efficiency of micro grid
Li et al. Capacity configuration model of biogas-based integrated energy system
Lv et al. Economic analysis of trigeneration systems considering participations of energy storage
Liu et al. Optimal operation of regional integrated energy system considering energy storage and conversion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant