TWI559250B - 微電網能源管理即時調度方法 - Google Patents
微電網能源管理即時調度方法 Download PDFInfo
- Publication number
- TWI559250B TWI559250B TW104134134A TW104134134A TWI559250B TW I559250 B TWI559250 B TW I559250B TW 104134134 A TW104134134 A TW 104134134A TW 104134134 A TW104134134 A TW 104134134A TW I559250 B TWI559250 B TW I559250B
- Authority
- TW
- Taiwan
- Prior art keywords
- power
- energy storage
- energy
- scheduling
- mains
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Supply And Distribution Of Alternating Current (AREA)
Description
本發明係有關於一種微電網能源管理即時調度方法,尤指涉及一種降低市電供電變異為目標之方法,特別係指可以平穩微電網發電與用電之能源調度策略者。
台灣本土欠缺在地能源,99.3%之能源係由國外輸入,因此將分散式能源整合到電力網路中係未來目標之一,其中微電網之建置可做為減少碳排放之近程手段。傳統之電力結構中採用火力、核能、及水力等集中式電廠提供特高壓電網,再輸配電到高壓電網及低壓電網,也由於係集中式架構,只要電廠發生問題,影響範圍就很廣大。未來之電網將連結分散式發電設備,包括太陽能、風力及燃料電池等,並形成一個個的微電網系統。此一微電網系統既可與大電網併聯運轉,也可以獨立運作。微電網技術之開發可去除電力網負載過多之壓力並節省成本,同時還可巨幅改善電力網可靠度及安全性,並加速增加乾淨之能源發電。在這個系統中,透過配電自動化作法,能夠提升供電之彈性;透過自我修復功能,能夠提高電力系統之穩定度與供電品質。此外,微電網也有助於降低輸配電損失、提高能源安全及促進能源資通訊產業之發展。 然而微電網關鍵技術中包含能源管理調度機制,目的係要利用微電網中之儲能系統進行充放電,達到微電網所需要之運轉目標,但是若過度充電將導致電池電量過滿,限制了電池系統調度之能力,過度放電則會造成電池設備跳機;因此,如何適度地調度電池在電池電量上下限之間有效運用為微電網技術發展中之重要課題。 傳統之電力系統若要達到移峰填谷,以平穩市電之目標,目前都是以卸載為主要處理方法。從中華民國專利檢索系統中,尋找不到利用儲能系統調度達到平穩市電功率之作法,相關專利如中華民國第M391231號專利「整合電力線網路與網際網路之遠端安全監控裝置」及第201145745號「利用智慧電網之家庭資源管理系統」專利,揭示消極性之電力用戶端負載節能監控裝置及消極性家庭用戶智慧電網管理系統,除了用戶端之用戶必需在於每個常用之電力負載上改變及加裝相關之負載監測裝置外,對於發電電力回饋之效果,亦只能獨善其身,無法對相鄰或所屬之區域電力供電有所重大回饋及產生顯著之電力經濟調度功效,換言之,其無法立即提供產業利用,對於實體發電廠之供電系統業者而言,並沒有實際降低發電成本及容量之經濟效益與助益。又如中華民國第201115874號「微電網儲能備用電源之網絡連接方式與調度方法」及第201216586號「具備智慧型調度管理之電網架構」專利,則分別針對微電網及電網之調度提出架構,但僅限於微電網之儲能裝置軟體概念及大系統電網之經濟調度與硬體架構,對於要落實在如社區或村里間之區域型態用戶端供電及發電經濟調度,則沒有具體之技術與對策。以及中華民國第201411978 號「高效能微電網負載控制管理裝置」及第201318300 號「微電網獨立運轉下之負載管理裝置」專利,則分別討論在併網或孤島模式下,如何控制負載達到削峰填谷之目的,此二專利主要係藉由調整用戶之用電行為,與本發明所採用方式不同,且本發明所使用方式不會影響到用戶端之用電行為。故,ㄧ般習用者係無法符合使用者於實際使用時之所需。
本發明之主要目的係在於,克服習知技藝所遭遇之上述問題並提供一種將全日調度為主要調度模型,並於運行當日加入即時修正補償機制以彌補預測誤差,經模擬驗證的確可以有效再次降低市電變異之微電網能源管理即時調度方法。 本發明之次要目的係在於,提供一種以移峰填谷方法達到市電端感受到平穩之負載用電行為,對於台電而言可降低台電備載容量及減少機組之建置成本之微電網能源管理即時調度方法。 為達以上之目的,本發明係一種微電網能源管理即時調度方法,其至少包含下列步驟:(A)收集負載用電功率及再生能源發電功率之歷史數據,運用學習演算法將運行當日之整日負載及發電數據做出預測,再利用最佳化之演算法將當日之儲能輸出進行調度排程規劃,在儲能電池容量允許調度範圍內調控儲能系統輸出,以達到全日市電用電變異最小化,當再生能源發電功率低且市電用電高時進行儲能電池放電,反之當再生能源發電功率高或市電用電低時進行儲能電池充電,在滿足功率供需平衡及電池容量限制條件下進行最佳策略搜尋;以及(B)利用即時修正之調度演算法,修正儲能系統輸出量補償值,藉由即時修正補償機制以彌補負載及發電預測結果與運行當日所產生之誤差,俾以達到更小之市電變異。 於本發明上述實施例中,該步驟(B)係補償市電平均及即時市電差量加權值,以修正儲能系統輸出量補償值。 於本發明上述實施例中,該步驟(B)係補償市電預測及即時市電差量加權值,以修正儲能系統輸出量補償值。 於本發明上述實施例中,該步驟(B)係選擇性補償市電預測及即時市電差量加權值,以修正儲能系統輸出量補償值。 於本發明上述實施例中,該學習演算法為一類神經網路演算法(Artificial Neural Network, ANN)。
請參閱『第1圖』所示,係本發明之即時調度流程示意圖。如圖所示:本發明係一種微電網能源管理即時調度方法,首先利用收集到之負載用電功率及再生能源發電功率之歷史數據,運用一些長期預測的學習演算法(例如:類神經網路演算法(Artificial Neural Network, ANN))將運行當日之整日負載及發電數據預測出來,再利用最佳化之演算法將當日之儲能輸出進行調度排程規劃,在儲能電池容量允許調度範圍內調控儲能系統輸出,以達到全日市電用電變異最小化,當再生能源發電功率低且市電用電高時進行儲能電池放電;反之當再生能源發電功率高或市電用電低時進行儲能電池充電,在滿足功率供需平衡及電池容量限制條件下進行最佳策略搜尋。另外,在當日實際運行下,由於負載及再生能源實際之狀況與預測之結果會有差異,故當日會採取即時修正之調度演算法,修正儲能系統輸出量補償值,藉由即時修正補償機制以彌補負載及發電預測結果與實際運行當日所產生之誤差,俾以達到更小之市電變異。如是,藉由上述揭露之流程構成一全新之微電網能源管理即時調度方法。 上述調度演算法可使用:(1)補償市電平均及即時市電差量加權值;(2)補償市電預測及即時市電差量加權值;或(3)選擇性補償市電預測及即時市電差量加權值等方法,以修正儲能系統輸出量補償值,且當誤差量過大時才啟動補償機制。經由實際驗證後,以前述方法(2)之調度演算法所得修正效果最佳,利用即時補償修正機制確實可以彌補負載及發電預測結果與實際運行當日所產生之誤差,而達到更小之市電變異。 上述調度之方法及補償量值之計算可以有非常多之演算法來實現,本發明主要著重於調度之概念及即時修正搭配之機制與概念,並且實際具有分析驗證其方法之優點。 當運用時,如第1圖所示,分別於步驟s101中,輸入再生能源歷史發電資料,以及於步驟s102中,輸入負載歷史用電資料。並分別於步驟s103中,依據歷史發電資料針對再生能源資料進行學習,以及於步驟s104中,依據歷史用電資料針對負載用電資料進行學習。再分別於步驟s105中,針對指定日進行全日再生能源發電預測,以及於步驟s106中,針對指定日進行全日負載用電預測。接著於步驟s107中,利用預測結果進行全日最佳化調度,目的為降低市電端用電變異。並於步驟s108中,判斷是否需進行即時調度修正,若不需進行即時調度修正則進行步驟s109,以全日最佳化調度控制儲能系統以降低市電變異,並回至步驟s108;反之,若需進行即時調度修正則進行步驟s110,該步驟s110經由步驟s111輸入現場即時功率資料,以計算即時修正補償修正量,再回至步驟s108。 本發明有效利用微電網架構具有再生能源、與儲能系統相關設備等優點,即便再生能源屬於間歇性能源,但只要對於再生能源及負載進行預測,再加上對於儲能設備調度得宜,如此就能進行市電平穩調度,在再生能源發電功率低且市電用電高時進行儲能電池放電,反之在再生能源發電功率高或市電用電低時進行儲能電池充電,進而在滿足功率供需平衡及電池容量限制條件下進行最佳策略搜尋。如此一來就可以在不影響使用者用電之前提之下,完成平穩市電之目的,並且在當日運行之下發電及負載之模型與預測結果一定會有誤差,所以調度之結果對於市電平穩非最佳之調度策略,加入即時之修正機制可以將當日之市電控制得更加平穩,補償了因為預測與實際現象不一致之誤差所導致之變異上升。 藉此,本發明將全日調度為主要調度模型,並於運行當日加入即時修正補償機制以彌補預測誤差,經模擬驗證的確可以有效再次降低市電變異。因此,本發明提出一種可以平穩微電網發電與用電之能源調度策略,當微電網運轉於市電併聯模式時,可藉由自行調度微電網內之儲能系統來調節再生能源發電與進行負載移峰填谷,達到市電端用電為平穩目的,對於台電而言,可有效降低台電備載容量及減少機組之建置成本。 綜上所述,本發明係一種微電網能源管理即時調度方法,可有效改善習用之種種缺點,將全日調度為主要調度模型,並於運行當日加入即時修正補償機制以彌補預測誤差,經模擬驗證的確可以有效再次降低市電變異,以移峰填谷方法達到市電端感受到平穩之負載用電行為,對於台電而言可降低台電備載容量及減少機組之建置成本,進而使本發明之□生能更進步、更實用、更符合使用者之所須,確已符合發明專利申請之要件,爰依法提出專利申請。 惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。
s101~s111‧‧‧步驟
第1圖,係本發明之即時調度流程示意圖。
s101~s111‧‧‧步驟
Claims (4)
- 一種微電網能源管理即時調度方法,其至少包含下列步驟:(A)收集負載用電功率及再生能源發電功率之歷史數據,運用學習演算法將運行當日之整日負載及發電數據做出預測,再利用最佳化之演算法將當日之儲能輸出進行調度排程規劃,在儲能電池容量允許調度範圍內調控儲能系統輸出,以達到全日市電用電變異最小化,當再生能源發電功率低且市電用電高時進行儲能電池放電,反之當再生能源發電功率高或市電用電低時進行儲能電池充電,在滿足功率供需平衡及電池容量限制條件下進行最佳策略搜尋;以及(B)利用即時修正之調度演算法,修正儲能系統輸出量補償值,藉由即時修正補償機制以彌補負載及發電預測結果與運行當日所產生之誤差,俾以達到更小之市電變異;其中該調度演算法係補償市電預測及即時市電差量加權值,以修正儲能系統輸出量補償值。
- 依申請專利範圍第1項所述之微電網能源管理即時調度方法,其中,該調度演算法亦可為補償市電平均及即時市電差量加權值,以修正儲能系統輸出量補償值。
- 依申請專利範圍第1項所述之微電網能源管理即時調度方法,其中,該調度演算法亦可為選擇性補償市電預測及即時市電差量加權值,以修正儲能系統輸出量補償值。
- 依申請專利範圍第1項所述之微電網能源管理即時調度方法,其中,該學習演算法為一類神經網路演算法(Artificial Neural Network,ANN)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104134134A TWI559250B (zh) | 2015-10-16 | 2015-10-16 | 微電網能源管理即時調度方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104134134A TWI559250B (zh) | 2015-10-16 | 2015-10-16 | 微電網能源管理即時調度方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI559250B true TWI559250B (zh) | 2016-11-21 |
TW201715453A TW201715453A (zh) | 2017-05-01 |
Family
ID=57851723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104134134A TWI559250B (zh) | 2015-10-16 | 2015-10-16 | 微電網能源管理即時調度方法 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI559250B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112994129A (zh) * | 2019-12-12 | 2021-06-18 | 億鸿系统科技股份有限公司 | 分布式智能充电网络控制方法及分布式智能电网控制器 |
CN113298329A (zh) * | 2020-02-21 | 2021-08-24 | 中关村海华信息技术前沿研究院 | 训练、策略生成方法、系统、计算机装置及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7983799B2 (en) * | 2006-12-15 | 2011-07-19 | General Electric Company | System and method for controlling microgrid |
CN103001225B (zh) * | 2012-11-14 | 2014-10-08 | 合肥工业大学 | 基于mas的多微电网能量管理系统仿真方法 |
CN104201672A (zh) * | 2014-09-02 | 2014-12-10 | 南方电网科学研究院有限责任公司 | 一种新型的微网系统控制装置 |
CN104283308A (zh) * | 2013-07-10 | 2015-01-14 | 北京中电建投微电网科技有限公司 | 微电网智能中央策略控制系统 |
US20150039145A1 (en) * | 2013-07-31 | 2015-02-05 | Abb Technology Ag | Microgrid Energy Management System and Method for Controlling Operation of a Microgrid |
CN104376389A (zh) * | 2014-12-10 | 2015-02-25 | 国电南京自动化股份有限公司 | 基于负载均衡的主从式微电网功率负荷预测系统及其方法 |
-
2015
- 2015-10-16 TW TW104134134A patent/TWI559250B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7983799B2 (en) * | 2006-12-15 | 2011-07-19 | General Electric Company | System and method for controlling microgrid |
CN103001225B (zh) * | 2012-11-14 | 2014-10-08 | 合肥工业大学 | 基于mas的多微电网能量管理系统仿真方法 |
CN104283308A (zh) * | 2013-07-10 | 2015-01-14 | 北京中电建投微电网科技有限公司 | 微电网智能中央策略控制系统 |
US20150039145A1 (en) * | 2013-07-31 | 2015-02-05 | Abb Technology Ag | Microgrid Energy Management System and Method for Controlling Operation of a Microgrid |
CN104201672A (zh) * | 2014-09-02 | 2014-12-10 | 南方电网科学研究院有限责任公司 | 一种新型的微网系统控制装置 |
CN104376389A (zh) * | 2014-12-10 | 2015-02-25 | 国电南京自动化股份有限公司 | 基于负载均衡的主从式微电网功率负荷预测系统及其方法 |
Non-Patent Citations (1)
Title |
---|
林金福、張永瑞,『獨立型微電網計畫』2014年智慧電網主軸計畫成果發表會,行政院原子能委員會核能研究所,2014年11月24日,http://www.smart-grid.org.tw/userfiles/download/1.%E7%8D%A8%E7%AB%8B%E5%9E%8B%E5%BE%AE%E9%9B%BB%E7%B6%B2%E7%B3%BB%E7%B5%B1%E6%8A%80%E8%A1%93%E7%99%BC%E5%B1%95%E8%88%87%E6%87%89%E7%94%A8.pdf * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112994129A (zh) * | 2019-12-12 | 2021-06-18 | 億鸿系统科技股份有限公司 | 分布式智能充电网络控制方法及分布式智能电网控制器 |
CN113298329A (zh) * | 2020-02-21 | 2021-08-24 | 中关村海华信息技术前沿研究院 | 训练、策略生成方法、系统、计算机装置及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
TW201715453A (zh) | 2017-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109919478B (zh) | 一种考虑综合供能可靠性的综合能源微网规划方法 | |
CN107958300A (zh) | 一种考虑互动响应的多微网互联运行协调调度优化方法 | |
CN113644670B (zh) | 一种储能容量优化配置的方法及系统 | |
CN103414206A (zh) | 一种考虑安全约束的水光火联合优化发电计划优化方法 | |
CN107104462B (zh) | 一种用于风电场储能调度的方法 | |
CN113659572B (zh) | 考虑网络重构和需求响应的气电综合能源配网鲁棒优化方法 | |
Liu | Energy station and distribution network collaborative planning of integrated energy system based on operation optimization and demand response | |
TWI559250B (zh) | 微電網能源管理即時調度方法 | |
CN102567645A (zh) | 基于在线理论网损计算的电网设备统计及计算网损的方法 | |
Li et al. | Research on the control strategy of energy storage participation in power system frequency regulation | |
CN116307071A (zh) | 一种高比例光伏接入低压配电网方法 | |
Zhang et al. | Enhancing power grid resilience against typhoon disasters by scheduling of generators along with optimal transmission switching | |
Cai et al. | Intra-day Tie-line Scheduling Model Considering New Energy Fluctuation | |
CN103280823B (zh) | 基于移动储能设备的电网实时自动调度策略 | |
Zhu et al. | Whole life cycle optimal Allocation of the energy storage systems in a distributed network | |
Hu et al. | Optimal configuration method of energy storage in provincial power system based on multi-type flexible resource scheduling priority | |
Qi et al. | Study on the cooperative optimized operation of power system source-grid-load-storage based on Gurobi mathematical programming | |
Juntao et al. | Multi-objective Optimal Strategy for the Coordination Control between Distributed Energy Storage System and Flexible Load | |
Zhao et al. | Optimal dispatch of distribution network considering comprehensive carrying capacity | |
Nan et al. | Optimal Configuration of Energy Storage Capacity considering Generalized Energy Storage Resource Dispatching | |
Huang et al. | Equilibrium allocation of MESSs in USIES-integrated distribution network balancing the resilience and economics | |
Cai et al. | Multi-province Joint Dispatch Model Considering the Extreme Scenario Set of New Energy Power | |
Sangjinmei et al. | High-Proportion New Energy Microgrid Planning and Design Method Based on Benders Decomposition | |
Xiong et al. | Optimal Configuration of Energy Storage Capacity of Regional Power Grid Considering New Energy Consumption | |
Wen et al. | The load distribution method of hydropower unit with minimum water consumption |