CN112522670A - 一种等离子电源的射频方法 - Google Patents

一种等离子电源的射频方法 Download PDF

Info

Publication number
CN112522670A
CN112522670A CN201910909515.6A CN201910909515A CN112522670A CN 112522670 A CN112522670 A CN 112522670A CN 201910909515 A CN201910909515 A CN 201910909515A CN 112522670 A CN112522670 A CN 112522670A
Authority
CN
China
Prior art keywords
target
sputtering
radio frequency
plasma power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910909515.6A
Other languages
English (en)
Inventor
颜朝阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Pulaisimai Electronic Technology Co ltd
Original Assignee
Hunan Pulaisimai Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Pulaisimai Electronic Technology Co ltd filed Critical Hunan Pulaisimai Electronic Technology Co ltd
Priority to CN201910909515.6A priority Critical patent/CN112522670A/zh
Publication of CN112522670A publication Critical patent/CN112522670A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及等离子电源技术领域,且公开了一种等离子电源的射频方法,操作步骤如下:等离子电源中采用射频溅射技术,且配备相应的匹配网络,并将工作气压降低;在射频溅射的过程中,为了获得高能量的摄像靶面的正离子流,置于放电中的靶子的表面必须有较高的负电位;在气体溅射过程中,该等离子电源的射频方法,通过将放电中的靶子的表面附加较高的负电位,从而吸引离子区中正离子向靶子移动,从而聚集大量的电荷,以施加粒子动能,而溅射气体中混合氧、氮、甲烷或一氧化氮、硫化氮等物质,会使气体浓度变低,从而提高溅射速率,且通过计算靶子与阳极罩之间的距离,调节粒子正确的移动空间,从而让粒子获得大量的动能。

Description

一种等离子电源的射频方法
技术领域
本发明涉及等离子电源技术领域,具体为一种等离子电源的射频方法。
背景技术
等离子电源又称射频电源,是等离子体配套电源,并由射频功率源,阻抗匹配器以及阻抗功率计组成,应用于射频溅射,PECVD化学气相沉积,反应离子刻蚀等设备中,近些年来,等离子体的研究受到高度关注,由射频放电方式产生的低气压、高密度等离子体在新材料的制备及材料表面改性等工艺中得到了越来越广泛的应用。
然而目前的等离子电源的射频溅射中,粒子轰击靶子表面时,容易分散,且靶子表面原子能量而由靶中逸出,粒子获得的能量不足,导致溅射速率低下,为此我们提出了一种等离子电源的射频方法。
发明内容
针对现有技术的不足,本发明提供了一种等离子电源的射频方法,解决了目前的等离子电源的射频溅射中,粒子轰击靶子表面时,容易分散,且靶子表面原子能量而由靶中逸出,粒子获得的能量不足,导致溅射速率低下的问题。
本发明提供如下技术方案:一种等离子电源的射频方法,操作步骤如下:
S1、等离子电源中采用射频溅射技术,且配备相应的匹配网络,并将工作气压降低;
S2、在射频溅射的过程中,为了获得高能量的摄像靶面的正离子流,置于放电中的靶子的表面必须有较高的负电位;
S3、在气体溅射过程中,将反应气体引入溅射气体中掺入氧、氮、甲烷或一氧化氮、硫化氮从而沉积出了氧化物、氮化物、碳化物和硫化物薄膜;
S4、当高能粒子轰击靶子表面时,就把能量传递给轰击区的表面,使靶子表面原子获得很高的能量而由靶中逸出,如此近射频。
优选的,S1的射频溅射中靶子要绝缘,也要水冷,靶系统的冷却水连接着靶作为阴极和真空腔体作为阳极,冷却水的绝缘电阻要足够大,即要保证冷却水管有足够的长度,一般情况下,靶的冷却水管约为10m,靶要安装屏蔽罩,由于靶的边缘戏射口,便于阳极罩与其安装,能控制边缘溅射在合适的范围。
优选的,S2中靶子的净直流电流必须为零,靶面电位至多只能稍微变正,其负峰值必须是等同于所加高频电位正负峰间的幅值。
优选的,S3中反应气体含量必须加以控制,若溅射总压力改变,为了保证同一薄膜性质,反应气体的含量亦需改变,当总压力增加时,反应气体的浓度必须降低。
优选的,S3中靶子厚度为某个定值,靶子阻抗与面积成反比,因此放电功率随着面积的增大而升高,且靶子溅射出来物质,呈半球形分布。
优选的,S4中靶子与阳极罩之间的距离必须满足2R,且中R表示电子的旋转半径,m表示电子质量,V表示阴极电压,q表示电子电量,B表示靶表面磁场强度,并通过R=mV/qB计算出R值,从而调整靶子与阳极罩之间的间距。
与现有技术对比,本发明具备以下有益效果:
该等离子电源的射频方法,通过将放电中的靶子的表面附加较高的负电位,从而吸引离子区中正离子向靶子移动,从而聚集大量的电荷,以施加粒子动能,而溅射气体中混合氧、氮、甲烷或一氧化氮、硫化氮等物质,会使气体浓度变低,从而提高溅射速率,且通过计算靶子与阳极罩之间的距离,调节粒子正确的移动空间,从而让粒子获得大量的动能。
附图说明
图1为本发明流程示意图。
具体实施方式
为了使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,还可以包括电性的连接,不管是直接的还是间接的。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明,以避免不必要地混淆本发明的概念。
请参阅图1,一种等离子电源的射频方法,操作步骤如下:
S1、等离子电源中采用射频溅射技术,且配备相应的匹配网络,并将工作气压降低;
S2、在射频溅射的过程中,为了获得高能量的摄像靶面的正离子流,置于放电中的靶子的表面必须有较高的负电位;
S3、在气体溅射过程中,将反应气体引入溅射气体中掺入氧、氮、甲烷或一氧化氮、硫化氮从而沉积出了氧化物、氮化物、碳化物和硫化物薄膜;
S4、当高能粒子轰击靶子表面时,就把能量传递给轰击区的表面,使靶子表面原子获得很高的能量而由靶中逸出,如此近射频。
在一个可选的实施例中,S1的射频溅射中靶子要绝缘,也要水冷,靶系统的冷却水连接着靶作为阴极和真空腔体作为阳极,冷却水的绝缘电阻要足够大,即要保证冷却水管有足够的长度,一般情况下,靶的冷却水管约为10m,靶要安装屏蔽罩,由于靶的边缘戏射口,便于阳极罩与其安装,能控制边缘溅射在合适的范围。
在一个可选的实施例中,S2中靶子的净直流电流必须为零,靶面电位至多只能稍微变正,其负峰值必须是等同于所加高频电位正负峰间的幅值。
在一个可选的实施例中,S3中反应气体含量必须加以控制,若溅射总压力改变,为了保证同一薄膜性质,反应气体的含量亦需改变,当总压力增加时,反应气体的浓度必须降低。
在一个可选的实施例中,S3中靶子厚度为某个定值,靶子阻抗与面积成反比,因此放电功率随着面积的增大而升高,且靶子溅射出来物质,呈半球形分布。
在一个可选的实施例中,S4中靶子与阳极罩之间的距离必须满足2R,且中R表示电子的旋转半径,m表示电子质量,V表示阴极电压,q表示电子电量,B表示靶表面磁场强度,并通过R=mV/qB计算出R值,从而调整靶子与阳极罩之间的间距。
以上实施例仅为本发明的示例性实施例,不用于限制本发明,本发明的保护范围由权利要求书限定。本领域技术人员可以在本发明的实质和保护范围内,对本发明做出各种修改或等同替换,这种修改或等同替换也应视为落在本发明的保护范围内。

Claims (6)

1.一种等离子电源的射频方法,其特征在于,操作步骤如下:
S1、等离子电源中采用射频溅射技术,且配备相应的匹配网络,并将工作气压降低;
S2、在射频溅射的过程中,为了获得高能量的摄像靶面的正离子流,置于放电中的靶子的表面必须有较高的负电位;
S3、在气体溅射过程中,将反应气体引入溅射气体中掺入氧、氮、甲烷或一氧化氮、硫化氮从而沉积出了氧化物、氮化物、碳化物和硫化物薄膜;
S4、当高能粒子轰击靶子表面时,就把能量传递给轰击区的表面,使靶子表面原子获得很高的能量而由靶中逸出,如此近射频。
2.根据权利要求1所述的一种等离子电源的射频方法,其特征在于,S1的射频溅射中靶子要绝缘,也要水冷,靶系统的冷却水连接着靶作为阴极和真空腔体作为阳极,冷却水的绝缘电阻要足够大,即要保证冷却水管有足够的长度,一般情况下,靶的冷却水管约为10m,靶要安装屏蔽罩,由于靶的边缘戏射口,便于阳极罩与其安装,能控制边缘溅射在合适的范围。
3.根据权利要求1所述的一种等离子电源的射频方法,其特征在于,S2中靶子的净直流电流必须为零,靶面电位至多只能稍微变正,其负峰值必须是等同于所加高频电位正负峰间的幅值。
4.根据权利要求1所述的一种等离子电源的射频方法,其特征在于,S3中反应气体含量必须加以控制,若溅射总压力改变,为了保证同一薄膜性质,反应气体的含量亦需改变,当总压力增加时,反应气体的浓度必须降低。
5.根据权利要求1所述的一种等离子电源的射频方法,其特征在于,S3中靶子厚度为某个定值,靶子阻抗与面积成反比,因此放电功率随着面积的增大而升高,且靶子溅射出来物质,呈半球形分布。
6.根据权利要求1所述的一种等离子电源的射频方法,其特征在于,S4中靶子与阳极罩之间的距离必须满足2R,且中R表示电子的旋转半径,m表示电子质量,V表示阴极电压,q表示电子电量,B表示靶表面磁场强度,并通过R=mV/qB计算出R值,从而调整靶子与阳极罩之间的间距。
CN201910909515.6A 2019-09-19 2019-09-19 一种等离子电源的射频方法 Pending CN112522670A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910909515.6A CN112522670A (zh) 2019-09-19 2019-09-19 一种等离子电源的射频方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910909515.6A CN112522670A (zh) 2019-09-19 2019-09-19 一种等离子电源的射频方法

Publications (1)

Publication Number Publication Date
CN112522670A true CN112522670A (zh) 2021-03-19

Family

ID=74974524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910909515.6A Pending CN112522670A (zh) 2019-09-19 2019-09-19 一种等离子电源的射频方法

Country Status (1)

Country Link
CN (1) CN112522670A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222204A (zh) * 1996-06-10 1999-07-07 康宁Oca有限公司 反应磁控管溅射装置和方法
CN1260842A (zh) * 1997-05-22 2000-07-19 东京电子有限公司 低压溅镀的方法与装置
CN101565818A (zh) * 2009-05-25 2009-10-28 苏州大学 一种溅射镀膜的方法
EP2622113A1 (de) * 2010-09-28 2013-08-07 Singulus Technologies AG Beschichten von substraten mit einer legierung mittels kathodenzerstäubung
CN107331593A (zh) * 2017-08-11 2017-11-07 大连理工大学 一种基于射频放电的正负离子源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222204A (zh) * 1996-06-10 1999-07-07 康宁Oca有限公司 反应磁控管溅射装置和方法
CN1260842A (zh) * 1997-05-22 2000-07-19 东京电子有限公司 低压溅镀的方法与装置
CN101565818A (zh) * 2009-05-25 2009-10-28 苏州大学 一种溅射镀膜的方法
EP2622113A1 (de) * 2010-09-28 2013-08-07 Singulus Technologies AG Beschichten von substraten mit einer legierung mittels kathodenzerstäubung
CN107331593A (zh) * 2017-08-11 2017-11-07 大连理工大学 一种基于射频放电的正负离子源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐伟忠: "《薄膜材料制备原理、技术及应用 第2版》", 31 January 2003, 冶金工业出版社 *

Similar Documents

Publication Publication Date Title
JP5698652B2 (ja) 同軸マイクロ波支援堆積及びエッチングシステム
US8057649B2 (en) Microwave rotatable sputtering deposition
Lazar et al. Ion flux characteristics and efficiency of the deposition processes in high power impulse magnetron sputtering of zirconium
EP2045353A1 (en) Capacitive-coupled magnetic neutral line plasma sputtering system
US6649036B2 (en) Mirrortron sputtering apparatus
US9028659B2 (en) Magnetron design for extended target life in radio frequency (RF) plasmas
Tao et al. Spatial distributions of electron density and electron temperature in direct current glow discharge
Shandrikov et al. Ion mass-to-charge ratio in planar magnetron plasma with electron injections
Wang et al. Hollow cathode magnetron
CN112522670A (zh) 一种等离子电源的射频方法
Chiad et al. Characteristics and operation conditions of a closed-field unbalanced dual magnetrons plasma sputtering system
Posadowski Low pressure magnetron sputtering using ionized, sputtered species
EP2509100A2 (en) Integrated anode and activated reactive gas source for use in a magnetron sputtering device
Ohtsu et al. Plasma characteristics and target erosion profile of racetrack-shaped RF magnetron plasma with weak rubber magnets for full circular target utilization
CN114540779B (zh) 复合阴极、磁控溅射镀膜设备及镀膜方法
Nyaiesh The characteristics of a planar magnetron operated at a high power input
CN208632625U (zh) 提高低合金结构钢表面离子渗氮效率的辅助设备
CN208717429U (zh) 配置辅助阳极的低温沉积设备
Joo Ionization enhancement in ionized magnetron sputter deposition
Schulz Sputter-ion pumps
RU2797582C1 (ru) Устройство для осаждения металлических пленок
CN219627963U (zh) 一种靶的屏蔽与抽气结构
Anders et al. Sputtering in vacuum: A technology for ultraclean metallization and space propulsion
Liu et al. Self-neutralized ion implantation into insulators
Fujiyama et al. Magnetron plasmas for large-area uniform sputtering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210319

RJ01 Rejection of invention patent application after publication