CN112528467B - 一种电热综合能源系统鲁棒机组组合模型的求解方法 - Google Patents

一种电热综合能源系统鲁棒机组组合模型的求解方法 Download PDF

Info

Publication number
CN112528467B
CN112528467B CN202011305694.1A CN202011305694A CN112528467B CN 112528467 B CN112528467 B CN 112528467B CN 202011305694 A CN202011305694 A CN 202011305694A CN 112528467 B CN112528467 B CN 112528467B
Authority
CN
China
Prior art keywords
representing
power
wind power
model
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011305694.1A
Other languages
English (en)
Other versions
CN112528467A (zh
Inventor
王程
巩志皓
毕天姝
张蕊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202011305694.1A priority Critical patent/CN112528467B/zh
Publication of CN112528467A publication Critical patent/CN112528467A/zh
Application granted granted Critical
Publication of CN112528467B publication Critical patent/CN112528467B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种电热综合能源系统鲁棒机组组合模型的求解方法,首先基于最优经济调度建立电热综合能源系统鲁棒机组组合预调度模型;基于风电的预测值求解所建立的预调度模型,获得经济效益最优的运行策略及风电和环境温度的可接纳域;判断风电的空间相关性是否被挖掘,若是,则基于风电相关性建立数据驱动不确定集合并消除无效顶点;建立电热综合能源系统鲁棒机组组合再调度模型;基于数据驱动不确定集合求取所述再调度模型,获得风电和环境温度各自的最坏场景及对应的功率不平衡量;判断步骤5所得到的功率不平衡量是否满足收敛条件;若是,则认为运行策略可行,迭代结束。上述方法能够在保证运行策略脱离保守的前提下有效改进计算效率。

Description

一种电热综合能源系统鲁棒机组组合模型的求解方法
技术领域
本发明涉及电热综合能源系统技术领域,尤其涉及一种电热综合能源系统鲁棒机组组合模型的求解方法。
背景技术
在冬季,我国北方普遍存在热电联供的集中产能形式,热电联产机组的装机容量日益增长,逼近火电装机总量。同时我国北方具有丰富的风力资源,在供热比较集中的冬季,风电产能亦增长迅速,而热电联产机组的常规“以热定电”工作模式却不利于同时期的风电消纳,因此众多因素共同推动以电热集中统一调度为中心的电热综合能源系统调度模式的探索与发展。
电热综合能源系统的探索阶段缺乏成熟理论的指导,在面对共性问题时仍以电力系统领域的相似方法措施入手,在考虑不确定因素进行电热综合能源系统的机组组合优化时,鲁棒优化理论仍然是值得借鉴的方法理论,不确定集合用于表征电热综合能源系统中所有的不确定因素,进而类似于电力系统对运行策略进行不确定集合涵盖下的不确定场景校验。
然而传统的盒式不确定集合已经被许多研究证明会导致运行策略过于保守,过度引起资源配置的浪费。为改善这一缺陷,以挖掘不确定因素自身的时空维度的相关性而产生的数据驱动的不确定集合应运而生,其能够基于所构建的经典历史数据集合去刻画出紧贴数据分布的不确定范围。尽管不同数据挖掘技术的应用决定了数据驱动的不确定集合不同的几何外观,但是其普遍是形成具有多个顶点的凸多边形以实现最紧贴历史数据分布,减少不必要的资源浪费,上述方法固然能够改善传统的盒式不确定集合的缺陷,但是却因不确定模型构建复杂、含过多的几何顶点而导致计算效率低下。
发明内容
本发明的目的是提供一种电热综合能源系统鲁棒机组组合模型的求解方法,该方法能够在保证运行策略脱离保守的前提下有效改进计算效率。
本发明的目的是通过以下技术方案实现的:
一种电热综合能源系统鲁棒机组组合模型的求解方法,所述方法包括:
步骤1、首先基于最优经济调度建立电热综合能源系统鲁棒机组组合预调度模型;
步骤2、基于风电的预测值求解步骤1所建立的预调度模型,获得经济效益最优的运行策略及风电和环境温度的可接纳域;
步骤3、判断风电的空间相关性是否被挖掘,若是,则基于风电相关性建立数据驱动不确定集合并消除无效顶点;若否,则与环境温度一起形成数据驱动不确定集合;
步骤4、建立电热综合能源系统鲁棒机组组合再调度模型,以检测运行策略的可行程度;
步骤5、基于步骤3所形成的数据驱动不确定集合求取所述再调度模型,获得风电和环境温度各自的最坏场景及对应的功率不平衡量;
步骤6、判断步骤5所得到的功率不平衡量是否满足收敛条件;若是,则认为运行策略可行,迭代结束;若否,则将最坏场景返回给所述预调度模型,继续迭代求解,直到满足收敛条件为止。
由上述本发明提供的技术方案可以看出,上述方法能够在保证运行策略脱离保守的前提下有效改进计算效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为本发明实施例提供的电热综合能源系统鲁棒机组组合模型的求解方法流程示意图;
图2为本发明所述算例电热综合能源系统的拓扑结构示意图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面将结合附图对本发明实施例作进一步地详细描述,如图1所示为本发明实施例提供的电热综合能源系统鲁棒机组组合模型的求解方法流程示意图,所述方法包括:
步骤1、首先基于最优经济调度建立电热综合能源系统鲁棒机组组合预调度模型;
在该步骤中,建立电热综合能源系统鲁棒机组组合预调度模型的过程具体为:
首先建立电热综合能源系统鲁棒机组组合的目标函数,具体如下式(1)所示:
其中,第一行表示热电联产机组的预发电及产热成本、预储备成本和机组组合成本;第二行表示火电机组的预发电成本、预储备成本和机组组合成本;第三行表示风电和管道热损的越限罚项;
上式中,t,g,m和a分别表示时间、发电机、风机和热网的序数;∑C和∑T分别表示热电联产机组和火电机组的集合;表示发电机的预发电量;/>表示热电联产机组的预产热量;ugt表示发电机的运行状态;/>和/>分别表示发电机的正备用和负备用;/>和/>分别表示热电联机组和火电机组的启停成本系数;zgt表示发电机的启停状态;/>和/>分别表示风电的弃风和切负荷风险;/>和/>分别表示环境温度波动引起的管道损失正罚项和负罚项;
然后建立如下的预调度模型:
公式(2)-(3)表示分段线性化后运行风险与风电可消纳边界的关系;其中,表示分段线性化系数;/>和/>分别表示风电可接纳域的上边界与下边界;y和Y分别表示分段的序数和数量:
公式(4)-(5)分别表示环境温度波动引起的管道损失正罚项与负罚项定义式:其中,和/>分别表示正罚项系数和负罚项系数;c表示流体的比热容;∑P(a)表示热网中的管道集合;/>表示管道内的流体流量;/>和/>分别表示管道环境温度可接纳域的上边界与下边界;/>和/>分别表示环境温度的可接纳域上边界和下边界:
公式(6)-(7)分别表示风电可接纳域边界和环境温度可接纳域边界的取值范围;其中,表示风电的预测值;/>表示风电的装机容量;/>表示环境温度的预测值:
公式(8)-(9)分别表示风电运行风险与管道环境温度罚项的限制约束;其中,分别表示风电运行风险和管道环境温度罚项的阈值:
公式(10)-(12)表示发电机的运行逻辑约束;其中,和/>分别表示最大开机和关机时间:
公式(13)-(14)表示发电机的备用容量约束;其中,P g分别表示发电机的最大与最小发电量:
公式(15)-(16)表示发电机的爬坡约束;其中,和/>分别表示发电机的正爬坡能力和负爬坡能力:
公式(17)表示发电机的出力约束:
公式(18)表示节点功率平衡约束;其中,b、le和d分别表示节点、线路和电负荷的序数;∑C(b),∑T(b),∑W(b),∑L+(b),∑D(b),∑L-(b)分别表示连接在节点b上的热电联产机组、火电机组、风电机组、功率输入的线路、电负荷、功率输出的线路的集合;表示线路流过的潮流;Pdt表示电负荷:
公式(19)表示线路潮流约束;其中,表示线路传输的最大容量;/>表示线路的导纳;/>和/>分别表示线路的首端与末端的相位:
公式(20)-(22)表示热电联产机组的电热耦合约束;其中,NKg表示热电联产机组出力可行域的顶点数量;表示热电联产机组出力可行域顶点对应的可行系数;Pgk和Qgk分别表示热电联产机组出力可行域顶点对应的电出力与热出力:
公式(23)-(24)分别表示供热网与回热网中的节点流量守恒约束;其中,∑P+(n),∑P-(n),∑H(n),∑C(n)分别表示连接在节点n上的流入节点流量的管道集合、流出节点流量的管道集合、换热站集合、热电联产机组集合;分别表示供热网中流经管道中、换热站、热电联产机组的流量;/>分别表示回热网中流经管道中、换热站、热电联产机组的流量:
公式(25)-(26)分别表示热电联产机组产热量与换热站耗热量的解耦约束;其中,分别表示供热网与回热网中的节点温度:
公式(27)-(28)分别表示供热网与回热网中的管道热损约束;其中,分别表示供热网中管道首端与末端的温度;/>分别表示回热网中管道首端与末端的温度;/>表示管道的热损系数;/>表示管道的长度;∑P(a)表示区域热网a中管道的集合:
公式(29)-(31)表示节点温度混合约束:
步骤2、基于风电的预测值求解步骤1所建立的预调度模型,获得经济效益最优的运行策略及风电和环境温度的可接纳域;
在该步骤中,由于步骤1所建立的预调度模型整体呈现线性化,因此可直接调用商业求解器Gurobi高效求解,获得经济效益最优的运行策略及风电和环境温度的可接纳域。
步骤3、判断风电的空间相关性是否被挖掘,若是,则基于风电相关性建立数据驱动不确定集合并消除无效顶点;若否,则与环境温度一起形成数据驱动不确定集合;
在该步骤中,基于风电相关性建立数据驱动不确定集合并消除无效顶点的过程具体为:
首先选择有效的输电线路,从原始传输线路集合中消除具有无效潮流容量约束的传输线路,具有无效潮流容量约束的传输线路满足以下条件:
其中,和/>分别表示第k次迭代求得的风电可消纳边界和发电机运行状态;pgt,wmt分别表示发电机和风电场的有功输出量;Pdt表示负荷的有功需求量;/>表示线路的最大功率传输容量;/>分别表示发电机、风电场和负荷的线路功率分布转移因子;
然后构建一个M行L列的标志矩阵H;其中,M是风电场的数量,L是筛选出的有效线路的数量,并根据如下原则为H中的元素赋值:
采用如下两步对风电场聚类:
(i)初始扫描:计算H每一行的数值和并将相同数值和的行序数,即风电场序数,初步聚类为一簇;
(ii)二次扫描:匹配每一簇中H的行元素,并将行元素完全匹配的风电场归为一簇,记录具有两个以上风电场的簇,并将其表示为其中j是聚类索引;
然后排除无效顶点,按照上述风电场聚类结果形成的数据驱动不确定集合,按照以下原则设置无效顶点的可行系数xi为0:
步骤4、建立电热综合能源系统鲁棒机组组合再调度模型,以检测运行策略的可行程度;
在该步骤中,由于步骤2中的预调度模型是立足于最优经济调度而作出的运行策略,但是不能保证运行策略能够对所有的不确定因素场景具有可行性,为了满足系统对运行可靠性的要求,建立如下的再调度模型检测运行策略的可行程度,具体过程为:
公式(32)表示可行性判据,以电力系统节点功率平衡的松弛变量与热力系统中节点温度混合松弛变量为检测量;其中,分别表示功率越限和缺额的松弛变量;分别表示供热网中热量越限和缺额的松弛变量;/>分别表示回热网中热量越限和缺额的松弛变量;Ω表示不确定因素;当且仅当所有松弛变量和为0时,方能认为运行策略不会引起功率不平衡,从而保证运行策略可行性:
公式(33)表示各松弛变量的取值范围:
公式(34)表示预调度之后发电机的出力范围:
公式(35)表示检测功率不平衡的节点功率平衡约束:
公式(36)-(37)分别表示供热网与回热网中检测热功率不平衡的节点温度混合约束:
公式(38)表示风电与环境温度的不确定性出力;其中,wmti分别表示风电与环境温度的数据驱动的不确定集合的顶点;χi,τi分别表示风电与环境温度的数据不确定集合的顶点可行系数:
所建立的再调度模型除上述约束外,还包括实时决策变量参与的公式(19)-(31)
步骤5、基于步骤3所形成的数据驱动不确定集合求取所述再调度模型,获得风电和环境温度各自的最坏场景及对应的功率不平衡量;
在该步骤中,具体可以采用对偶转化将再调度模型等价转变成单层非线性优化问题,再采用基于大M法将再调度模型转为一个标准的单层混合整数线性规划问题,进而可以调用Gurobi等商业求解器对再调度模型的最终形式进行求解,优化得到风电和环境温度各自的最坏场景及对应的功率不平衡量。
步骤6、判断步骤5所得到的功率不平衡量是否满足收敛条件;若是,则认为运行策略可行,迭代结束;若否,则将最坏场景返回给所述预调度模型,继续迭代求解,直到满足收敛条件为止。
在该步骤中,具体是通过比较步骤5得到的功率不平衡量与预先设置的最大不平衡量阈值来判断是否满足收敛条件;
若步骤5所得功率不平衡量小于最大不平衡量阈值,则认为收敛,运行策略可行,迭代结束;否则,将步骤5中同时求得的最坏场景标志χi返回给所述预调度模型,继续迭代求解,直到满足收敛条件为止。
下面以具体的算例对上述方法的有效性进行验证,在本算例是基于IEEE 6节点电力系统和6节点热力系统耦合而成的电热综合能源系统,如图2所示为本发明所述算例电热综合能源系统的拓扑结构示意图:
考虑不同时段的不确定因素,设置如下场景进行方法验证:
Case 1:6个时段;
Case 2:12个时段;
Case 3:18个时段;
Case 4:24个时段;
从以下两个方面验证所述方法对结果的影响:
1、结果最优性影响
尽管所提方法旨在改善计算效率,但其本质是一种优化问题的近似处理方法,所以有必要验证所提方法使用前后对运行策略的最优性影响。
表I使用加速算法前后目标函数对比
由表I可看出:加速算法使用前后,目标函数的变化微乎其微,从侧面验证加速算法原理的正确性,能够保证最终运行策略的最优性。
2、计算效率的改善
加速算法的主要作用是改善因数据驱动的不确定集合引入过多顶点而导致的计算效率较低的现象,使用上述方法前后的计算效率对比如下:
表II使用加速算法前后计算效率对比
由表II可以看出:使用加速算法后,整体计算时间有了显著的降低。同时随着时段增多,即不确定因素的维度增大,使用加速算法可以使得迭代次数也有所减少。
值得注意的是,本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (3)

1.一种电热综合能源系统鲁棒机组组合模型的求解方法,其特征在于,所述方法包括:
步骤1、首先基于最优经济调度建立电热综合能源系统鲁棒机组组合预调度模型;
其中,建立电热综合能源系统鲁棒机组组合预调度模型的过程具体为:
首先建立电热综合能源系统鲁棒机组组合的目标函数,具体如下式(1)所示:
其中,第一行表示热电联产机组的预发电及产热成本、预储备成本和机组组合成本;第二行表示火电机组的预发电成本、预储备成本和机组组合成本;第三行表示风电和管道热损的越限罚项;
上式中,t,g,m和a分别表示时间、发电机、风机和热网的序数;∑C和∑T分别表示热电联产机组和火电机组的集合;表示发电机的预发电量;/>表示热电联产机组的预产热量;ugt表示发电机的运行状态;/>和/>分别表示发电机的正备用和负备用;/>和/>分别表示热电联机组和火电机组的启停成本系数;zgt表示发电机的启停状态;/> 分别表示风电的弃风和切负荷风险;/>和/>分别表示环境温度波动引起的管道损失正罚项和负罚项;
然后建立如下的预调度模型:
公式(2)-(3)表示分段线性化后运行风险与风电可消纳边界的关系;其中,表示分段线性化系数;/>和/>分别表示风电可接纳域的上边界与下边界;y和Y分别表示分段的序数和数量:
公式(4)-(5)分别表示环境温度波动引起的管道损失正罚项与负罚项定义式:其中,和/>分别表示正罚项系数和负罚项系数;c表示流体的比热容;∑P(a)表示热网中的管道集合;/>表示管道内的流体流量;/>和/>分别表示管道环境温度可接纳域的上边界与下边界;/>和/>分别表示环境温度的可接纳域上边界和下边界:
公式(6)-(7)分别表示风电可接纳域边界和环境温度可接纳域边界的取值范围;其中,表示风电的预测值;/>表示风电的装机容量;/>表示环境温度的预测值:
公式(8)-(9)分别表示风电运行风险与管道环境温度罚项的限制约束;其中,和/>分别表示风电运行风险和管道环境温度罚项的阈值:
公式(10)-(12)表示发电机的运行逻辑约束;其中,和/>分别表示最大开机和关机时间:
公式(13)-(14)表示发电机的备用容量约束;其中,Pg 分别表示发电机的最大与最小发电量:
公式(15)-(16)表示发电机的爬坡约束;其中,和/>分别表示发电机的正爬坡能力和负爬坡能力:
公式(17)表示发电机的出力约束:
公式(18)表示节点功率平衡约束;其中,b、le和d分别表示节点、线路和电负荷的序数;∑C(b),∑T(b),∑W(b),∑L+(b),∑D(b),∑L-(b)分别表示连接在节点b上的热电联产机组、火电机组、风电机组、功率输入的线路、电负荷、功率输出的线路的集合;表示线路流过的潮流;Pdt表示电负荷:
公式(19)表示线路潮流约束;其中,表示线路传输的最大容量;/>表示线路的导纳;/>和/>分别表示线路的首端与末端的相位:
公式(20)-(22)表示热电联产机组的电热耦合约束;其中,NKg表示热电联产机组出力可行域的顶点数量;表示热电联产机组出力可行域顶点对应的可行系数;Pgk和Qgk分别表示热电联产机组出力可行域顶点对应的电出力与热出力:
公式(23)-(24)分别表示供热网与回热网中的节点流量守恒约束;其中,∑P+(n),∑P-(n),∑H(n),∑C(n)分别表示连接在节点n上的流入节点流量的管道集合、流出节点流量的管道集合、换热站集合、热电联产机组集合;分别表示供热网中流经管道中、换热站、热电联产机组的流量;/>分别表示回热网中流经管道中、换热站、热电联产机组的流量:
公式(25)-(26)分别表示热电联产机组产热量与换热站耗热量的解耦约束;其中,分别表示供热网与回热网中的节点温度:
公式(27)-(28)分别表示供热网与回热网中的管道热损约束;其中,分别表示供热网中管道首端与末端的温度;/>分别表示回热网中管道首端与末端的温度;/>表示管道的热损系数;/>表示管道的长度;∑P(a)表示区域热网a中管道的集合:
公式(29)-(31)表示节点温度混合约束:
步骤2、基于风电的预测值求解步骤1所建立的预调度模型,获得经济效益最优的运行策略及风电和环境温度的可接纳域;
步骤3、判断风电的空间相关性是否被挖掘,若是,则基于风电相关性建立数据驱动不确定集合并消除无效顶点;若否,则与环境温度一起形成数据驱动不确定集合;
步骤4、建立电热综合能源系统鲁棒机组组合再调度模型,以检测运行策略的可行程度;
其中,建立电热综合能源系统鲁棒机组组合再调度模型的过程具体为:
公式(32)表示可行性判据,以电力系统节点功率平衡的松弛变量与热力系统中节点温度混合松弛变量为检测量;其中,分别表示功率越限和缺额的松弛变量;/>分别表示供热网中热量越限和缺额的松弛变量;/>分别表示回热网中热量越限和缺额的松弛变量;Ω表示不确定因素;当且仅当所有松弛变量和为0时,方能认为运行策略不会引起功率不平衡,从而保证运行策略可行性:
公式(33)表示各松弛变量的取值范围:
公式(34)表示预调度之后发电机的出力范围:
公式(35)表示检测功率不平衡的节点功率平衡约束:
公式(36)-(37)分别表示供热网与回热网中检测热功率不平衡的节点温度混合约束:
公式(38)表示风电与环境温度的不确定性出力;其中,wmti分别表示风电与环境温度的数据驱动的不确定集合的顶点;χi,τi分别表示风电与环境温度的数据不确定集合的顶点可行系数:
所建立的再调度模型除上述约束外,还包括实时决策变量参与的公式(19)-(31);
步骤5、基于步骤3所形成的数据驱动不确定集合求取所述再调度模型,获得风电和环境温度各自的最坏场景及对应的功率不平衡量;
其中,所述步骤5的过程具体为:
采用对偶转化将再调度模型等价转变成单层非线性优化问题;
再采用基于大M法将再调度模型转为一个标准的单层混合整数线性规划问题;
进而调用Gurobi商业求解器对再调度模型的最终形式进行求解,优化得到风电和环境温度各自的最坏场景及对应的功率不平衡量;
步骤6、判断步骤5所得到的功率不平衡量是否满足收敛条件;若是,则认为运行策略可行,迭代结束;若否,则将最坏场景返回给所述预调度模型,继续迭代求解,直到满足收敛条件为止。
2.根据权利要求1所述电热综合能源系统鲁棒机组组合模型的求解方法,其特征在于,在步骤3中,所述基于风电相关性建立数据驱动不确定集合并消除无效顶点的过程具体为:
首先选择有效的输电线路,从原始传输线路集合中消除具有无效潮流容量约束的传输线路,具有无效潮流容量约束的传输线路满足以下条件:
其中,和/>分别表示第k次迭代求得的风电可消纳边界和发电机运行状态;pgt,wmt分别表示发电机和风电场的有功输出量;Pdt表示负荷的有功需求量;Fle表示线路的最大功率传输容量;/>分别表示发电机、风电场和负荷的线路功率分布转移因子;
然后构建一个M行L列的标志矩阵H;其中,M是风电场的数量,L是筛选出的有效线路的数量,并根据如下原则为H中的元素赋值:
采用如下两步对风电场聚类:
(i)初始扫描:计算H每一行的数值和并将相同数值和的行序数,即风电场序数,初步聚类为一簇;
(ii)二次扫描:匹配每一簇中H的行元素,并将行元素完全匹配的风电场归为一簇,记录具有两个以上风电场的簇,并将其表示为其中j是聚类索引;
然后排除无效顶点,按照上述风电场聚类结果形成的数据驱动不确定集合,按照以下原则设置无效顶点的可行系数χi为0:
3.根据权利要求1所述电热综合能源系统鲁棒机组组合模型的求解方法,其特征在于,所述步骤6的过程具体为:
通过比较步骤5得到的功率不平衡量与预先设置的最大不平衡量阈值来判断是否满足收敛条件;
若步骤5所得功率不平衡量小于最大不平衡量阈值,则认为收敛,运行策略可行,迭代结束;
否则,将步骤5中同时求得的最坏场景标志χi返回给所述预调度模型,继续迭代求解,直到满足收敛条件为止。
CN202011305694.1A 2020-11-19 2020-11-19 一种电热综合能源系统鲁棒机组组合模型的求解方法 Active CN112528467B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011305694.1A CN112528467B (zh) 2020-11-19 2020-11-19 一种电热综合能源系统鲁棒机组组合模型的求解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011305694.1A CN112528467B (zh) 2020-11-19 2020-11-19 一种电热综合能源系统鲁棒机组组合模型的求解方法

Publications (2)

Publication Number Publication Date
CN112528467A CN112528467A (zh) 2021-03-19
CN112528467B true CN112528467B (zh) 2023-08-11

Family

ID=74982665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011305694.1A Active CN112528467B (zh) 2020-11-19 2020-11-19 一种电热综合能源系统鲁棒机组组合模型的求解方法

Country Status (1)

Country Link
CN (1) CN112528467B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832665A (zh) * 2018-07-04 2018-11-16 四川大学 一种考虑风电不确定性的电热综合系统分布式鲁棒协调优化调度模型
WO2019233134A1 (zh) * 2018-06-06 2019-12-12 南京工程学院 数据驱动下基于风电不确定性的电热气网三阶段调度方法
CN110991857A (zh) * 2019-11-28 2020-04-10 华北电力大学 一种电热综合能源系统风电消纳能力评估的方法
CN111401664A (zh) * 2020-04-21 2020-07-10 广东电网有限责任公司电力调度控制中心 一种综合能源系统鲁棒优化调度方法及装置
CN111711184A (zh) * 2020-05-25 2020-09-25 国网青海省电力公司 一种基于最坏场景辨识的电力系统鲁棒经济调度方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019233134A1 (zh) * 2018-06-06 2019-12-12 南京工程学院 数据驱动下基于风电不确定性的电热气网三阶段调度方法
CN108832665A (zh) * 2018-07-04 2018-11-16 四川大学 一种考虑风电不确定性的电热综合系统分布式鲁棒协调优化调度模型
CN110991857A (zh) * 2019-11-28 2020-04-10 华北电力大学 一种电热综合能源系统风电消纳能力评估的方法
CN111401664A (zh) * 2020-04-21 2020-07-10 广东电网有限责任公司电力调度控制中心 一种综合能源系统鲁棒优化调度方法及装置
CN111711184A (zh) * 2020-05-25 2020-09-25 国网青海省电力公司 一种基于最坏场景辨识的电力系统鲁棒经济调度方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于风险的电- 热综合能源系统风电消纳能力评估;巩志皓 等;《全球能源互联网》;第2卷(第4期);全文 *

Also Published As

Publication number Publication date
CN112528467A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
CN109980685B (zh) 一种考虑不确定性的主动配电网分布式优化运行方法
CN109659927B (zh) 一种考虑储能参与度的综合能源微网储能容量配置方法
CN108628176B (zh) 一种计及热网柔性的热电联合优化调度方法
CN107679679A (zh) 联合发电机组调度运行方法
Zhu et al. A parallel meta-heuristic method for solving large scale unit commitment considering the integration of new energy sectors
CN107844910A (zh) 基于风核协调的多电源联合优化调度运行方法
CN109670694B (zh) 一种多能源供给系统负荷预测方法
CN109636027A (zh) 一种基于蒙特卡罗法的多能互补系统供能可靠性评估方法
CN114709816A (zh) 一种冰灾场景下能源互联配电系统韧性恢复方法
CN114123313B (zh) 一种时序生产模拟新能源电力系统消纳方法
CN111798111A (zh) 一种综合能源系统供能可靠性评估方法及计算机系统
CN115102953A (zh) 配电网云边端协同管控系统及方法
CN114254890A (zh) 一种基于供需节点调整的区域能源网络资源再分配方法
CN112365034B (zh) 一种电热综合能源系统调度方法及系统
CN104239960A (zh) 考虑抽水蓄能机组的发电计划优化方法
Li et al. A multicriteria optimal operation framework for a data center microgrid considering renewable energy and waste heat recovery: Use of balanced decision making
CN112528467B (zh) 一种电热综合能源系统鲁棒机组组合模型的求解方法
CN104809340A (zh) 一种多端柔性直流输电系统运行点的快速计算方法
CN114357671A (zh) 基于薄弱环节辨识的配电网弹性提升规划配置方法及系统
TWI559250B (zh) 微電網能源管理即時調度方法
CN112290543A (zh) 一种能源互联系统的能源利用效率薄弱点辨识方法及系统
CN112736969A (zh) 基于新能源经济调度的分布式光伏数据处理方法及系统
Arai et al. Development of simple estimation model for aggregated residential load by using temperature data in multi-region
Li et al. Scenario-based unit commitment model considering stochastic wind power
CN113467398B (zh) 基于一致性算法的综合能源系统分布式控制方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant