CN112525904B - 一种硅质岩中不同来源硅质含量的定量计算方法 - Google Patents

一种硅质岩中不同来源硅质含量的定量计算方法 Download PDF

Info

Publication number
CN112525904B
CN112525904B CN202011287011.4A CN202011287011A CN112525904B CN 112525904 B CN112525904 B CN 112525904B CN 202011287011 A CN202011287011 A CN 202011287011A CN 112525904 B CN112525904 B CN 112525904B
Authority
CN
China
Prior art keywords
sample
silicon
content
silicalite
siliceous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011287011.4A
Other languages
English (en)
Other versions
CN112525904A (zh
Inventor
谢小敏
朱光有
王志博
文志刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Degang Wuxi Technology Co ltd
Original Assignee
Degang Wuxi Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degang Wuxi Technology Co ltd filed Critical Degang Wuxi Technology Co ltd
Priority to CN202011287011.4A priority Critical patent/CN112525904B/zh
Publication of CN112525904A publication Critical patent/CN112525904A/zh
Application granted granted Critical
Publication of CN112525904B publication Critical patent/CN112525904B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2873Cutting or cleaving

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供了一种硅质岩中不同来源硅质含量的定量计算方法,流程简单,分析效率高,能够较为准确地定量区分硅质岩样品中碎屑硅、热液硅、生物硅等不同来源硅的含量,对于研究硅质矿物对页岩气生成的影响具有重要意义。

Description

一种硅质岩中不同来源硅质含量的定量计算方法
技术领域
本发明属于地质领域,特别涉及一种硅质岩中不同来源硅质含量的定量计算方法。
背景技术
硅质岩是地质中的一套特殊岩性,也是石油地质中的一套重要的烃源岩和页岩气储集岩。四川盆地下古生界两套硅质页岩层系是其重要的页岩气产层,硅质含量与TOC及含气量呈正相关性,暗示硅质矿物对该地区页岩气的生成具有重要意义。但硅质来源复杂,包括生物来源(生物硅)、热液来源(热液硅)及碎屑来源(石英)。同一个样品中,混杂了多种来源组分。虽然有地化参数指标(例如Fe/Ti含量比)可判断岩石是否受热液影响,但是将岩石中不同来源硅质含量定量测试或计算,还是一个难题,据发明人所知现有技术中尚未见报道。
发明内容
有鉴于现有技术的上述缺陷,本发明的目的在于提供一种硅质岩中不同来源硅质含量的定量计算方法,流程简单,分析效率高,能够较为准确地定量区分硅质岩样品中碎屑硅、热液硅、生物硅等不同来源硅的含量,对于研究硅质矿物对页岩气生成的影响具有重要意义。
为实现上述目的,本发明提供了一种硅质岩中不同来源硅质含量的定量计算方法,包括以下步骤:
步骤一、样品制备:除掉硅质岩样品的表面风化物,将样品分成两份,第一份制成光薄片,第二份磨制成粉末样品。
进一步地,上述光薄片的制备方法如下:将硅质岩样品沿垂直层面方向切出一个平整面,抛光后用透明胶水粘至载玻片上;待胶水干后,将样品远离载玻片的一端进行切平,然后抛光直至表面见不到任何划痕,即制成硅质岩光薄片。上述光薄片的制备方法可参照发明人的中国专利申请202010519593.8中关于光薄片的制备方法。
进一步地,上述光薄片的岩石厚度≤3μm。一般来说,硅质岩中有机碳(TOC)含量越高,光薄片厚度要求越薄。当硅质岩中TOC≤2%时,岩石厚度以3μm为宜;当2%<TOC<5%时,岩石厚度以2.5~3μm为宜;当5%≤TOC<10%时,岩石厚度以1.5~2.5μm为宜;当TOC≥10%时,岩石厚度以1~1.5μm为宜。
进一步地,上述载玻片为玻璃或树脂载玻片。
进一步地,上述粉末样品的粒径为200目或更细,粉末样品的重量不低于1g。
步骤二、显微特征观察:将光薄片放置于显微镜下,利用透射光、正交偏光及反射光,分析样品中硅质主要的来源特征。
步骤三、元素含量分析:用XRF对粉末样品中Si、Al、Fe、Ti元素的含量进行测定。
步骤四、碎屑硅的计算:由于碎屑岩中Si含量与Al的相关性,因此碎屑硅(Siterrigenous)含量可通过微量元素Alsample含量来计算:
Siterrigenous=(Si/Al)background*Alsample
其中,(Si/Al)background为平均页岩中硅铝的含量比,值为3.11(Wedepohl,K.H.,Physics and Chemistry of the Earth,1971,vol.8,Pergamon,Oxford,pp.307–331)。
步骤五、过剩硅的计算:过剩硅(Siexcess)是指非碎屑来源的硅质总和,其包括了热液硅与生物硅。过剩硅可通过样品中总的硅含量(Sisample)扣除碎屑硅(Siterrigenous)来进行计算:
Siexcess=Sisample-Siterrigenous
步骤六、生物硅与热液硅的计算:现有技术中,根据Fe/Ti含量比对样品是否受热液影响进行判识:若Fe/Ti≥40,则受热液影响;若Fe/Ti<40,则不受热液影响。然而,这种判识方法是十分粗略的,其无法准确地定量区分硅质岩样品中不同来源硅的含量,尤其是生物硅与热液硅的含量。本发明中,发明人设计的方法可以定量计算生物硅与热液硅的含量,具体步骤如下:
(1)按照Fe/Ti含量比对多个样品进行升序或降序排列;将Fe/Ti>80的样品设为A端元组(高值组),其主体为热液影响的过剩硅(即生物来源的过剩硅可忽略);将Fe/Ti<5的样品设为B端元组(低值组),其主体为生物来源的过剩硅(即热液影响的过剩硅可忽略);将5≤Fe/Ti≤80的样品设为C中间组,C中间组中需要定量计算生物硅与热液硅含量的样品设为待测组,其余设为模拟组;
(2)计算A端元组和B端元组样品的平均Fe/Ti和Siexcess的值,作为端元数值;设模拟组各样品中含有x含量的A组分(即热液硅的贡献度为x/(x+y))和y含量的B组分(即生物硅的贡献度为y/(x+y));通过方程Ax+By=C对端元数值和模拟组样品的Fe/Ti和Siexcess数值进行Metlab模拟计算,拟合得到不同Fe/Ti含量比之下的x值与y值;
(3)将待测组各样品的Fe/Ti和Siexcess的值代入拟合得到的方程Ax+By=C;计算得到待测组各样品中热液硅含量为[x/(x+y)]*Siexcess;生物硅的含量为[y/(x+y)]*Siexcess
进一步地,步骤(1)中A端元组和B端元组的样品数量均不少于5个;C中间组中模拟组的样品数量不少于10个。
本发明的一种硅质岩中不同来源硅质含量的定量计算方法流程简单,分析效率高,能够较为准确地定量区分硅质岩样品中不同来源硅的含量,对于研究硅质矿物对页岩气生成的影响具有重要意义。
具体实施方式
下面对本发明的实施例作详细说明,下述的实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
在一个优选实施例中,发明人在贵州麻江羊跳地区采集了寒武系底部牛蹄塘组样品81件,样品号标记为M-1~M-81。为了较为准确地定量区分硅质岩样品中碎屑硅、热液硅、生物硅等不同来源硅的含量,本发明的硅质岩中不同来源硅质含量的定量计算方法,包括以下步骤:
步骤一、样品制备:除掉各硅质岩样品的表面风化物,将样品分成两份,第一份制成光薄片,第二份磨制成粉末样品。
其中,光薄片的制备方法如下:将硅质岩样品沿垂直层面方向切出一个平整面,抛光后用透明胶水粘至载玻片上;待胶水干后,将样品远离载玻片的一端进行切平,然后抛光直至表面见不到任何划痕,即制成硅质岩光薄片。光薄片的岩石厚度≤3μm。一般来说,硅质岩中有机碳(TOC)含量越高,光薄片厚度要求越薄。当硅质岩中TOC≤2%时,岩石厚度以3μm为宜;当2%<TOC<5%时,岩石厚度以2.5~3μm为宜;当5%≤TOC<10%时,岩石厚度以1.5~2.5μm为宜;当TOC≥10%时,岩石厚度以1~1.5μm为宜。
其中,粉末样品的粒径为300目,粉末样品的重量不低于1g。
步骤二、显微特征观察:将光薄片放置于显微镜下,利用透射光、正交偏光及反射光,分析样品中硅质主要的来源特征。
步骤三、元素含量分析:用XRF对粉末样品中Si、Al、Fe、Ti元素的含量进行测定。
步骤四、碎屑硅的计算:由于碎屑岩中Si含量与Al的相关性,因此碎屑硅(Siterrigenous)含量可通过微量元素Alsample含量来计算:
Siterrigenous=(Si/Al)background*Alsample
其中,(Si/Al)background采用平均页岩中硅铝的含量比,值为3.11。因此,
Siterrigenous=3.11*Alsample
步骤五、过剩硅的计算:过剩硅(Siexcess)是指非碎屑来源的硅质总和,其包括了热液硅与生物硅。过剩硅可通过样品中总的硅含量(Sisample)扣除碎屑硅(Siterrigenous)来进行计算:
Siexcess=Sisample-Siterrigenous
步骤六、生物硅与热液硅的计算:
(1)按照Fe/Ti含量比对81个样品进行升序排列;将Fe/Ti>80的样品设为A端元组(7个样品),其主体为热液影响的过剩硅(即生物来源的过剩硅可忽略);将Fe/Ti<5的样品设为B端元组(15个样品),其主体为生物来源的过剩硅(即热液影响的过剩硅可忽略);将5≤Fe/Ti≤80的样品设为C中间组(59个样品),C中间组中需要定量计算生物硅与热液硅含量的样品设为待测组(24个样品),其余设为模拟组(35个样品),用于提供模拟计算所需的数据。本实施例的81个样品按Fe/Ti含量比排列并分组后,A端元组、B端元组和模拟组的相关数据如下表所示:
(2)计算A端元组样品的Fe/Ti平均值为117.176,Siexcess平均值为96.126;B端元组样品的Fe/Ti平均值为2.545,Siexcess平均值为50.468。设模拟组各样品中含有x含量的A组分(即热液硅的贡献度为x/(x+y))和y含量的B组分(即生物硅的贡献度为y/(x+y));通过方程Ax+By=C对37组数值(2组端元数值+35组模拟组数值)进行Metlab模拟计算,拟合得到不同Fe/Ti含量比下的x值与y值;
(3)将待测组24个样品的Fe/Ti含量比和Siexcess的值代入拟合得到的方程Ax+By=C;计算得到样品中热液硅含量为[x/(x+y)]*Siexcess;样品中生物硅的含量为[y/(x+y)]*Siexcess。待测组24个样品的测量结果和计算结果如下表所示:
样品号 SiO2 Al2O3 Fe/Ti Siexcess 碎屑硅 热液硅 生物硅
M-2 96.36 1.10 19.71 92.94 3.42 12.25 80.69
M-5 71.79 8.37 8.69 45.78 26.02 5.12 40.66
M-7 76.92 7.45 12.19 53.75 23.17 7.82 45.93
M-9 84.50 4.53 11.49 70.40 14.10 6.26 64.14
M-11 94.45 1.38 24.13 90.15 4.30 16.64 73.51
M-13 68.76 5.65 18.13 51.17 17.58 14.15 37.02
M-15 71.60 5.33 24.09 55.03 16.57 20.83 34.20
M-18 55.99 5.92 18.71 37.58 18.41 17.35 20.23
M-22 63.65 6.56 19.86 43.23 20.42 17.61 25.62
M-24 80.49 4.18 21.66 67.49 12.99 16.17 51.32
M-28 83.22 6.00 15.72 64.56 18.66 10.40 54.16
M-32 70.33 5.68 15.67 52.66 17.67 11.31 41.34
M-34 88.52 4.30 10.68 75.15 13.37 5.35 69.79
M-36 78.98 6.50 12.69 58.76 20.22 7.95 50.81
M-40 30.22 0.28 20.62 29.35 0.86 24.43 4.93
M-42 77.06 10.38 5.54 44.76 32.29 2.52 42.24
M-44 53.02 3.04 17.35 43.57 9.45 14.31 29.26
M-47 59.90 6.00 11.15 41.24 18.66 7.73 33.51
M-51 83.07 5.96 9.86 64.55 18.52 5.17 59.38
M-55 66.46 14.03 10.03 22.84 43.62 8.69 14.15
M-57 32.26 1.96 16.01 26.17 6.10 16.97 9.20
M-61 49.34 5.94 19.75 30.86 18.48 21.64 9.22
M-63 52.45 8.12 15.72 27.20 25.26 16.00 11.20
M-66 76.79 8.66 15.91 49.86 26.93 11.85 38.01
可见,本发明的一种硅质岩中不同来源硅质含量的定量计算方法流程简单,分析效率高,能够较为准确地定量区分硅质岩样品中碎屑硅、热液硅、生物硅等不同来源硅的含量,对于研究硅质矿物对页岩气生成的影响具有重要意义。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的试验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (7)

1.一种硅质岩中不同来源硅质含量的定量计算方法,其特征在于,包括以下步骤:
步骤一、样品制备:除掉硅质岩样品的表面风化物,将所述样品分成两份,第一份制成光薄片,第二份磨制成粉末样品;
步骤二、显微特征观察:将所述光薄片放置于显微镜下,利用透射光、正交偏光及反射光,分析所述样品中硅质主要的来源特征;
步骤三、元素含量分析:用XRF对所述粉末样品中Si、Al、Fe、Ti元素的含量进行测定;
步骤四、碎屑硅的计算:通过样品中的Al含量Alsample来计算样品中的碎屑硅含量Siterrigenous
Siterrigenous=(Si/Al)background*Alsample
其中,(Si/Al)background为平均页岩中硅铝的含量比;
步骤五、过剩硅的计算:通过样品中总的硅含量Sisample扣除碎屑硅含量Siterrigenous来进行计算样品中的过剩硅含量Siexcess
Siexcess=Sisample-Siterrigenous
步骤六、生物硅与热液硅的计算:
(1)按照Fe/Ti含量比对多个样品进行升序或降序排列;将Fe/Ti>80的样品设为A端元组,其主体为热液硅;将Fe/Ti<5的样品设为B端元组,其主体为生物硅;将5≤Fe/Ti≤80的样品设为C中间组,C中间组中需要定量计算生物硅与热液硅含量的样品设为待测组,其余设为模拟组;其中,所述A端元组和所述B端元组的样品数量均不少于5个;所述C中间组中模拟组的样品数量不少于10个;
(2)计算A端元组和B端元组样品的平均Fe/Ti和Siexcess的值作为端元数值;设模拟组各样品中分别含有x含量的A组分和y含量的B组分;通过方程Ax+By=C对端元数值及模拟组样品的Fe/Ti和Siexcess数值进行Metlab模拟计算,拟合得到不同Fe/Ti含量比之下的x值与y值;
(3)将待测组各样品的Fe/Ti和Siexcess的值代入拟合得到的方程Ax+By=C;计算得到待测组各样品中热液硅的含量为[x/(x+y)]*Siexcess;生物硅的含量为[y/(x+y)]*Siexcess
2.如权利要求1所述的硅质岩中不同来源硅质含量的定量计算方法,其特征在于,步骤一中所述光薄片的制备方法如下:将硅质岩样品沿垂直层面方向切出一个平整面,抛光后用透明胶水粘至载玻片上;待胶水干后,将样品远离载玻片的一端进行切平,然后抛光直至表面见不到任何划痕,即制成所述光薄片。
3.如权利要求2所述的硅质岩中不同来源硅质含量的定量计算方法,其特征在于,所述光薄片的岩石厚度≤3μm。
4.如权利要求2所述的硅质岩中不同来源硅质含量的定量计算方法,其特征在于,当所述硅质岩中TOC≤2%时,岩石厚度大致为3μm;当2%<TOC<5%时,岩石厚度为2.5~3μm;当5%≤TOC<10%时,岩石厚度为1.5~2.5μm;当TOC≥10%时,岩石厚度为1~1.5μm。
5.如权利要求2所述的硅质岩中不同来源硅质含量的定量计算方法,其特征在于,步骤一中所述载玻片为玻璃或树脂载玻片。
6.如权利要求1所述的硅质岩中不同来源硅质含量的定量计算方法,其特征在于,步骤一中所述粉末样品的粒径为200目或更细,所述粉末样品的重量不低于1g。
7.如权利要求1所述的硅质岩中不同来源硅质含量的定量计算方法,其特征在于,步骤四中(Si/Al)background的值为3.11。
CN202011287011.4A 2020-11-17 2020-11-17 一种硅质岩中不同来源硅质含量的定量计算方法 Active CN112525904B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011287011.4A CN112525904B (zh) 2020-11-17 2020-11-17 一种硅质岩中不同来源硅质含量的定量计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011287011.4A CN112525904B (zh) 2020-11-17 2020-11-17 一种硅质岩中不同来源硅质含量的定量计算方法

Publications (2)

Publication Number Publication Date
CN112525904A CN112525904A (zh) 2021-03-19
CN112525904B true CN112525904B (zh) 2024-02-23

Family

ID=74981793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011287011.4A Active CN112525904B (zh) 2020-11-17 2020-11-17 一种硅质岩中不同来源硅质含量的定量计算方法

Country Status (1)

Country Link
CN (1) CN112525904B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1330804A (en) * 1972-04-10 1973-09-19 Continental Oil Co Method and apparatus for source rock analysis
US4463096A (en) * 1981-11-16 1984-07-31 Phillips Petroleum Company Petroleum source rock identification
CN106709813A (zh) * 2016-12-28 2017-05-24 中国石油大学(北京) 页岩中硅质矿物来源的确定方法及装置
CN108508182A (zh) * 2018-03-16 2018-09-07 中石化江汉石油工程有限公司测录井公司 快速确定笔石相热页岩中生物硅含量的测录井方法
CN108918816A (zh) * 2018-04-24 2018-11-30 中石化石油工程技术服务有限公司 确定五峰页岩生物硅含量的测录井方法
CN111425190A (zh) * 2020-03-19 2020-07-17 中国石油大学(华东) 一种页岩气地层岩性识别方法、系统、存储介质、终端
CN111505037A (zh) * 2020-06-09 2020-08-07 中国地质大学(武汉) 一种泥页岩中自生石英含量的定量预测方法
CN111663940A (zh) * 2019-03-06 2020-09-15 中国石油化工股份有限公司 一种页岩储层的生物成因硅的计算方法
CN111830034A (zh) * 2020-06-09 2020-10-27 谢小敏 一种烃源岩中有机质显微生物组成分析与统计方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014036077A1 (en) * 2012-08-28 2014-03-06 Saudi Arabian Oil Company Method for reconstructing the total organic carbon content from compositional modeling analysis

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1330804A (en) * 1972-04-10 1973-09-19 Continental Oil Co Method and apparatus for source rock analysis
US4463096A (en) * 1981-11-16 1984-07-31 Phillips Petroleum Company Petroleum source rock identification
CN106709813A (zh) * 2016-12-28 2017-05-24 中国石油大学(北京) 页岩中硅质矿物来源的确定方法及装置
CN108508182A (zh) * 2018-03-16 2018-09-07 中石化江汉石油工程有限公司测录井公司 快速确定笔石相热页岩中生物硅含量的测录井方法
CN108918816A (zh) * 2018-04-24 2018-11-30 中石化石油工程技术服务有限公司 确定五峰页岩生物硅含量的测录井方法
CN111663940A (zh) * 2019-03-06 2020-09-15 中国石油化工股份有限公司 一种页岩储层的生物成因硅的计算方法
CN111425190A (zh) * 2020-03-19 2020-07-17 中国石油大学(华东) 一种页岩气地层岩性识别方法、系统、存储介质、终端
CN111505037A (zh) * 2020-06-09 2020-08-07 中国地质大学(武汉) 一种泥页岩中自生石英含量的定量预测方法
CN111830034A (zh) * 2020-06-09 2020-10-27 谢小敏 一种烃源岩中有机质显微生物组成分析与统计方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
Integrated assessment of thermal maturity of the Upper Ordovician-Lower Silurian Wufeng-Longmaxi shale in Sichuan Basin, China;Wang, Ye等;MARINE AND PETROLEUM GEOLOGY;第100卷;447-465 *
乍得Bongor盆地天然气地球化学特征及成因;程顶胜等;地学前缘;第25卷(第02期);112-120 *
地球化学方法在硅质岩成因与构造背景研究中的进展及问题;张聪;黄虎;侯明才;;成都理工大学学报(自然科学版);第44卷(第03期);293-304 *
湘黔地区埃迪卡拉纪-寒武纪之交硅质岩的成因探讨――来自稀土元素和Ge/Si比值的证据;魏帅超等;北京大学学报(自然科学版);第54卷(第05期);1010-1020 *
福建建瓯高门地区马面山俯冲增生杂岩中石英岩地质特征及其成因探讨;聂童春等;福建地质;第38卷(第04期);237-247 *
贵州凯里寒武系底部硅质岩系生物组成、沉积环境与烃源岩发育关系研究;谢小敏等;地质学报;第89卷(第2期);425-439 *
赣江上游河水中主元素、锶和锶同位素端元组分的探讨;刘静等;环境化学;第27卷(第02期);235-241 *
黄思静等.硅酸盐岩的成岩作用.地质出版社,2010,(第2010年10月第1版版),51-53. *

Also Published As

Publication number Publication date
CN112525904A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
Yuan et al. Reactive transport modeling of coupled feldspar dissolution and secondary mineral precipitation and its implication for diagenetic interaction in sandstones
Jinhua et al. Paleo-sedimentary environmental restoration and its significance of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China
Su et al. Pore type and pore size distribution of tight reservoirs in the Permian Lucaogou Formation of the Jimsar Sag, Junggar Basin, NW China
CN110333200B (zh) 一种基于短波红外光谱圈定矿化中心方法
Jeong Bulk and single‐particle mineralogy of Asian dust and a comparison with its source soils
Zhang et al. Silicon isotopic chemistry in the C hangjiang E stuary and coastal regions: Impacts of physical and biogeochemical processes on the transport of riverine dissolved silica
CN112525904B (zh) 一种硅质岩中不同来源硅质含量的定量计算方法
Staplin Microfossils from the Orgueil meteorite
Zhang et al. The lithofacies and reservoir characteristics of the fine-grained sedimentary rocks of the Permian Lucaogou Formation at the northern foot of Bogda Mountains, Junggar Basin (NW China)
Mao et al. Seasonal variations in the Sr-Nd isotopic compositions of suspended particulate matter in the lower Changjiang River: Provenance and erosion constraints
Fu et al. Establishing standardised growth curves (SGCs) for OSL signals from individual grains of quartz: A continental-scale case study
Zhang et al. Using water isotopes and hydrogeochemical evidences to characterize groundwater age and recharge rate in the Zhangjiakou area, North China
Lu et al. Understanding how inland lake system environmental gradients on the Qinghai-Tibet Plateau impact the geographical patterns of carbon and water sources or sink
Zhang et al. Pore structure characteristics of different lithofacies of the Longmaxi shale, Western Hunan‐Hubei Region, China: Implications for reservoir quality prediction
CN103793620A (zh) 河流三相空间重金属污染综合生态风险评价方法
Jiang et al. Impacts of different matrix components on multi-scale pore structure and reservoir capacity: Insights from the Jurassic Da’anzhai member in the Yuanba area, Sichuan Basin
He et al. The lower part of the first member of the Shahejie formation (Es1x) as a source rock for oil found in Lixian Slope, Raoyang Sag, Bohai Bay Basin, Northern China
Proidakova et al. Method to improve schemes of sample preparation and atomic-absorption analysis of geochemical samples
CN112461780B (zh) 一种烃源岩原始总有机碳含量的评价与计算方法
Jiang et al. Geochemical and geological characteristics of the Jurassic continental black shale in the Southwestern Depression of Tarim Basin
Liao et al. Genetic Mechanism of Geothermal Resources in the Qutan and Reshuizhou Geothermal Fields, Jiangxi Province, China: Evidence from Hydrogeochemical Characteristics of Geothermal Water
Kistovich et al. The structure of transient boundary flow along an inclined plane in a continuously stratified medium
CN111289667B (zh) 一种利用正构烷烃损失率划分原油生物降解级别的方法
Zhang et al. Reservoir formation conditions and enrichment mechanisms of shale oil and gas
Zhao et al. Design and Validation of A Rapid and Accurate Identification Scheme for Clay Minerals in Soils by Combining Different Optical Analysis Methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant