CN112522316B - Construction method and application of humanized KDR gene modified animal model - Google Patents

Construction method and application of humanized KDR gene modified animal model Download PDF

Info

Publication number
CN112522316B
CN112522316B CN202011475952.0A CN202011475952A CN112522316B CN 112522316 B CN112522316 B CN 112522316B CN 202011475952 A CN202011475952 A CN 202011475952A CN 112522316 B CN112522316 B CN 112522316B
Authority
CN
China
Prior art keywords
leu
val
ser
kdr
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011475952.0A
Other languages
Chinese (zh)
Other versions
CN112522316A (en
Inventor
孙瑞林
王津津
周宇
茅文莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Nanmo Biotechnology Co ltd
Shanghai Dishi Biotechnology Co ltd
Shanghai Model Organisms Center Inc
Original Assignee
Guangdong Nanmo Biotechnology Co ltd
Shanghai Dishi Biotechnology Co ltd
Shanghai Model Organisms Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Nanmo Biotechnology Co ltd, Shanghai Dishi Biotechnology Co ltd, Shanghai Model Organisms Center Inc filed Critical Guangdong Nanmo Biotechnology Co ltd
Priority to CN202011475952.0A priority Critical patent/CN112522316B/en
Publication of CN112522316A publication Critical patent/CN112522316A/en
Application granted granted Critical
Publication of CN112522316B publication Critical patent/CN112522316B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/027New breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Humanized animals, e.g. knockin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/072Animals genetically altered by homologous recombination maintaining or altering function, i.e. knock in
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases

Abstract

The application provides a construction method and application of a humanized KDR gene modified animal model, and relates to the technical field of genetic engineering. The humanized KDR gene modified animal model constructed by the application can accelerate the research progress of the fields related to the human KDR gene or protein. Preferably, the application utilizes homologous recombination gene editing technology to replace a mouse-derived Kdr gene with a human-derived KDR gene on a mouse with a sound immune system, and constructs a mouse model capable of interacting with an anti-human-derived KDR antibody.

Description

Construction method and application of humanized KDR gene modified animal model
Technical Field
The application relates to the technical field of genetic engineering, in particular to a construction method and application of a humanized KDR gene modified animal model.
Background
Cancer is a major public health problem facing the world, and the incidence and mortality of human cancers is still rising. With the progress of aging and the increase in population, cancer is expected to be the leading cause of death in the 21 st century, and has become a heavy burden for public medical care.
Angiogenesis is a necessary step in tumorigenesis, the development process: in the process of tumor growth, when the diameter of the tumor is larger than 2mm, the required nutrients and oxygen cannot be obtained only by diffusion in tissues, and angiogenesis is required to provide nutrients and oxygen for cancer cells for growth and amplification of the cancer cells. In 1971, Folkman et al proposed that growth and metastasis of solid tumors depend on angiogenesis, and further proposed an anti-tumor therapy that "starves" tumors by destroying or inhibiting tumor angiogenesis through tumor angiogenesis inhibitors, with tumor angiogenesis as a target. Further research shows that when providing nutrient substances and oxygen for tumor cells, tumor blood vessels can form a microenvironment with hypertonicity, hypoxia, acidity and high pressure due to structural abnormality, so that proliferation, infiltration, survival and function exertion of immune cells are influenced, and the resistance of tumors to chemotherapy, radiotherapy and immunotherapy is caused. Jain et al proposed the theory of normalization of tumor vessels: the anti-angiogenesis medicine is reasonably applied, the tumor blood vessels tend to be normal in structure and function in a specific time window, and finally the anti-tumor effect is improved and the tumor metastasis is inhibited.
A great deal of research shows that factors such as Vascular Endothelial Growth Factor (VEGF) and angiogenin (Ang) are over-expressed in tumor tissues and play an important role in promoting the formation and growth of tumor blood vessels. For these pro-angiogenic factors, a series of drug molecules have been developed, among which, drugs directed to VEGF/VEGFR (vascular endothelial growth factor receptor) signaling pathway are the fastest growing and most successful, and several drugs are on the market, such as bevacizumab directed to VEGF, ramucirumab directed to VEGFR, etc. VEGF is a glycoprotein, and the human VEGF family comprises 6 members of VEGFA, VEGFB and the like, and VEGF can selectively act on VEGFR. VEGFR is a class of tyrosine kinase transmembrane proteins, which are distributed predominantly on the surface of vascular endothelial cells and comprise 3 members of VEGFR1, VEGFR2 (also known as KDR) and VEGFR 3. VEGF binds to the extracellular segment of VEGFR, so that VEGFR conformation is changed to form a dimer, the tyrosine site of the intracellular segment of the dimer is phosphorylated, a downstream signal transduction pathway is activated, and angiogenesis is promoted. Among them, VEGFR2(KDR) is the most important endothelial cell proliferation and differentiation promoting signal transduction protein on vascular endothelial cells, KDR plays an important role in tumor angiogenesis in addition, recent studies show that it also plays an important role in regulating and controlling tumor microenvironment, and KDR antibody can reverse the inhibitory effect of VEGF on T cells. Therefore, the inhibitor aiming at KDR can play a role in resisting tumors by inhibiting angiogenesis and improving the tumor microenvironment and enhancing the immune function of immune cells. At present, aiming at a KDR target point, a large-molecular antibody medicament, namely Ramucirumab (Cyramza, Ramucirumab), is available on the market for the Gift company, and many companies in China are developing the large-molecular antibody medicament aiming at the KDR, such as the target points are distributed in the scientific pharmaceutical industry, the Kangfang organism, the Sansheng pharmacy, the step-size pharmacy and the like; besides macromolecular drugs, several companies in China have already or will come into the market for small-molecule kinase inhibitors of KDR, such as Apatinib of Henry medicine and Sofantinib of Megaku.
In preclinical research of drugs, mice are widely applied to drug effect evaluation, pharmacological toxicological analysis and other researches, and the premise for applying the researches is that drugs acting on human-derived targets can be combined with corresponding targets of the mice, and if tested drugs cannot be combined with mouse-derived targets, the mice cannot be used for drug effect evaluation, pharmacological toxicological evaluation and other evaluations. The contradiction between the drug effect and the pharmacological and toxicological evaluation of animals cannot be caused due to the fact that the developed human-derived target drugs cannot identify target molecules of the animals, and the contradiction is particularly prominent in the macromolecular antibody drugs, because the macromolecular antibody drugs can only identify one target site consisting of a plurality of amino acids, and the difference of 1 amino acid of the target molecules between the animals and the human can cause the drugs not to identify the target sites in the animal bodies, further influence the subsequent drug evaluation, prolong the research and development period and increase the uncertainty. The consistency of amino acid sequences of KDR proteins of human and mouse is only 85%, the consistency of amino acid of extracellular regions is lower and is only 79.9% (the extracellular regions are main action regions of antibody macromolecular drugs aiming at KDR targets), and due to the difference of the amino acid sequences, the marketed Ramomucirumab aiming at the KDR targets cannot identify the Kdr proteins of the mouse, and the drug effect, the toxicology, the safety and the like of the Ramomucirumab by the mouse cannot be utilized for evaluation. In order to reduce the difference between human and mice, the wild type mouse is humanized and transformed, so that the microenvironment of a human body can be well reproduced, and the method can be applied to drug toxicity and safety evaluation while being used for drug effect evaluation. At present, humanized mouse models have been widely used in the field of disease research such as tumor and virus infection.
Nowadays, genetic engineering technology has been developed relatively mature, target molecules are humanized and transformed by means of gene modification, and the problem of target difference between human and animals can be well solved by establishing a humanized animal model to research human diseases: after gene modification, the humanized model animal body can fully or partially express corresponding human protein, imitate the interaction between various molecules when human diseases occur, reappear the characteristics of the human diseases, greatly reduce the difference between the animal model and the human body before clinic, and enable the screening research of the medicine at the whole level of the animal to be possible; meanwhile, the model can evaluate the toxicity and drug metabolism of the drug on a model with a normal immune system, can better fit the clinical drug efficacy, and improves the success probability of drug screening.
Disclosure of Invention
The application aims to provide a construction method and application of a humanized KDR gene modified animal model, so as to accelerate research progress of fields related to human KDR genes or proteins.
In order to achieve the above object, the present application first provides a method for constructing a humanized KDR gene-modified animal cell, comprising:
introducing a human KDR gene into a non-human animal cell, so that the human KDR gene is expressed in the non-human animal cell to generate humanized KDR protein, and simultaneously reducing or eliminating the expression of an endogenous KDR gene in the non-human animal cell.
In some embodiments of the present application, a gene editing technology is used to modify an endogenous KDR gene in a non-human animal cell to obtain a humanized KDR gene;
preferably, the non-human animal is a rodent;
preferably, the rodent is a mouse, and the construction method comprises the following steps: replacing the whole sequence of exons 4 to 14 and a part of the sequence of exon 15 of a mouse Kdr gene with the whole sequence of exons 4 to 14 and a part of the sequence of exon 15 of a human KDR gene;
preferably, the cell is an embryonic stem cell.
It is understood that the sequence of the coding protein corresponding to the entire sequence of exon 4 to exon 14 and a part of the sequence of exon 15 of mouse Kdr gene is the sequence of the extracellular region of KDR protein.
When the non-human animal cell is an embryonic stem cell, a humanized KDR gene cell is obtained by carrying out gene editing on the embryonic stem cell, the humanized KDR gene cell is transferred to a blastocyst of a wild type mouse, and a F0 generation chimeric animal can be obtained after embryo transplantation and development.
In some embodiments of the present application, the humanized KDR gene is selected from at least one of the following group:
(a) the CDS coding sequence of the humanized KDR gene is shown as SEQ ID NO: 6 is shown in the specification;
(b) the mRNA sequence transcribed by the humanized KDR gene is shown as SEQ ID NO: 7 is shown in the specification;
(c) the protein sequence coded by the humanized KDR gene is shown as SEQ ID NO: shown in fig. 8.
In some embodiments of the present application, the construction method specifically includes: providing a human KDR gene homologous recombination vector, introducing the human KDR gene homologous recombination vector into mouse cells, and transferring the mouse cells into a culture solution for culture;
preferably, the human KDR gene homologous recombination vector comprises a 5 'homology arm, a humanized KDR gene coding region, a resistance gene expression box and a 3' homology arm which are sequentially arranged from a 5 'end to a 3' end;
specific sites which can be recognized by recombinase are arranged between the coding region of the humanized KDR gene and the expression frame of the resistance gene and between the expression frame of the resistance gene and the 3' homology arm;
preferably, the specific site is an FRT site.
In some embodiments of the present application, the DNA sequence of the 5' homology arm is as set forth in SEQ ID NO: 9 is shown in the figure;
preferably, the DNA sequence of the 3' homology arm is as set forth in SEQ ID NO: 10 is shown in the figure;
preferably, the DNA sequence of the coding region of the humanized KDR gene is as set forth in SEQ ID NO: shown at 11.
SEQ ID NO: 11 does not include an intron, and a plurality of continuous exons are fused by cutting off the intron, so that the efficiency of homologous recombination is improved while the KDR gene expression is not influenced.
The application also provides a humanized KDR gene modified animal cell which is obtained by the construction method of the humanized KDR gene modified animal cell.
The application also provides a construction method of the humanized KDR gene modified animal model, the humanized KDR gene modified animal cell is injected into a blastocyst, and is transplanted into a surrogate mother body for development through embryo to obtain an F0 animal;
preferably, the blastocyst is a blastocyst of a wild-type animal.
Specifically, the method for screening the animals of the F0 generation can be as follows: and (4) screening through the character of hair color. For example, blastocysts are selected from animals having a first coat color (e.g., black), humanized KDR genetically modified animal cells (embryonic stem cells) are selected from animals having a second coat color (e.g., gray), the obtained F0 generation animals are chimeras, and thus the coat color is a mixed color of the first coat color and the second coat color, and then F0 generation animals having a second coat color ratio of 50% or more are selected for breeding the next generation, because the second coat color ratio of 50% or more of the F0 generation animals has a higher probability that the reproductive system thereof is developed from the humanized KDR genetically modified animal cells.
In some embodiments of the present application, the method for constructing the humanized KDR genetically modified animal model further comprises: mating the F0 generation animals with animals expressing recombinase to obtain F1 generation animals with resistance genes removed;
mating the F1 generation animal with a wild animal, expanding the population, mating the heterozygote animal with the heterozygote animal to obtain a homozygote animal, and establishing a stable humanized KDR gene modified animal strain;
preferably, the recombinase is a Flp recombinase.
It is understood that the cells of the F1 generation animals obtained by mating the F0 generation animals with an animal expressing a recombinase can contain both the humanized KDR gene and the recombinase gene, and the recombinase can recognize specific sites on both sides of the resistance gene, thereby splicing the resistance gene transformed into the genome of the animal to obtain F1 generation animals from which the resistance gene is deleted.
In some embodiments of the present application, the specific site is an FRT site and the recombinase is a Flp recombinase. The Flp recombinase can recognize specific sites on both sides of the resistance gene expression frame, and then the resistance gene expression frame is deleted.
Preferably, the animal expressing the recombinase is an animal expressing the recombinase at an early stage of oocyte/embryo development. This is because the early stage of oocyte/embryo development, i.e., the animals expressing the recombinase after maturation, can ensure that all cells throughout the body contain the recombinase gene, thereby ensuring that germ cells thereof contain the recombinase gene. It is understood that the early stage of embryonic development generally refers to within 72 hours after fertilization of the ovum.
The application also provides a cell or a cell line or a cell culture, the cell or the cell line or the cell culture is derived from a humanized KDR gene modified animal model or filial generation thereof, and the humanized KDR gene modified animal model is obtained by the construction method of the humanized KDR gene modified animal model.
The application also provides a tissue or organ, the tissue or organ is derived from a humanized KDR gene modified animal model or offspring thereof, and the humanized KDR gene modified animal model is obtained by the construction method of the humanized KDR gene modified animal model.
The application also provides a humanized KDR gene modified animal model obtained by the construction method of the humanized KDR gene modified animal model, and application of cells, cell lines or cell cultures, tissues and organs derived from the humanized KDR gene modified animal model in the fields related to the human KDR gene or protein;
optionally, the application includes at least one of human KDR gene function research, human KDR antibody research, drug preparation aiming at a human KDR target site and drug effect research.
The beneficial effect of this application:
the humanized KDR gene modified animal model constructed by the method can accelerate the research progress of the fields related to the human KDR gene or protein, for example, the humanized KDR gene modified animal model is used for replacing human reagents, and an effective model and a powerful tool are provided for preclinical experiments of KDR target drugs.
Preferably, the application utilizes homologous recombination gene editing technology to replace a mouse-derived Kdr gene with a human-derived KDR gene on a mouse with a sound immune system, and constructs a mouse model capable of interacting with an anti-human-derived KDR antibody.
Furthermore, the KDR humanized mouse constructed by the application replaces the extracellular region of mouse Kdr gene with human source sequence, and the intracellular region retains the complete mouse source sequence. The humanized mouse which is successfully manufactured is provided with the human extracellular region, so that a human KDR target drug can be screened, and the mouse intracellular region ensures that the intracellular signal conduction is not influenced, and the external stimulation is faithfully converted into the intracellular behavior.
Drawings
To more clearly illustrate the technical solutions of the embodiments of the present application, the drawings that are required to be used in the embodiments are briefly described below, and it should be understood that the following drawings only illustrate some embodiments of the present application and therefore should not be considered as limiting the scope of the present application.
FIG. 1 is a schematic diagram showing the comparison of the murine KDr and human KDR genes.
FIG. 2 is a schematic diagram of the Kdr gene of the humanized mouse after being transformed.
FIG. 3 is a schematic of the targeting protocol for humanizing the mouse Kdr gene.
FIG. 4 is a schematic diagram showing the cleavage result in example 4 of the present application; as for the results of enzyme digestion identification of EcoRV, the theoretical band sizes should be 6404bp, 5108bp, 3181bp, 2704bp, 314bp and 104bp (the bands of 314bp and 104bp have no band display because the product amount is too small); m: 1kb DNA ladder.
FIG. 5 is a schematic diagram showing the results of PCR identification of the targeted ES cell clone in example 5 of the present application. A is an electrophoresis chart of 5' homologous arm homologous recombination identification result; and B is an electrophoresis chart of the 3' homologous arm homologous recombination identification result. The letters above the pictures are the ES cell clone numbers; m: DNA marker (1kb DNA ladder).
FIG. 6 is a schematic diagram showing the results of PCR identification of F1 mouse homologous recombination in example 6 of the present application. A is an electrophoresis chart of 5' homologous arm homologous recombination identification result; and B is an electrophoresis chart of the 3' homologous arm homologous recombination identification result. The upper number is the mouse number; m: DNA marker (1kb DNA ladder).
FIG. 7 is a schematic diagram of the position design of the RT-PCR electrophoresis primer in example 8 of the present application.
FIG. 8 is a graph showing the results of reverse transcription PCR electrophoresis in example 8 of the present application. He: a heterozygote mouse; WT: a wild-type mouse; m: and (5) electrophoresis of the DNA marker. P1/P2 are the primers P1 and P2 shown in FIG. 7, and are used for detecting the expression of murine Kdr mRNA; P3/P4 are primers P3 and P4 shown in FIG. 7, and are used for detecting whether the humanized KDR mRNA is expressed.
FIG. 9 shows the results of enzyme-linked immunosorbent assay (ELISA) for detecting KDR protein expression of mouse of different genotypes in example 9 of the present application. A picture is the detection result of the content of the murine Kdr protein; and the B picture is the detection result of the content of the human KDR protein. WT: a wild-type mouse; and (3) Homo: KDR humanized homozygous mice.
FIG. 10 shows the results of antitumor effect of ramucirumab (Cyramza) in example 9 of the present application in wild type mice and humanized mice. A picture is the response result of KDR humanized mouse to Ramoplumumab tumor drug effect; panel B is a comparative analysis of tumor size at day 17 of the dosing endpoint of Panel A; the C picture shows the response result of wild type C57BL/6 mouse to ramucirumab. In the A picture, the number of mice in the Vehicle group is 4, and the number of mice in the Cyramza-15mpk-i.p. group is 5; in the C panel, the number of mice in the Vehicle group and the Cyramza-20mpk-i.p. group is 5.
Detailed Description
Embodiments of the present application will be described in detail below with reference to specific examples, but those skilled in the art will appreciate that the following examples are only illustrative of the present application and should not be construed as limiting the scope of the present application. The examples, in which specific conditions are not specified, were conducted under conventional conditions or conditions recommended by the manufacturer. The reagents or instruments used are not indicated by the manufacturer, and are all conventional products available commercially.
The mouse strain, biochemical reagent and experimental instrument used in the embodiment of the application are as follows:
primer synthesis and sequencing services were purchased from bio-engineering (shanghai) gmbh;
EcoRV restriction enzymes were purchased from NEB Inc. under the following commercial designations: R0195S;
a1 kb DNA ladder was purchased from Thermo Fisher Scientific, having the following code: SM 0311;
In-Fusion HD Cloning Kits available from Takara under the accession number: 639650, respectively;
coli DH 5. alpha. competent cells were purchased from TaKaRa, cat # 9057;
c57BL/6, ICR mice were purchased from Shanghai Ling Biotech, Inc.;
the RNA extraction kit is purchased from the general gold company, and the goods number is as follows: DP 424;
the RNA reverse transcription kit is purchased from the general gold company, and the goods number is as follows: AT 311-02;
the real-time quantitative PCR detection kit is purchased from the general gold company, and the goods number is as follows: AQ 131-01;
ELISA kits for murine Kdr protein detection were purchased from R & D SYSTEMS, under the accession numbers: MVR 200B;
ELISA kits for murine protein detection were purchased from R & D SYSTEMS, under the accession number: a DVR 200;
ramucirumab (Cyramza) was purchased from american gifts.
Example 1 sequence design
Both the mouse Kdr gene and the human Kdr gene contain multiple transcripts, and the sequence design of this example is described mainly with one transcript as an example. That is, the mouse KDr Gene (NCBI Gene ID: 16542) from exon 4 to 14 and a part of exon 15 (based on the transcript of NCBI accession No. NM-010612.3 → NP-034742.2, whose mRNA sequence is shown in SEQ ID NO: 1 and the corresponding protein sequence is shown in SEQ ID NO: 2) are replaced with exon 4 to exon 14 and a part of exon 15 of human KDR Gene (Gene ID: 3791) (based on the transcript of NCBI accession No. NM-002253.3 → NP-002244.1, whose mRNA sequence is shown in SEQ ID NO: 3 and the corresponding protein sequence is shown in SEQ ID NO: 4), wherein the comparison of mouse KDr Gene and human KDR Gene is schematically shown in FIG. 1, the finally obtained humanized mouse KDR Gene after modification is schematically shown in FIG. 2, and the humanized mouse KDR Gene DNA sequence (chimeric KDR Gene DNA) is shown in SEQ ID NO: and 5, as follows:
Figure BDA0002835350130000081
Figure BDA0002835350130000091
SEQ ID NO: 5 lists only the DNA sequences involved in the engineered part, where the underlined region is flanked by the non-engineered regions, the bold italics are the sequences of the new exons formed by fusing together human exons 4 to 14 and a part of exon 15 with a part of mouse exon 15, and the regular italics are the partial sequences of mouse intron 15.
The CDS region and mRNA sequence of the humanized mouse KDR after being transformed and the protein sequence coded by the CDS region and mRNA sequence are respectively shown as SEQ ID NO: 6. SEQ ID NO: 7 and SEQ ID NO: shown in fig. 8.
Given that there are multiple transcripts for the human and mouse KDR genes, the method of humanized sequence design in this example is equally applicable to the humanized engineering of other transcripts. The mouse Kdr gene transcript described above may be replaced with another transcript.
Example 2 design and construction of recombinant vector PBR322-KDR
Based on the sequence design, the inventors further designed the targeting protocol shown in FIG. 3 and a vector comprising a 5 'homology arm, a human KDR gene fragment, a murine Kdr gene fragment, a resistance gene expression cassette, and a 3' homology arm. Wherein the 5 'homology arm (SEQ ID NO: 9) is the 75972817-75968732 nucleotide of NCBI accession No. NC-000071.6, the 3' homology arm (SEQ ID NO: 10) is the 75955853-75951 nucleotide of NCBI accession No. NC-000071.6, the human KDR gene fragment (SEQ ID NO: 11) is the 705-2501 nucleotide of NCBI accession No. NM-002253.3, and the murine Kdr gene fragment (SEQ ID NO: 12) is the 76116880-76116514 nucleotide of NCBI accession No. NC-000071.7.
The construction process of the vector is as follows: an upstream primer for amplifying 3 homologous recombination fragments (LA, KI and RA) and a downstream primer matched with the upstream primer and related sequences are designed. Wherein, the 5 'homologous arm corresponds to LA fragment, elements such as human KDR gene fragment inserted for humanization correspond to KI fragment, the 3' homologous arm corresponds to RA fragment, and the primer sequence is as follows:
LA(4015bp):
F:5’-CGCGGTCGACAAGCTcaactactctaccactgagc-3’(SEQID NO:13)
R:5’-GCCATGCTGGTCACTGACAG-3’(SEQ ID NO:14)
KI(4097bp):
F:5’-AGTGACCAGCATGGCGTCGTGTACATTACTGAGAA-3’(SEQ ID NO:15)
R:5’-CCATTATGTACCTGACTGAT-3’(SEQ ID NO:16)
RA(3948bp):
F:5’-TCAGGTACATAATGGctccacgtgttctttgtaat-3’(SEQ ID NO:17)
R:5’-TAGAGGATCGGCGCGagaaccaatgacagtggtat-3’(SEQ ID NO:18)
using C57BL/6 mouse genome DNA or BAC library as template to make PCR amplification to obtain LA and RA fragments, using the synthesized human KDR gene fragment, mouse Kdr gene fragment and resistance gene expression frame as template to make PCR amplification to obtain KI fragment (SEQ ID NO: 19, containing human KDR gene fragment, mouse Kdr gene fragment and resistance gene expression frame). The fragment was ligated to the PBR322-MCS plasmid by means of an In-fusion kit to finally obtain the vector PBR 322-KDR.
Example 3 validation of the vector PBR322-KDR
Randomly selecting 5 PBR322-KDR clones, using restriction enzyme EcoRV to perform enzyme digestion verification, and generating fragments with the sizes of 6404bp, 5108bp, 3181bp, 2704bp, 314bp and 104bp by enzyme digestion product electrophoresis. The digestion results are shown in FIG. 4, and the plasmid digestion results are all in line with expectations, which indicates that the plasmid digestion verification result is correct. The plasmid was verified to be correct by sequencing company for subsequent experiments.
Example 4 identification of Positive clones of humanized ES cells with KDR
And (3) carrying out electrotransformation on the constructed PBR322-KDR homologous recombination vector by using mouse embryonic stem cells (ES cells), and screening resistant clones to finally obtain 144 resistant ES cell clones. After the resistance ES cell clone genome DNA is extracted, homologous recombination positive clones are screened in a long-fragment PCR mode, the homologous recombination positive clones are identified by PCR, and a PCR product is sequenced and confirmed.
Cloning and identifying homologous recombination positive ES cells:
and respectively carrying out PCR identification on the cloned genomic DNA of the resistant ES cells by using two pairs of primers, wherein the primer I is positioned outside the 5 'homologous arm 5', the primer IV is positioned outside the 3 'homologous arm 3', and the primer II and the primer III are positioned on the inserted fragment, and the specific sequences are as follows:
5' homologous arm recombination identification primer:
primer I: 5'-AACTTCTTACTCTCCCTTGCTTAT-3' (SEQ ID NO: 20)
And (3) primer II: 5'-TGAAATGGGGTTGGTGAGGATGAC-3' (SEQ ID NO: 21) PCR reaction (20. mu.L) is shown in Table 1:
TABLE 1 PCR reaction System (20. mu.L)
Reaction components Volume (μ l)
ddH2O 13.2
GXL PCR Buffer 2
2.5mMdNTP 2
Primer I(10pmol/μl) 0.5
Primer II(10pmol/μl) 0.5
GXL DNA Polymerase* 0.8
Genomic DNA 1
Total 20
The PCR amplification reaction conditions are shown in Table 2:
TABLE 2 PCR amplification reaction conditions
Step # of Temperature (. degree.C.) Time Remarks for note
1 94 3min -
2 98 15sec -
3 61 15sec -
4 68 5min Repeating the steps for 2-432 cycles
5 68 5min -
6 12 - Heat preservation
3' homologous arm recombination identification primer:
and (3) primer III: 5'-GCTGTGGGTGCTGATGAACG-3' (SEQ ID NO: 22)
And (3) primer IV: 5'-CAAAGGGCCACTGACACAAGACTC-3' (SEQ ID NO: 23)
The PCR reaction (20. mu.L) is shown in Table 3:
TABLE 3 PCR reaction System (20. mu.L)
Figure BDA0002835350130000111
Figure BDA0002835350130000121
The PCR amplification reaction conditions are shown in Table 4:
TABLE 4 PCR amplification reaction conditions
Step # of Temperature (. degree.C.) Time Remarks for note
1 94 3min -
2 98 15sec -
3 61 15sec -
4 68 5min Repeating the steps for 2-432 cycles
5 68 5min -
6 12 - Heat preservation
If the ES cell targeting vector is correctly recombined, the 5' homologous arm identification primer pair I and II can amplify a PCR product with the length of 6.5kb, and a negative clone cannot amplify a PCR product with the length of 6.5 kb; the 3' homology arm identification primer pair III and IV can amplify PCR bands with the length of 6kb, and the negative clone can only amplify a band with the length of 9.2 kb.
The PCR identification of ES cell clones is schematically shown in FIG. 5, in which the clones numbered C2 and H2 are correctly recombined positive ES cell clones.
Example 5 acquisition of humanized heterozygote mice for KDR
The positive ES cell clone No. C2, H2, after expanding, inject into C57BL/6 mouse blastocyst, inject 160 blastocysts totally, through the embryo transfer, obtain 9 high chimeric male mice totally. Mating the chimera male mouse with the mouse expressing Flp recombinase at the early development stage of oocyte/embryo, and breeding to obtain the KDR humanized F1 generation mouse with the resistance gene removed. Through PCR identification and sequencing confirmation, 4 positive mice are obtained in total, and the numbers are as follows: 7. numbers 9, 13, 14.
Example 6 identification of humanized F1 Generation mice with KDR
The KDR humanized F1 generation mouse genotype identification protocol with homologous recombination positive deletion of resistance gene expression cassette was the same as that of example 4 identification primers and identification conditions for positive cloning of KDR humanized ES cells: homologous recombination positive mice, 5' homologous arm identification primer pairs I and II can amplify PCR products with the length of 6.5kb, and negative mice can not amplify PCR products with the length of 6.5 kb; the 3' homology arm identification primer pair III and IV can amplify a PCR product band with the length of 4.2kb, and a negative mouse cannot amplify a PCR product band with the length of 4.2 kb.
The PCR identification result of F1 mouse is shown in FIG. 6, in which 4 mice numbered 7, 9, 13, 14 are positive for homologous recombination and the expression cassette of the resistance gene is deleted.
The obtained F1 mouse generation was mated with a wild type mouse, respectively, to propagate the population. Meanwhile, the heterozygote mice are selfed to obtain homozygote mice.
Example 7 humanized mouse KDR RNA expression analysis
Selecting a KDR humanized heterozygote mouse and a littermate wild type mouse (6 weeks old) to extract total lung RNA, carrying out PCR after carrying out reverse transcription into cDNA by using a reverse transcription kit, and verifying whether the humanized insert fragment in the humanized mouse is expressed or not.
The position of the primer for detecting the murine Kdr RNA in the experimental design is shown as the position of the P1/P2 primer in figure 7, and the sequence is as follows:
p1: 5'-CCATTGGCGAGACCATTGAAGTGA-3' (SEQ ID NO: 24), and
P2:5’-AGCGCTCATCCAAGGGCAAT-3’(SEQ ID NO:25)
the position of the designed detection primer for detecting the humanized KDR RNA is shown as the position of a P3/P4 primer in figure 7, and the sequence is as follows:
p3: 5'-GTATTGGGGAAAGCATCGAAGTCT-3' (SEQ ID NO: 26), and
P4:5’-AGCGCTCATCCAAGGGCAAT-3’(SEQ ID NO:27)
the PCR reaction system and the reaction conditions of the two pairs of primers P1/P2 and P3/P4 are the same, and 20 mu L of the PCR reaction system and the reaction conditions are as follows: 94 ℃ for 4 min; (94 ℃, 15 sec; 62 ℃, 15 sec; 72 ℃, 45sec, 32 cycles); 72 ℃ for 5 min; keeping the temperature at 12 ℃.
Theoretically, by using a P1/P2 primer pair, a wild mouse and a heterozygote mouse can amplify PCR products of reverse transcription of murine RNA with the size of 414 bp; with the primer pair P3/P4, heterozygote mice can amplify PCR products with the size of 414bp specific to humanized RNA after reverse transcription, and wild mice cannot amplify specific PCR products specific to humanized KDR RNA.
The reverse transcription PCR electrophoresis results (see FIG. 8) show that, consistent with the theoretical situation, the expression of murine Kdr mRNA can be detected in both wild type and heterozygous mice; however, the expression of the humanized KDR mRNA was detectable only in the humanized heterozygote mice, and not in the wild-type mice.
Example 8 analysis of KDR protein level expression in humanized mice
The method comprises the steps of selfing a heterozygote mouse to obtain a homozygote mouse, selecting 3 humanized KDR homozygote mice and 3 same-litter wild-type mice (6-7 weeks old), taking peripheral blood, and detecting the expression of the murine and human KDR proteins in the peripheral blood of the wild-type and humanized homozygote mice by respectively using enzyme-linked immunosorbent assay (ELISA) detection kits aiming at the murine Kdr protein and the human KDR protein. According to the operation method provided by the kit, the result is shown in fig. 9, only a mouse-derived KDR protein signal of a background level can be detected in the humanized KDR homozygote mouse, and a high-level human-derived KDR protein signal can be detected, which indicates that the human-derived KDR protein is actively expressed in the humanized KDR mouse; however, only the expression of the mouse-derived Kdr protein could be detected in the wild-type mouse, and the expression of the human-derived Kdr protein could not be detected.
Example 9 humanized mouse KDR model can be applied to drug efficacy validation for human KDR target
Wild type C57BL/6 mice and KDR humanized homozygote mice were inoculated with B16-F1 melanoma tumor cells, respectively, and each mouse was inoculated with 1x106The amount of cells until the tumor grows to 25-50mm3At that time, the administration of groups was initiated and treatment was given with saline and ramucirumab (Cyramza) marketed for KDR target, respectively, as shown in the table below:
Figure BDA0002835350130000141
after 6 times of administration treatment, the ramucirumab does not show an anti-tumor effect in a wild mouse tumor-bearing group; the ramucirumab shows obvious anti-tumor effect in KDR humanized homozygote mice, and the average tumor volume of a treatment group is 238.87mm3Is obviously lower than 2150.54mm of the normal saline control group3The difference is statistically significant, which indicates that ramucirumab can effectively inhibit the growth of B16-F1 tumor, and the result is shown in FIG. 10. The result shows that the KDR humanized and transformed mouse model overcomes the defects of a wild mouse and can be applied to drug effect verification aiming at a human KDR target point.
Sequence listing
<110> Shanghai's Square model Biotech Co., Ltd
Shanghai Yushi Biological Technology Co., Ltd.
Guangdong Nanmo Biological Technology Co., Ltd.
Construction method and application of humanized KDR gene animal model
<160> 27
<170> SIPOSequenceListing 1.0
<210> 1
<211> 5921
<212> RNA
<213> mouse (mouse)
<400> 1
gaguccucag gaccccaaga gaguaagcug uguuuccuua gaucgcgcgg accgcuaccc 60
ggcaggacug aaagcccaga cugugucccg cagccgggau aaccuggcug acccgauucc 120
gcggacaccg cugcagccgc ggcuggagcc agggcgccgg ugccccgcgc ucuccccggu 180
cuugcgcugc gggggcgcau accgccucug ugacuucuuu gcgggccagg gacggagaag 240
gagucugugc cugagaacug ggcucugugc ccagcgcgag gugcaggaug gagagcaagg 300
cgcugcuagc ugucgcucug ugguucugcg uggagacccg agccgccucu guggguuugc 360
cuggcgauuu ucuccauccc cccaagcuca gcacacagaa agacauacug acaauuuugg 420
caaauacaac ccuucagauu acuugcaggg gacagcggga ccuggacugg cuuuggccca 480
augcucagcg ugauucugag gaaaggguau uggugacuga augcggcggu ggugacagua 540
ucuucugcaa aacacucacc auucccaggg ugguuggaaa ugauacugga gccuacaagu 600
gcucguaccg ggacgucgac auagccucca cuguuuaugu cuauguucga gauuacagau 660
caccauucau cgccucuguc agugaccagc auggcaucgu guacaucacc gagaacaaga 720
acaaaacugu ggugaucccc ugccgagggu cgauuucaaa ccucaaugug ucucuuugcg 780
cuagguaucc agaaaagaga uuuguuccgg auggaaacag aauuuccugg gacagcgaga 840
uaggcuuuac ucuccccagu uacaugauca gcuaugccgg cauggucuuc ugugaggcaa 900
agaucaauga ugaaaccuau cagucuauca uguacauagu ugugguugua ggauauagga 960
uuuaugaugu gauucugagc cccccgcaug aaauugagcu aucugccgga gaaaaacuug 1020
ucuuaaauug uacagcgaga acagagcuca auguggggcu ugauuucacc uggcacucuc 1080
caccuucaaa gucucaucau aagaagauug uaaaccggga ugugaaaccc uuuccuggga 1140
cuguggcgaa gauguuuuug agcaccuuga caauagaaag ugugaccaag agugaccaag 1200
gggaauacac cuguguagcg uccaguggac ggaugaucaa gagaaauaga acauuugucc 1260
gaguucacac aaagccuuuu auugcuuucg guagugggau gaaaucuuug guggaagcca 1320
cagugggcag ucaaguccga aucccuguga aguaucucag uuacccagcu ccugauauca 1380
aaugguacag aaauggaagg cccauugagu ccaacuacac aaugauuguu ggcgaugaac 1440
ucaccaucau ggaagugacu gaaagagaug caggaaacua cacggucauc cucaccaacc 1500
ccauuucaau ggagaaacag agccacaugg ucucucuggu ugugaauguc ccaccccaga 1560
ucggugagaa agccuugauc ucgccuaugg auuccuacca guaugggacc augcagacau 1620
ugacaugcac agucuacgcc aacccucccc ugcaccacau ccagugguac uggcagcuag 1680
aagaagccug cuccuacaga cccggccaaa caagcccgua ugcuuguaaa gaauggagac 1740
acguggagga uuuccagggg ggaaacaaga ucgaagucac caaaaaccaa uaugcccuga 1800
uugaaggaaa aaacaaaacu guaaguacgc uggucaucca agcugccaac gugucagcgu 1860
uguacaaaug ugaagccauc aacaaagcgg gacgaggaga gagggucauc uccuuccaug 1920
ugaucagggg uccugaaauu acugugcaac cugcugccca gccaacugag caggagagug 1980
ugucccuguu gugcacugca gacagaaaua cguuugagaa ccucacgugg uacaagcuug 2040
gcucacaggc aacaucgguc cacaugggcg aaucacucac accaguuugc aagaacuugg 2100
augcucuuug gaaacugaau ggcaccaugu uuucuaacag cacaaaugac aucuugauug 2160
uggcauuuca gaaugccucu cugcaggacc aaggcgacua uguuugcucu gcucaagaua 2220
agaagaccaa gaaaagacau ugccugguca aacagcucau cauccuagag cgcauggcac 2280
ccaugaucac cggaaaucug gagaaucaga caacaaccau uggcgagacc auugaaguga 2340
cuugcccagc aucuggaaau ccuaccccac acauuacaug guucaaagac aacgagaccc 2400
ugguagaaga uucaggcauu guacugagag augggaaccg gaaccugacu auccgcaggg 2460
ugaggaagga ggauggaggc cucuacaccu gccaggccug caauguccuu ggcugugcaa 2520
gagcggagac gcucuucaua auagaaggug cccaggaaaa gaccaacuug gaagucauua 2580
uccucgucgg cacugcagug auugccaugu ucuucuggcu ccuucuuguc auuguccuac 2640
ggaccguuaa gcgggccaau gaaggggaac ugaagacagg cuacuugucu auugucaugg 2700
auccagauga auugcccuug gaugagcgcu gugaacgcuu gccuuaugau gccagcaagu 2760
gggaauuccc cagggaccgg cugaaacuag gaaaaccucu uggccgcggu gccuucggcc 2820
aagugauuga ggcagacgcu uuuggaauug acaagacagc gacuugcaaa acaguagccg 2880
ucaagauguu gaaagaagga gcaacacaca gcgagcaucg agcccucaug ucugaacuca 2940
agauccucau ccacauuggu caccaucuca auguggugaa ccuccuaggc gccugcacca 3000
agccgggagg gccucucaug gugauugugg aauucugcaa guuuggaaac cuaucaacuu 3060
acuuacgggg caagagaaau gaauuuguuc ccuauaagag caaaggggca cgcuuccgcc 3120
agggcaagga cuacguuggg gagcucuccg uggaucugaa aagacgcuug gacagcauca 3180
ccagcagcca gagcucugcc agcucaggcu uuguugagga gaaaucgcuc agugauguag 3240
aggaagaaga agcuucugaa gaacuguaca aggacuuccu gaccuuggag caucucaucu 3300
guuacagcuu ccaaguggcu aagggcaugg aguucuuggc aucaaggaag uguauccaca 3360
gggaccuggc agcacgaaac auucuccuau cggagaagaa ugugguuaag aucugugacu 3420
ucggcuuggc ccgggacauu uauaaagacc cggauuaugu cagaaaagga gaugcccgac 3480
ucccuuugaa guggauggcc ccggaaacca uuuuugacag aguauacaca auucagagcg 3540
augugugguc uuucggugug uugcucuggg aaauauuuuc cuuaggugcc uccccauacc 3600
cuggggucaa gauugaugaa gaauuuugua ggagauugaa agaaggaacu agaaugcggg 3660
cuccugacua cacuacccca gaaauguacc agaccaugcu ggacugcugg caugaggacc 3720
ccaaccagag acccucguuu ucagaguugg uggagcauuu gggaaaccuc cugcaagcaa 3780
augcgcagca ggauggcaaa gacuauauug uucuuccaau gucagagaca cugagcaugg 3840
aagaggauuc uggacucucc cugccuaccu caccuguuuc cuguauggag gaagaggaag 3900
ugugcgaccc caaauuccau uaugacaaca cagcaggaau cagucauuau cuccagaaca 3960
guaagcgaaa gagccggcca gugaguguaa aaacauuuga agauauccca uuggaggaac 4020
cagaaguaaa agugauccca gaugacagcc agacagacag ugggaugguc cuugcaucag 4080
aagagcugaa aacucuggaa gacaggaaca aauuaucucc aucuuuuggu ggaaugaugc 4140
ccaguaaaag cagggagucu guggccucgg aaggcuccaa ccagaccagu ggcuaccagu 4200
cuggguauca cucagaugac acagacacca ccguguacuc cagcgacgag gcaggacuuu 4260
uaaagauggu ggaugcugca guucacgcug acucagggac cacacugcgc ucaccuccug 4320
uuuaaaugga agugguccug ucccggcucc gcccccaacu ccuggaaauc acgagagagg 4380
ugcugcuuag auuuucaagu guuguucuuu ccaccacccg gaaguagcca cauuugauuu 4440
ucauuuuugg aggagggacc ucagacugca aggagcuugu ccucagggca uuuccagaga 4500
agaugcccau gacccaagaa uguguugacu cuacucucuu uuccauucau uuaaaagucc 4560
uauauaaugu gcccugcugu ggucucacua ccaguuaaag caaaagacuu ucaaacagug 4620
gcucuguccu ccaagaagug gcaacggcac cucugugaaa cuggaucgaa ugggcaaugc 4680
uuuguguguu gaggaugggu gagauguccc agggccgagu cugucuaccu uggaggcuuu 4740
guggaggaug cgggcuauga gccaaguguu aaguguggga uguggacugg gaggaaggaa 4800
ggcgcaagcu cgcucggaga gcgguuggag ccugcagaug cauugugcug gcucuggugg 4860
aggugggcuu guggccuguc aggaaacgca aaggcggccg gcaggguuug guuuuggaag 4920
guuugcgugc ucuucacagu cggguuacag gcgaguuccc uguggcguuu ccuacuccua 4980
augagaguuc cuuccggacu cuuacguguc uccuggccug gccccaggaa ggaaaugaug 5040
cagcuugcuc cuuccucauc ucucaggcug ugccuuaauu cagaacacca aaagagagga 5100
acgucggcag aggcuccuga cggggccgaa gaauugugag aacagaacag aaacucaggg 5160
uuucugcugg guggagaccc acguggcugc ccugguggca gugucugagg guucucuguc 5220
aaguggcggu aaaggcucag gcugguguuc uuccucuauc uccacuccug ucaggccccc 5280
aaguccucag uauuuuagcu uuguggcuuc cugauggcag aaaaaucuua auugguuggu 5340
uugcucucca gauaaucacu agccagauuu cgaaauuacu uuuuagccga gguuaugaua 5400
acaucuacug uauccuuuag aauuuuaacc uauaaaacua ugucuacugg uuucugccug 5460
ugugcuuaug uuaaaaaaaa aaagaaagaa agaaacuguu cuuuucauuu gguaccauag 5520
ugugaagagc ugggagcaau gacuguuaaa caugcuaugg cacaucuauu uauagucugu 5580
uauguagaac aaauguaaua uauuaaaacg uuauauuaua uauaaugaac uuuguacuac 5640
ccaccuuuug uaucaguauu auguaccacu agagagauua caaggcuuuc agcagccgcu 5700
guuguuuugu uaaagacuuu gagaaacucg aaggaauccu uucauggaau augcagcuau 5760
auacccuacc gucucucuca ucucaaacgg aggaggagga ggaggaguca gguauaaugu 5820
gaguguguuc uacguguccu uguucucugu ucuuaggagg aaugauuuca ucaaauguuu 5880
auaugcuuua uaaaccaaua aacguauucu gaguaaagag a 5921
<210> 2
<211> 1345
<212> PRT
<213> mouse (mouse)
<400> 2
Met Glu Ser Lys Ala Leu Leu Ala Val Ala Leu Trp Phe Cys Val Glu
1 5 10 15
Thr Arg Ala Ala Ser Val Gly Leu Pro Gly Asp Phe Leu His Pro Pro
20 25 30
Lys Leu Ser Thr Gln Lys Asp Ile Leu Thr Ile Leu Ala Asn Thr Thr
35 40 45
Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro
50 55 60
Asn Ala Gln Arg Asp Ser Glu Glu Arg Val Leu Val Thr Glu Cys Gly
65 70 75 80
Gly Gly Asp Ser Ile Phe Cys Lys Thr Leu Thr Ile Pro Arg Val Val
85 90 95
Gly Asn Asp Thr Gly Ala Tyr Lys Cys Ser Tyr Arg Asp Val Asp Ile
100 105 110
Ala Ser Thr Val Tyr Val Tyr Val Arg Asp Tyr Arg Ser Pro Phe Ile
115 120 125
Ala Ser Val Ser Asp Gln His Gly Ile Val Tyr Ile Thr Glu Asn Lys
130 135 140
Asn Lys Thr Val Val Ile Pro Cys Arg Gly Ser Ile Ser Asn Leu Asn
145 150 155 160
Val Ser Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly
165 170 175
Asn Arg Ile Ser Trp Asp Ser Glu Ile Gly Phe Thr Leu Pro Ser Tyr
180 185 190
Met Ile Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys Ile Asn Asp
195 200 205
Glu Thr Tyr Gln Ser Ile Met Tyr Ile Val Val Val Val Gly Tyr Arg
210 215 220
Ile Tyr Asp Val Ile Leu Ser Pro Pro His Glu Ile Glu Leu Ser Ala
225 230 235 240
Gly Glu Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val
245 250 255
Gly Leu Asp Phe Thr Trp His Ser Pro Pro Ser Lys Ser His His Lys
260 265 270
Lys Ile Val Asn Arg Asp Val Lys Pro Phe Pro Gly Thr Val Ala Lys
275 280 285
Met Phe Leu Ser Thr Leu Thr Ile Glu Ser Val Thr Lys Ser Asp Gln
290 295 300
Gly Glu Tyr Thr Cys Val Ala Ser Ser Gly Arg Met Ile Lys Arg Asn
305 310 315 320
Arg Thr Phe Val Arg Val His Thr Lys Pro Phe Ile Ala Phe Gly Ser
325 330 335
Gly Met Lys Ser Leu Val Glu Ala Thr Val Gly Ser Gln Val Arg Ile
340 345 350
Pro Val Lys Tyr Leu Ser Tyr Pro Ala Pro Asp Ile Lys Trp Tyr Arg
355 360 365
Asn Gly Arg Pro Ile Glu Ser Asn Tyr Thr Met Ile Val Gly Asp Glu
370 375 380
Leu Thr Ile Met Glu Val Thr Glu Arg Asp Ala Gly Asn Tyr Thr Val
385 390 395 400
Ile Leu Thr Asn Pro Ile Ser Met Glu Lys Gln Ser His Met Val Ser
405 410 415
Leu Val Val Asn Val Pro Pro Gln Ile Gly Glu Lys Ala Leu Ile Ser
420 425 430
Pro Met Asp Ser Tyr Gln Tyr Gly Thr Met Gln Thr Leu Thr Cys Thr
435 440 445
Val Tyr Ala Asn Pro Pro Leu His His Ile Gln Trp Tyr Trp Gln Leu
450 455 460
Glu Glu Ala Cys Ser Tyr Arg Pro Gly Gln Thr Ser Pro Tyr Ala Cys
465 470 475 480
Lys Glu Trp Arg His Val Glu Asp Phe Gln Gly Gly Asn Lys Ile Glu
485 490 495
Val Thr Lys Asn Gln Tyr Ala Leu Ile Glu Gly Lys Asn Lys Thr Val
500 505 510
Ser Thr Leu Val Ile Gln Ala Ala Asn Val Ser Ala Leu Tyr Lys Cys
515 520 525
Glu Ala Ile Asn Lys Ala Gly Arg Gly Glu Arg Val Ile Ser Phe His
530 535 540
Val Ile Arg Gly Pro Glu Ile Thr Val Gln Pro Ala Ala Gln Pro Thr
545 550 555 560
Glu Gln Glu Ser Val Ser Leu Leu Cys Thr Ala Asp Arg Asn Thr Phe
565 570 575
Glu Asn Leu Thr Trp Tyr Lys Leu Gly Ser Gln Ala Thr Ser Val His
580 585 590
Met Gly Glu Ser Leu Thr Pro Val Cys Lys Asn Leu Asp Ala Leu Trp
595 600 605
Lys Leu Asn Gly Thr Met Phe Ser Asn Ser Thr Asn Asp Ile Leu Ile
610 615 620
Val Ala Phe Gln Asn Ala Ser Leu Gln Asp Gln Gly Asp Tyr Val Cys
625 630 635 640
Ser Ala Gln Asp Lys Lys Thr Lys Lys Arg His Cys Leu Val Lys Gln
645 650 655
Leu Ile Ile Leu Glu Arg Met Ala Pro Met Ile Thr Gly Asn Leu Glu
660 665 670
Asn Gln Thr Thr Thr Ile Gly Glu Thr Ile Glu Val Thr Cys Pro Ala
675 680 685
Ser Gly Asn Pro Thr Pro His Ile Thr Trp Phe Lys Asp Asn Glu Thr
690 695 700
Leu Val Glu Asp Ser Gly Ile Val Leu Arg Asp Gly Asn Arg Asn Leu
705 710 715 720
Thr Ile Arg Arg Val Arg Lys Glu Asp Gly Gly Leu Tyr Thr Cys Gln
725 730 735
Ala Cys Asn Val Leu Gly Cys Ala Arg Ala Glu Thr Leu Phe Ile Ile
740 745 750
Glu Gly Ala Gln Glu Lys Thr Asn Leu Glu Val Ile Ile Leu Val Gly
755 760 765
Thr Ala Val Ile Ala Met Phe Phe Trp Leu Leu Leu Val Ile Val Leu
770 775 780
Arg Thr Val Lys Arg Ala Asn Glu Gly Glu Leu Lys Thr Gly Tyr Leu
785 790 795 800
Ser Ile Val Met Asp Pro Asp Glu Leu Pro Leu Asp Glu Arg Cys Glu
805 810 815
Arg Leu Pro Tyr Asp Ala Ser Lys Trp Glu Phe Pro Arg Asp Arg Leu
820 825 830
Lys Leu Gly Lys Pro Leu Gly Arg Gly Ala Phe Gly Gln Val Ile Glu
835 840 845
Ala Asp Ala Phe Gly Ile Asp Lys Thr Ala Thr Cys Lys Thr Val Ala
850 855 860
Val Lys Met Leu Lys Glu Gly Ala Thr His Ser Glu His Arg Ala Leu
865 870 875 880
Met Ser Glu Leu Lys Ile Leu Ile His Ile Gly His His Leu Asn Val
885 890 895
Val Asn Leu Leu Gly Ala Cys Thr Lys Pro Gly Gly Pro Leu Met Val
900 905 910
Ile Val Glu Phe Cys Lys Phe Gly Asn Leu Ser Thr Tyr Leu Arg Gly
915 920 925
Lys Arg Asn Glu Phe Val Pro Tyr Lys Ser Lys Gly Ala Arg Phe Arg
930 935 940
Gln Gly Lys Asp Tyr Val Gly Glu Leu Ser Val Asp Leu Lys Arg Arg
945 950 955 960
Leu Asp Ser Ile Thr Ser Ser Gln Ser Ser Ala Ser Ser Gly Phe Val
965 970 975
Glu Glu Lys Ser Leu Ser Asp Val Glu Glu Glu Glu Ala Ser Glu Glu
980 985 990
Leu Tyr Lys Asp Phe Leu Thr Leu Glu His Leu Ile Cys Tyr Ser Phe
995 1000 1005
Gln Val Ala Lys Gly Met Glu Phe Leu Ala Ser Arg Lys Cys Ile His
1010 1015 1020
Arg Asp Leu Ala Ala Arg Asn Ile Leu Leu Ser Glu Lys Asn Val Val
1025 1030 1035 1040
Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr Lys Asp Pro Asp
1045 1050 1055
Tyr Val Arg Lys Gly Asp Ala Arg Leu Pro Leu Lys Trp Met Ala Pro
1060 1065 1070
Glu Thr Ile Phe Asp Arg Val Tyr Thr Ile Gln Ser Asp Val Trp Ser
1075 1080 1085
Phe Gly Val Leu Leu Trp Glu Ile Phe Ser Leu Gly Ala Ser Pro Tyr
1090 1095 1100
Pro Gly Val Lys Ile Asp Glu Glu Phe Cys Arg Arg Leu Lys Glu Gly
1105 1110 1115 1120
Thr Arg Met Arg Ala Pro Asp Tyr Thr Thr Pro Glu Met Tyr Gln Thr
1125 1130 1135
Met Leu Asp Cys Trp His Glu Asp Pro Asn Gln Arg Pro Ser Phe Ser
1140 1145 1150
Glu Leu Val Glu His Leu Gly Asn Leu Leu Gln Ala Asn Ala Gln Gln
1155 1160 1165
Asp Gly Lys Asp Tyr Ile Val Leu Pro Met Ser Glu Thr Leu Ser Met
1170 1175 1180
Glu Glu Asp Ser Gly Leu Ser Leu Pro Thr Ser Pro Val Ser Cys Met
1185 1190 1195 1200
Glu Glu Glu Glu Val Cys Asp Pro Lys Phe His Tyr Asp Asn Thr Ala
1205 1210 1215
Gly Ile Ser His Tyr Leu Gln Asn Ser Lys Arg Lys Ser Arg Pro Val
1220 1225 1230
Ser Val Lys Thr Phe Glu Asp Ile Pro Leu Glu Glu Pro Glu Val Lys
1235 1240 1245
Val Ile Pro Asp Asp Ser Gln Thr Asp Ser Gly Met Val Leu Ala Ser
1250 1255 1260
Glu Glu Leu Lys Thr Leu Glu Asp Arg Asn Lys Leu Ser Pro Ser Phe
1265 1270 1275 1280
Gly Gly Met Met Pro Ser Lys Ser Arg Glu Ser Val Ala Ser Glu Gly
1285 1290 1295
Ser Asn Gln Thr Ser Gly Tyr Gln Ser Gly Tyr His Ser Asp Asp Thr
1300 1305 1310
Asp Thr Thr Val Tyr Ser Ser Asp Glu Ala Gly Leu Leu Lys Met Val
1315 1320 1325
Asp Ala Ala Val His Ala Asp Ser Gly Thr Thr Leu Arg Ser Pro Pro
1330 1335 1340
Val
1345
<210> 3
<211> 5849
<212> RNA
<213> Intelligent (Homo sapiens)
<400> 3
acugaguccc gggaccccgg gagagcgguc aauguguggu cgcugcguuu ccucugccug 60
cgccgggcau cacuugcgcg ccgcagaaag uccgucuggc agccuggaua uccucuccua 120
ccggcacccg cagacgcccc ugcagccgcg gucggcgccc gggcucccua gcccugugcg 180
cucaacuguc cugcgcugcg gggugccgcg aguuccaccu ccgcgccucc uucucuagac 240
aggcgcuggg agaaagaacc ggcucccgag uucugggcau uucgcccggc ucgaggugca 300
ggaugcagag caaggugcug cuggccgucg cccuguggcu cugcguggag acccgggccg 360
ccucuguggg uuugccuagu guuucucuug aucugcccag gcucagcaua caaaaagaca 420
uacuuacaau uaaggcuaau acaacucuuc aaauuacuug caggggacag agggacuugg 480
acuggcuuug gcccaauaau cagaguggca gugagcaaag gguggaggug acugagugca 540
gcgauggccu cuucuguaag acacucacaa uuccaaaagu gaucggaaau gacacuggag 600
ccuacaagug cuucuaccgg gaaacugacu uggccucggu cauuuauguc uauguucaag 660
auuacagauc uccauuuauu gcuucuguua gugaccaaca uggagucgug uacauuacug 720
agaacaaaaa caaaacugug gugauuccau gucucggguc cauuucaaau cucaacgugu 780
cacuuugugc aagauaccca gaaaagagau uuguuccuga ugguaacaga auuuccuggg 840
acagcaagaa gggcuuuacu auucccagcu acaugaucag cuaugcuggc auggucuucu 900
gugaagcaaa aauuaaugau gaaaguuacc agucuauuau guacauaguu gucguuguag 960
gguauaggau uuaugaugug guucugaguc cgucucaugg aauugaacua ucuguuggag 1020
aaaagcuugu cuuaaauugu acagcaagaa cugaacuaaa uguggggauu gacuucaacu 1080
gggaauaccc uucuucgaag caucagcaua agaaacuugu aaaccgagac cuaaaaaccc 1140
agucugggag ugagaugaag aaauuuuuga gcaccuuaac uauagauggu guaacccgga 1200
gugaccaagg auuguacacc ugugcagcau ccagugggcu gaugaccaag aagaacagca 1260
cauuugucag gguccaugaa aaaccuuuug uugcuuuugg aaguggcaug gaaucucugg 1320
uggaagccac ggugggggag cgugucagaa ucccugcgaa guaccuuggu uacccacccc 1380
cagaaauaaa augguauaaa aauggaauac cccuugaguc caaucacaca auuaaagcgg 1440
ggcauguacu gacgauuaug gaagugagug aaagagacac aggaaauuac acugucaucc 1500
uuaccaaucc cauuucaaag gagaagcaga gccauguggu cucucugguu guguaugucc 1560
caccccagau uggugagaaa ucucuaaucu cuccugugga uuccuaccag uacggcacca 1620
cucaaacgcu gacauguacg gucuaugcca uuccuccccc gcaucacauc cacugguauu 1680
ggcaguugga ggaagagugc gccaacgagc ccagccaagc ugucucagug acaaacccau 1740
acccuuguga agaauggaga aguguggagg acuuccaggg aggaaauaaa auugaaguua 1800
auaaaaauca auuugcucua auugaaggaa aaaacaaaac uguaaguacc cuuguuaucc 1860
aagcggcaaa ugugucagcu uuguacaaau gugaagcggu caacaaaguc gggagaggag 1920
agagggugau cuccuuccac gugaccaggg guccugaaau uacuuugcaa ccugacaugc 1980
agcccacuga gcaggagagc gugucuuugu ggugcacugc agacagaucu acguuugaga 2040
accucacaug guacaagcuu ggcccacagc cucugccaau ccauguggga gaguugccca 2100
caccuguuug caagaacuug gauacucuuu ggaaauugaa ugccaccaug uucucuaaua 2160
gcacaaauga cauuuugauc auggagcuua agaaugcauc cuugcaggac caaggagacu 2220
augucugccu ugcucaagac aggaagacca agaaaagaca uugcgugguc aggcagcuca 2280
caguccuaga gcguguggca cccacgauca caggaaaccu ggagaaucag acgacaagua 2340
uuggggaaag caucgaaguc ucaugcacgg caucugggaa ucccccucca cagaucaugu 2400
gguuuaaaga uaaugagacc cuuguagaag acucaggcau uguauugaag gaugggaacc 2460
ggaaccucac uauccgcaga gugaggaagg aggacgaagg ccucuacacc ugccaggcau 2520
gcaguguucu uggcugugca aaaguggagg cauuuuucau aauagaaggu gcccaggaaa 2580
agacgaacuu ggaaaucauu auucuaguag gcacggcggu gauugccaug uucuucuggc 2640
uacuucuugu caucauccua cggaccguua agcgggccaa uggaggggaa cugaagacag 2700
gcuacuuguc caucgucaug gauccagaug aacucccauu ggaugaacau ugugaacgac 2760
ugccuuauga ugccagcaaa ugggaauucc ccagagaccg gcugaagcua gguaagccuc 2820
uuggccgugg ugccuuuggc caagugauug aagcagaugc cuuuggaauu gacaagacag 2880
caacuugcag gacaguagca gucaaaaugu ugaaagaagg agcaacacac agugagcauc 2940
gagcucucau gucugaacuc aagauccuca uucauauugg ucaccaucuc aaugugguca 3000
accuucuagg ugccuguacc aagccaggag ggccacucau ggugauugug gaauucugca 3060
aauuuggaaa ccuguccacu uaccugagga gcaagagaaa ugaauuuguc cccuacaaga 3120
ccaaaggggc acgauuccgu caagggaaag acuacguugg agcaaucccu guggaucuga 3180
aacggcgcuu ggacagcauc accaguagcc agagcucagc cagcucugga uuuguggagg 3240
agaagucccu cagugaugua gaagaagagg aagcuccuga agaucuguau aaggacuucc 3300
ugaccuugga gcaucucauc uguuacagcu uccaaguggc uaagggcaug gaguucuugg 3360
caucgcgaaa guguauccac agggaccugg cggcacgaaa uauccucuua ucggagaaga 3420
acgugguuaa aaucugugac uuuggcuugg cccgggauau uuauaaagau ccagauuaug 3480
ucagaaaagg agaugcucgc cucccuuuga aauggauggc cccagaaaca auuuuugaca 3540
gaguguacac aauccagagu gacgucuggu cuuuuggugu uuugcugugg gaaauauuuu 3600
ccuuaggugc uucuccauau ccugggguaa agauugauga agaauuuugu aggcgauuga 3660
aagaaggaac uagaaugagg gccccugauu auacuacacc agaaauguac cagaccaugc 3720
uggacugcug gcacggggag cccagucaga gacccacguu uucagaguug guggaacauu 3780
ugggaaaucu cuugcaagcu aaugcucagc aggauggcaa agacuacauu guucuuccga 3840
uaucagagac uuugagcaug gaagaggauu cuggacucuc ucugccuacc ucaccuguuu 3900
ccuguaugga ggaggaggaa guaugugacc ccaaauucca uuaugacaac acagcaggaa 3960
ucagucagua ucugcagaac aguaagcgaa agagccggcc ugugagugua aaaacauuug 4020
aagauauccc guuagaagaa ccagaaguaa aaguaauccc agaugacaac cagacggaca 4080
gugguauggu ucuugccuca gaagagcuga aaacuuugga agacagaacc aaauuaucuc 4140
caucuuuugg uggaauggug cccagcaaaa gcagggaguc uguggcaucu gaaggcucaa 4200
accagacaag cggcuaccag uccggauauc acuccgauga cacagacacc accguguacu 4260
ccagugagga agcagaacuu uuaaagcuga uagagauugg agugcaaacc gguagcacag 4320
cccagauucu ccagccugac ucggggacca cacugagcuc uccuccuguu uaaaaggaag 4380
cauccacacc cccaacuccu ggacaucaca ugagaggugc ugcucagauu uucaaguguu 4440
guucuuucca ccagcaggaa guagccgcau uugauuuuca uuucgacaac agaaaaagga 4500
ccucggacug cagggagcca gucuucuagg cauauccugg aagaggcuug ugacccaaga 4560
augugucugu gucuucuccc aguguugacc ugauccucuu uuucauucau uuaaaaagca 4620
uuuaucaugc ccccugcugc gggucucacc auggguuuag aacaaagacg uucaagaaau 4680
ggccccaucc ucaaagaagu agcaguaccu ggggagcuga cacuucugua aaacuagaag 4740
auaaaccagg caauguaagu guucgaggug uugaagaugg gaaggauuug cagggcugag 4800
ucuauccaag aggcuuuguu uaggacgugg gucccaagcc aagccuuaag uguggaauuc 4860
ggauugauag aaaggaagac uaacguuacc uugcuuugga gaguacugga gccugcaaau 4920
gcauuguguu ugcucuggug gaggugggca uggggucugu ucugaaaugu aaaggguuca 4980
gacgggguuu cugguuuuag aagguugcgu guucuucgag uugggcuaaa guagaguucg 5040
uugugcuguu ucugacuccu aaugagaguu ccuuccagac cguuacgugu cuccuggcca 5100
agccccagga aggaaaugau gcagcucugg cuccuugucu cccaggcuga uccuuuauuc 5160
agaauaccac aaagaaagga cauucagcuc aaggcucccu gccguguuga agaguucuga 5220
cugcacaaac cagcuucugg uuucuucugg aaugaauacc cucauaucug uccugaugug 5280
auaugucuga gacugaaugc gggagguuca augugaagcu guguguggug ucaaaguuuc 5340
aggaaggauu uuacccuuuu guucuucccc cuguccccaa cccacucuca ccccgcaacc 5400
caucaguauu uuaguuauuu ggccucuacu ccaguaaacc ugauuggguu uguucacucu 5460
cugaaugauu auuagccaga cuucaaaauu auuuuauagc ccaaauuaua acaucuauug 5520
uauuauuuag acuuuuaaca uauagagcua uuucuacuga uuuuugcccu uguucugucc 5580
uuuuuuucaa aaaagaaaau guguuuuuug uuugguacca uagugugaaa ugcugggaac 5640
aaugacuaua agacaugcua uggcacauau auuuauaguc uguuuaugua gaaacaaaug 5700
uaauauauua aagccuuaua uauaaugaac uuuguacuau ucacauuuug uaucaguauu 5760
auguagcaua acaaagguca uaaugcuuuc agcaauugau gucauuuuau uaaagaacau 5820
ugaaaaacuu gaaaaaaaaa aaaaaaaaa 5849
<210> 4
<211> 1356
<212> PRT
<213> Intelligent (Homo sapiens)
<400> 4
Met Gln Ser Lys Val Leu Leu Ala Val Ala Leu Trp Leu Cys Val Glu
1 5 10 15
Thr Arg Ala Ala Ser Val Gly Leu Pro Ser Val Ser Leu Asp Leu Pro
20 25 30
Arg Leu Ser Ile Gln Lys Asp Ile Leu Thr Ile Lys Ala Asn Thr Thr
35 40 45
Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro
50 55 60
Asn Asn Gln Ser Gly Ser Glu Gln Arg Val Glu Val Thr Glu Cys Ser
65 70 75 80
Asp Gly Leu Phe Cys Lys Thr Leu Thr Ile Pro Lys Val Ile Gly Asn
85 90 95
Asp Thr Gly Ala Tyr Lys Cys Phe Tyr Arg Glu Thr Asp Leu Ala Ser
100 105 110
Val Ile Tyr Val Tyr Val Gln Asp Tyr Arg Ser Pro Phe Ile Ala Ser
115 120 125
Val Ser Asp Gln His Gly Val Val Tyr Ile Thr Glu Asn Lys Asn Lys
130 135 140
Thr Val Val Ile Pro Cys Leu Gly Ser Ile Ser Asn Leu Asn Val Ser
145 150 155 160
Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly Asn Arg
165 170 175
Ile Ser Trp Asp Ser Lys Lys Gly Phe Thr Ile Pro Ser Tyr Met Ile
180 185 190
Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys Ile Asn Asp Glu Ser
195 200 205
Tyr Gln Ser Ile Met Tyr Ile Val Val Val Val Gly Tyr Arg Ile Tyr
210 215 220
Asp Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu
225 230 235 240
Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile
245 250 255
Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu
260 265 270
Val Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe
275 280 285
Leu Ser Thr Leu Thr Ile Asp Gly Val Thr Arg Ser Asp Gln Gly Leu
290 295 300
Tyr Thr Cys Ala Ala Ser Ser Gly Leu Met Thr Lys Lys Asn Ser Thr
305 310 315 320
Phe Val Arg Val His Glu Lys Pro Phe Val Ala Phe Gly Ser Gly Met
325 330 335
Glu Ser Leu Val Glu Ala Thr Val Gly Glu Arg Val Arg Ile Pro Ala
340 345 350
Lys Tyr Leu Gly Tyr Pro Pro Pro Glu Ile Lys Trp Tyr Lys Asn Gly
355 360 365
Ile Pro Leu Glu Ser Asn His Thr Ile Lys Ala Gly His Val Leu Thr
370 375 380
Ile Met Glu Val Ser Glu Arg Asp Thr Gly Asn Tyr Thr Val Ile Leu
385 390 395 400
Thr Asn Pro Ile Ser Lys Glu Lys Gln Ser His Val Val Ser Leu Val
405 410 415
Val Tyr Val Pro Pro Gln Ile Gly Glu Lys Ser Leu Ile Ser Pro Val
420 425 430
Asp Ser Tyr Gln Tyr Gly Thr Thr Gln Thr Leu Thr Cys Thr Val Tyr
435 440 445
Ala Ile Pro Pro Pro His His Ile His Trp Tyr Trp Gln Leu Glu Glu
450 455 460
Glu Cys Ala Asn Glu Pro Ser Gln Ala Val Ser Val Thr Asn Pro Tyr
465 470 475 480
Pro Cys Glu Glu Trp Arg Ser Val Glu Asp Phe Gln Gly Gly Asn Lys
485 490 495
Ile Glu Val Asn Lys Asn Gln Phe Ala Leu Ile Glu Gly Lys Asn Lys
500 505 510
Thr Val Ser Thr Leu Val Ile Gln Ala Ala Asn Val Ser Ala Leu Tyr
515 520 525
Lys Cys Glu Ala Val Asn Lys Val Gly Arg Gly Glu Arg Val Ile Ser
530 535 540
Phe His Val Thr Arg Gly Pro Glu Ile Thr Leu Gln Pro Asp Met Gln
545 550 555 560
Pro Thr Glu Gln Glu Ser Val Ser Leu Trp Cys Thr Ala Asp Arg Ser
565 570 575
Thr Phe Glu Asn Leu Thr Trp Tyr Lys Leu Gly Pro Gln Pro Leu Pro
580 585 590
Ile His Val Gly Glu Leu Pro Thr Pro Val Cys Lys Asn Leu Asp Thr
595 600 605
Leu Trp Lys Leu Asn Ala Thr Met Phe Ser Asn Ser Thr Asn Asp Ile
610 615 620
Leu Ile Met Glu Leu Lys Asn Ala Ser Leu Gln Asp Gln Gly Asp Tyr
625 630 635 640
Val Cys Leu Ala Gln Asp Arg Lys Thr Lys Lys Arg His Cys Val Val
645 650 655
Arg Gln Leu Thr Val Leu Glu Arg Val Ala Pro Thr Ile Thr Gly Asn
660 665 670
Leu Glu Asn Gln Thr Thr Ser Ile Gly Glu Ser Ile Glu Val Ser Cys
675 680 685
Thr Ala Ser Gly Asn Pro Pro Pro Gln Ile Met Trp Phe Lys Asp Asn
690 695 700
Glu Thr Leu Val Glu Asp Ser Gly Ile Val Leu Lys Asp Gly Asn Arg
705 710 715 720
Asn Leu Thr Ile Arg Arg Val Arg Lys Glu Asp Glu Gly Leu Tyr Thr
725 730 735
Cys Gln Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe
740 745 750
Ile Ile Glu Gly Ala Gln Glu Lys Thr Asn Leu Glu Ile Ile Ile Leu
755 760 765
Val Gly Thr Ala Val Ile Ala Met Phe Phe Trp Leu Leu Leu Val Ile
770 775 780
Ile Leu Arg Thr Val Lys Arg Ala Asn Gly Gly Glu Leu Lys Thr Gly
785 790 795 800
Tyr Leu Ser Ile Val Met Asp Pro Asp Glu Leu Pro Leu Asp Glu His
805 810 815
Cys Glu Arg Leu Pro Tyr Asp Ala Ser Lys Trp Glu Phe Pro Arg Asp
820 825 830
Arg Leu Lys Leu Gly Lys Pro Leu Gly Arg Gly Ala Phe Gly Gln Val
835 840 845
Ile Glu Ala Asp Ala Phe Gly Ile Asp Lys Thr Ala Thr Cys Arg Thr
850 855 860
Val Ala Val Lys Met Leu Lys Glu Gly Ala Thr His Ser Glu His Arg
865 870 875 880
Ala Leu Met Ser Glu Leu Lys Ile Leu Ile His Ile Gly His His Leu
885 890 895
Asn Val Val Asn Leu Leu Gly Ala Cys Thr Lys Pro Gly Gly Pro Leu
900 905 910
Met Val Ile Val Glu Phe Cys Lys Phe Gly Asn Leu Ser Thr Tyr Leu
915 920 925
Arg Ser Lys Arg Asn Glu Phe Val Pro Tyr Lys Thr Lys Gly Ala Arg
930 935 940
Phe Arg Gln Gly Lys Asp Tyr Val Gly Ala Ile Pro Val Asp Leu Lys
945 950 955 960
Arg Arg Leu Asp Ser Ile Thr Ser Ser Gln Ser Ser Ala Ser Ser Gly
965 970 975
Phe Val Glu Glu Lys Ser Leu Ser Asp Val Glu Glu Glu Glu Ala Pro
980 985 990
Glu Asp Leu Tyr Lys Asp Phe Leu Thr Leu Glu His Leu Ile Cys Tyr
995 1000 1005
Ser Phe Gln Val Ala Lys Gly Met Glu Phe Leu Ala Ser Arg Lys Cys
1010 1015 1020
Ile His Arg Asp Leu Ala Ala Arg Asn Ile Leu Leu Ser Glu Lys Asn
1025 1030 1035 1040
Val Val Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr Lys Asp
1045 1050 1055
Pro Asp Tyr Val Arg Lys Gly Asp Ala Arg Leu Pro Leu Lys Trp Met
1060 1065 1070
Ala Pro Glu Thr Ile Phe Asp Arg Val Tyr Thr Ile Gln Ser Asp Val
1075 1080 1085
Trp Ser Phe Gly Val Leu Leu Trp Glu Ile Phe Ser Leu Gly Ala Ser
1090 1095 1100
Pro Tyr Pro Gly Val Lys Ile Asp Glu Glu Phe Cys Arg Arg Leu Lys
1105 1110 1115 1120
Glu Gly Thr Arg Met Arg Ala Pro Asp Tyr Thr Thr Pro Glu Met Tyr
1125 1130 1135
Gln Thr Met Leu Asp Cys Trp His Gly Glu Pro Ser Gln Arg Pro Thr
1140 1145 1150
Phe Ser Glu Leu Val Glu His Leu Gly Asn Leu Leu Gln Ala Asn Ala
1155 1160 1165
Gln Gln Asp Gly Lys Asp Tyr Ile Val Leu Pro Ile Ser Glu Thr Leu
1170 1175 1180
Ser Met Glu Glu Asp Ser Gly Leu Ser Leu Pro Thr Ser Pro Val Ser
1185 1190 1195 1200
Cys Met Glu Glu Glu Glu Val Cys Asp Pro Lys Phe His Tyr Asp Asn
1205 1210 1215
Thr Ala Gly Ile Ser Gln Tyr Leu Gln Asn Ser Lys Arg Lys Ser Arg
1220 1225 1230
Pro Val Ser Val Lys Thr Phe Glu Asp Ile Pro Leu Glu Glu Pro Glu
1235 1240 1245
Val Lys Val Ile Pro Asp Asp Asn Gln Thr Asp Ser Gly Met Val Leu
1250 1255 1260
Ala Ser Glu Glu Leu Lys Thr Leu Glu Asp Arg Thr Lys Leu Ser Pro
1265 1270 1275 1280
Ser Phe Gly Gly Met Val Pro Ser Lys Ser Arg Glu Ser Val Ala Ser
1285 1290 1295
Glu Gly Ser Asn Gln Thr Ser Gly Tyr Gln Ser Gly Tyr His Ser Asp
1300 1305 1310
Asp Thr Asp Thr Thr Val Tyr Ser Ser Glu Glu Ala Glu Leu Leu Lys
1315 1320 1325
Leu Ile Glu Ile Gly Val Gln Thr Gly Ser Thr Ala Gln Ile Leu Gln
1330 1335 1340
Pro Asp Ser Gly Thr Thr Leu Ser Ser Pro Pro Val
1345 1350 1355
<210> 5
<211> 2601
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
agttcatgga cccaaagact acttaacttt cctgctaata attcactagg agaattccct 60
cttcttctag attacagatc accattcatc gcctctgtca gtgaccagca tggcgtcgtg 120
tacattactg agaacaaaaa caaaactgtg gtgattccat gtctcgggtc catttcaaat 180
ctcaacgtgt cactttgtgc aagataccca gaaaagagat ttgttcctga tggtaacaga 240
atttcctggg acagcaagaa gggctttact attcccagct acatgatcag ctatgctggc 300
atggtcttct gtgaagcaaa aattaatgat gaaagttacc agtctattat gtacatagtt 360
gtcgttgtag ggtataggat ttatgatgtg gttctgagtc cgtctcatgg aattgaacta 420
tctgttggag aaaagcttgt cttaaattgt acagcaagaa ctgaactaaa tgtggggatt 480
gacttcaact gggaataccc ttcttcgaag catcagcata agaaacttgt aaaccgagac 540
ctaaaaaccc agtctgggag tgagatgaag aaatttttga gcaccttaac tatagatggt 600
gtaacccgga gtgaccaagg attgtacacc tgtgcagcat ccagtgggct gatgaccaag 660
aagaacagca catttgtcag ggtccatgaa aaaccttttg ttgcttttgg aagtggcatg 720
gaatctctgg tggaagccac ggtgggggag cgtgtcagaa tccctgcgaa gtaccttggt 780
tacccacccc cagaaataaa atggtataaa aatggaatac cccttgagtc caatcacaca 840
attaaagcgg ggcatgtact gacgattatg gaagtgagtg aaagagacac aggaaattac 900
actgtcatcc ttaccaatcc catttcaaag gagaagcaga gccatgtggt ctctctggtt 960
gtgtatgtcc caccccagat tggtgagaaa tctctaatct ctcctgtgga ttcctaccag 1020
tacggcacca ctcaaacgct gacatgtacg gtctatgcca ttcctccccc gcatcacatc 1080
cactggtatt ggcagttgga ggaagagtgc gccaacgagc ccagccaagc tgtctcagtg 1140
acaaacccat acccttgtga agaatggaga agtgtggagg acttccaggg aggaaataaa 1200
attgaagtta ataaaaatca atttgctcta attgaaggaa aaaacaaaac tgtaagtacc 1260
cttgttatcc aagcggcaaa tgtgtcagct ttgtacaaat gtgaagcggt caacaaagtc 1320
gggagaggag agagggtgat ctccttccac gtgaccaggg gtcctgaaat tactttgcaa 1380
cctgacatgc agcccactga gcaggagagc gtgtctttgt ggtgcactgc agacagatct 1440
acgtttgaga acctcacatg gtacaagctt ggcccacagc ctctgccaat ccatgtggga 1500
gagttgccca cacctgtttg caagaacttg gatactcttt ggaaattgaa tgccaccatg 1560
ttctctaata gcacaaatga cattttgatc atggagctta agaatgcatc cttgcaggac 1620
caaggagact atgtctgcct tgctcaagac aggaagacca agaaaagaca ttgcgtggtc 1680
aggcagctca cagtcctaga gcgtgtggca cccacgatca caggaaacct ggagaatcag 1740
acgacaagta ttggggaaag catcgaagtc tcatgcacgg catctgggaa tccccctcca 1800
cagatcatgt ggtttaaaga taatgagacc cttgtagaag actcaggcat tgtattgaag 1860
gatgggaacc ggaacctcac tatccgcaga gtgaggaagg aggacgaagg cctctacacc 1920
tgccaggcct gcaatgtcct tggctgtgca agagcggaga cgctcttcat aatagaaggt 1980
cagtgtgatg tcataggctc atcagatggt ctctggcaat tcgatcgcat tggacatagc 2040
tgcacatact ttgagtagga tgccttgtgg gtgactcatg gtgacactgg tggttgttaa 2100
gcctcgtctc tgagatgttc atttaagtgt cacacaagtg tacatagcct gaaggcaatt 2160
ttacacaata tttttcagtg tacctacctt ttttgactgg gatctgtcac atgaaattag 2220
gggtcggtgc tcagaaagtt ttagatctta ttcgtctgtg aggtctgagt tacggtttgg 2280
cgcggctgtg ggtgctgatg aacggtcatc ctcaccaacc ccatttcata agcttgatat 2340
cgaattccga agttcctatt ctctagaaag tataggaact tcatcagtca ggtacataat 2400
ggctccacgt gttctttgta atctatcttc aatggctctg cgtcctttta accagaaagc 2460
aaaattagca cgcgcttcag tctgtaccat attttctgtc cacgtagtca tcactgtgag 2520
aaaactattt gccatgagta agaaatgcct ttctgttccc gattctcact ttgtttgaat 2580
ggttaactca cagaaatgac a 2601
<210> 6
<211> 4050
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
atggagagca aggcgctgct agctgtcgct ctgtggttct gcgtggagac ccgagccgcc 60
tctgtgggtt tgcctggcga ttttctccat ccccccaagc tcagcacaca gaaagacata 120
ctgacaattt tggcaaatac aacccttcag attacttgca ggggacagcg ggacctggac 180
tggctttggc ccaatgctca gcgtgattct gaggaaaggg tattggtgac tgaatgcggc 240
ggtggtgaca gtatcttctg caaaacactc accattccca gggtggttgg aaatgatact 300
ggagcctaca agtgctcgta ccgggacgtc gacatagcct ccactgttta tgtctatgtt 360
cgagattaca gatctccatt tattgcttct gttagtgacc aacatggagt cgtgtacatt 420
actgagaaca aaaacaaaac tgtggtgatt ccatgtctcg ggtccatttc aaatctcaac 480
gtgtcacttt gtgcaagata cccagaaaag agatttgttc ctgatggtaa cagaatttcc 540
tgggacagca agaagggctt tactattccc agctacatga tcagctatgc tggcatggtc 600
ttctgtgaag caaaaattaa tgatgaaagt taccagtcta ttatgtacat agttgtcgtt 660
gtagggtata ggatttatga tgtggttctg agtccgtctc atggaattga actatctgtt 720
ggagaaaagc ttgtcttaaa ttgtacagca agaactgaac taaatgtggg gattgacttc 780
aactgggaat acccttcttc gaagcatcag cataagaaac ttgtaaaccg agacctaaaa 840
acccagtctg ggagtgagat gaagaaattt ttgagcacct taactataga tggtgtaacc 900
cggagtgacc aaggattgta cacctgtgca gcatccagtg ggctgatgac caagaagaac 960
agcacatttg tcagggtcca tgaaaaacct tttgttgctt ttggaagtgg catggaatct 1020
ctggtggaag ccacggtggg ggagcgtgtc agaatccctg cgaagtacct tggttaccca 1080
cccccagaaa taaaatggta taaaaatgga ataccccttg agtccaatca cacaattaaa 1140
gcggggcatg tactgacgat tatggaagtg agtgaaagag acacaggaaa ttacactgtc 1200
atccttacca atcccatttc aaaggagaag cagagccatg tggtctctct ggttgtgtat 1260
gtcccacccc agattggtga gaaatctcta atctctcctg tggattccta ccagtacggc 1320
accactcaaa cgctgacatg tacggtctat gccattcctc ccccgcatca catccactgg 1380
tattggcagt tggaggaaga gtgcgccaac gagcccagcc aagctgtctc agtgacaaac 1440
ccataccctt gtgaagaatg gagaagtgtg gaggacttcc agggaggaaa taaaattgaa 1500
gttaataaaa atcaatttgc tctaattgaa ggaaaaaaca aaactgtaag tacccttgtt 1560
atccaagcgg caaatgtgtc agctttgtac aaatgtgaag cggtcaacaa agtcgggaga 1620
ggagagaggg tgatctcctt ccacgtgacc aggggtcctg aaattacttt gcaacctgac 1680
atgcagccca ctgagcagga gagcgtgtct ttgtggtgca ctgcagacag atctacgttt 1740
gagaacctca catggtacaa gcttggccca cagcctctgc caatccatgt gggagagttg 1800
cccacacctg tttgcaagaa cttggatact ctttggaaat tgaatgccac catgttctct 1860
aatagcacaa atgacatttt gatcatggag cttaagaatg catccttgca ggaccaagga 1920
gactatgtct gccttgctca agacaggaag accaagaaaa gacattgcgt ggtcaggcag 1980
ctcacagtcc tagagcgtgt ggcacccacg atcacaggaa acctggagaa tcagacgaca 2040
agtattgggg aaagcatcga agtctcatgc acggcatctg ggaatccccc tccacagatc 2100
atgtggttta aagataatga gacccttgta gaagactcag gcattgtatt gaaggatggg 2160
aaccggaacc tcactatccg cagagtgagg aaggaggacg aaggcctcta cacctgccag 2220
gcctgcaatg tccttggctg tgcaagagcg gagacgctct tcataataga aggtgcccag 2280
gaaaagacca acttggaagt cattatcctc gtcggcactg cagtgattgc catgttcttc 2340
tggctccttc ttgtcattgt cctacggacc gttaagcggg ccaatgaagg ggaactgaag 2400
acaggctact tgtctattgt catggatcca gatgaattgc ccttggatga gcgctgtgaa 2460
cgcttgcctt atgatgccag caagtgggaa ttccccaggg accggctgaa actaggaaaa 2520
cctcttggcc gcggtgcctt cggccaagtg attgaggcag acgcttttgg aattgacaag 2580
acagcgactt gcaaaacagt agccgtcaag atgttgaaag aaggagcaac acacagcgag 2640
catcgagccc tcatgtctga actcaagatc ctcatccaca ttggtcacca tctcaatgtg 2700
gtgaacctcc taggcgcctg caccaagccg ggagggcctc tcatggtgat tgtggaattc 2760
tgcaagtttg gaaacctatc aacttactta cggggcaaga gaaatgaatt tgttccctat 2820
aagagcaaag gggcacgctt ccgccagggc aaggactacg ttggggagct ctccgtggat 2880
ctgaaaagac gcttggacag catcaccagc agccagagct ctgccagctc aggctttgtt 2940
gaggagaaat cgctcagtga tgtagaggaa gaagaagctt ctgaagaact gtacaaggac 3000
ttcctgacct tggagcatct catctgttac agcttccaag tggctaaggg catggagttc 3060
ttggcatcaa ggaagtgtat ccacagggac ctggcagcac gaaacattct cctatcggag 3120
aagaatgtgg ttaagatctg tgacttcggc ttggcccggg acatttataa agacccggat 3180
tatgtcagaa aaggagatgc ccgactccct ttgaagtgga tggccccgga aaccattttt 3240
gacagagtat acacaattca gagcgatgtg tggtctttcg gtgtgttgct ctgggaaata 3300
ttttccttag gtgcctcccc ataccctggg gtcaagattg atgaagaatt ttgtaggaga 3360
ttgaaagaag gaactagaat gcgggctcct gactacacta ccccagaaat gtaccagacc 3420
atgctggact gctggcatga ggaccccaac cagagaccct cgttttcaga gttggtggag 3480
catttgggaa acctcctgca agcaaatgcg cagcaggatg gcaaagacta tattgttctt 3540
ccaatgtcag agacactgag catggaagag gattctggac tctccctgcc tacctcacct 3600
gtttcctgta tggaggaaga ggaagtgtgc gaccccaaat tccattatga caacacagca 3660
ggaatcagtc attatctcca gaacagtaag cgaaagagcc ggccagtgag tgtaaaaaca 3720
tttgaagata tcccattgga ggaaccagaa gtaaaagtga tcccagatga cagccagaca 3780
gacagtggga tggtccttgc atcagaagag ctgaaaactc tggaagacag gaacaaatta 3840
tctccatctt ttggtggaat gatgcccagt aaaagcaggg agtctgtggc ctcggaaggc 3900
tccaaccaga ccagtggcta ccagtctggg tatcactcag atgacacaga caccaccgtg 3960
tactccagcg acgaggcagg acttttaaag atggtggatg ctgcagttca cgctgactca 4020
gggaccacac tgcgctcacc tcctgtttaa 4050
<210> 7
<211> 5933
<212> RNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
gaguccucag gaccccaaga gaguaagcug uguuuccuua gaucgcgcgg accgcuaccc 60
ggcaggacug aaagcccaga cugugucccg cagccgggau aaccuggcug acccgauucc 120
gcggacaccg cugcagccgc ggcuggagcc agggcgccgg ugccccgcgc ucuccccggu 180
cuugcgcugc gggggcgcau accgccucug ugacuucuuu gcgggccagg gacggagaag 240
gagucugugc cugagaacug ggcucugugc ccagcgcgag gugcaggaug gagagcaagg 300
cgcugcuagc ugucgcucug ugguucugcg uggagacccg agccgccucu guggguuugc 360
cuggcgauuu ucuccauccc cccaagcuca gcacacagaa agacauacug acaauuuugg 420
caaauacaac ccuucagauu acuugcaggg gacagcggga ccuggacugg cuuuggccca 480
augcucagcg ugauucugag gaaaggguau uggugacuga augcggcggu ggugacagua 540
ucuucugcaa aacacucacc auucccaggg ugguuggaaa ugauacugga gccuacaagu 600
gcucguaccg ggacgucgac auagccucca cuguuuaugu cuauguucga gauuacagau 660
caccauucau cgccucuguc agugaccagc auggcgucgu guacauuacu gagaacaaaa 720
acaaaacugu ggugauucca ugucucgggu ccauuucaaa ucucaacgug ucacuuugug 780
caagauaccc agaaaagaga uuuguuccug augguaacag aauuuccugg gacagcaaga 840
agggcuuuac uauucccagc uacaugauca gcuaugcugg cauggucuuc ugugaagcaa 900
aaauuaauga ugaaaguuac cagucuauua uguacauagu ugucguugua ggguauagga 960
uuuaugaugu gguucugagu ccgucucaug gaauugaacu aucuguugga gaaaagcuug 1020
ucuuaaauug uacagcaaga acugaacuaa auguggggau ugacuucaac ugggaauacc 1080
cuucuucgaa gcaucagcau aagaaacuug uaaaccgaga ccuaaaaacc cagucuggga 1140
gugagaugaa gaaauuuuug agcaccuuaa cuauagaugg uguaacccgg agugaccaag 1200
gauuguacac cugugcagca uccagugggc ugaugaccaa gaagaacagc acauuuguca 1260
ggguccauga aaaaccuuuu guugcuuuug gaaguggcau ggaaucucug guggaagcca 1320
cgguggggga gcgugucaga aucccugcga aguaccuugg uuacccaccc ccagaaauaa 1380
aaugguauaa aaauggaaua ccccuugagu ccaaucacac aauuaaagcg gggcauguac 1440
ugacgauuau ggaagugagu gaaagagaca caggaaauua cacugucauc cuuaccaauc 1500
ccauuucaaa ggagaagcag agccaugugg ucucucuggu uguguauguc ccaccccaga 1560
uuggugagaa aucucuaauc ucuccugugg auuccuacca guacggcacc acucaaacgc 1620
ugacauguac ggucuaugcc auuccucccc cgcaucacau ccacugguau uggcaguugg 1680
aggaagagug cgccaacgag cccagccaag cugucucagu gacaaaccca uacccuugug 1740
aagaauggag aaguguggag gacuuccagg gaggaaauaa aauugaaguu aauaaaaauc 1800
aauuugcucu aauugaagga aaaaacaaaa cuguaaguac ccuuguuauc caagcggcaa 1860
augugucagc uuuguacaaa ugugaagcgg ucaacaaagu cgggagagga gagaggguga 1920
ucuccuucca cgugaccagg gguccugaaa uuacuuugca accugacaug cagcccacug 1980
agcaggagag cgugucuuug uggugcacug cagacagauc uacguuugag aaccucacau 2040
gguacaagcu uggcccacag ccucugccaa uccauguggg agaguugccc acaccuguuu 2100
gcaagaacuu ggauacucuu uggaaauuga augccaccau guucucuaau agcacaaaug 2160
acauuuugau cauggagcuu aagaaugcau ccuugcagga ccaaggagac uaugucugcc 2220
uugcucaaga caggaagacc aagaaaagac auugcguggu caggcagcuc acaguccuag 2280
agcguguggc acccacgauc acaggaaacc uggagaauca gacgacaagu auuggggaaa 2340
gcaucgaagu cucaugcacg gcaucuggga aucccccucc acagaucaug ugguuuaaag 2400
auaaugagac ccuuguagaa gacucaggca uuguauugaa ggaugggaac cggaaccuca 2460
cuauccgcag agugaggaag gaggacgaag gccucuacac cugccaggcc ugcaaugucc 2520
uuggcugugc aagagcggag acgcucuuca uaauagaagg ugcccaggaa aagaccaacu 2580
uggaagucau uauccucguc ggcacugcag ugauugccau guucuucugg cuccuucuug 2640
ucauuguccu acggaccguu aagcgggcca augaagggga acugaagaca ggcuacuugu 2700
cuauugucau ggauccagau gaauugcccu uggaugagcg cugugaacgc uugccuuaug 2760
augccagcaa gugggaauuc cccagggacc ggcugaaacu aggaaaaccu cuuggccgcg 2820
gugccuucgg ccaagugauu gaggcagacg cuuuuggaau ugacaagaca gcgacuugca 2880
aaacaguagc cgucaagaug uugaaagaag gagcaacaca cagcgagcau cgagcccuca 2940
ugucugaacu caagauccuc auccacauug gucaccaucu caauguggug aaccuccuag 3000
gcgccugcac caagccggga gggccucuca uggugauugu ggaauucugc aaguuuggaa 3060
accuaucaac uuacuuacgg ggcaagagaa augaauuugu ucccuauaag agcaaagggg 3120
cacgcuuccg ccagggcaag gacuacguug gggagcucuc cguggaucug aaaagacgcu 3180
uggacagcau caccagcagc cagagcucug ccagcucagg cuuuguugag gagaaaucgc 3240
ucagugaugu agaggaagaa gaagcuucug aagaacugua caaggacuuc cugaccuugg 3300
agcaucucau cuguuacagc uuccaagugg cuaagggcau ggaguucuug gcaucaagga 3360
aguguaucca cagggaccug gcagcacgaa acauucuccu aucggagaag aaugugguua 3420
agaucuguga cuucggcuug gcccgggaca uuuauaaaga cccggauuau gucagaaaag 3480
gagaugcccg acucccuuug aaguggaugg ccccggaaac cauuuuugac agaguauaca 3540
caauucagag cgaugugugg ucuuucggug uguugcucug ggaaauauuu uccuuaggug 3600
ccuccccaua cccugggguc aagauugaug aagaauuuug uaggagauug aaagaaggaa 3660
cuagaaugcg ggcuccugac uacacuaccc cagaaaugua ccagaccaug cuggacugcu 3720
ggcaugagga ccccaaccag agacccucgu uuucagaguu gguggagcau uugggaaacc 3780
uccugcaagc aaaugcgcag caggauggca aagacuauau uguucuucca augucagaga 3840
cacugagcau ggaagaggau ucuggacucu cccugccuac cucaccuguu uccuguaugg 3900
aggaagagga agugugcgac cccaaauucc auuaugacaa cacagcagga aucagucauu 3960
aucuccagaa caguaagcga aagagccggc cagugagugu aaaaacauuu gaagauaucc 4020
cauuggagga accagaagua aaagugaucc cagaugacag ccagacagac agugggaugg 4080
uccuugcauc agaagagcug aaaacucugg aagacaggaa caaauuaucu ccaucuuuug 4140
guggaaugau gcccaguaaa agcagggagu cuguggccuc ggaaggcucc aaccagacca 4200
guggcuacca gucuggguau cacucagaug acacagacac caccguguac uccagcgacg 4260
aggcaggacu uuuaaagaug guggaugcug caguucacgc ugacucaggg accacacugc 4320
gcucaccucc uguuuaaaug gaaguggucc ugucccggcu ccgcccccaa cuccuggaaa 4380
ucacgagaga ggugcugcuu agauuuucaa guguuguucu uuccaccacc cggaaguagc 4440
cacauuugau uuucauuuuu ggaggaggga ccucagacug caaggagcuu guccucaggg 4500
cauuuccaga gaagaugccc augacccaag aauguguuga cucuacucuc uuuuccauuc 4560
auuuaaaagu ccuauauaau gugcccugcu guggucucac uaccaguuaa agcaaaagac 4620
uuucaaacag uggcucuguc cuccaagaag uggcaacggc accucuguga aacuggaucg 4680
aaugggcaau gcuuugugug uugaggaugg gugagauguc ccagggccga gucugucuac 4740
cuuggaggcu uuguggagga ugcgggcuau gagccaagug uuaagugugg gauguggacu 4800
gggaggaagg aaggcgcaag cucgcucgga gagcgguugg agccugcaga ugcauugugc 4860
uggcucuggu ggaggugggc uuguggccug ucaggaaacg caaaggcggc cggcaggguu 4920
ugguuuugga agguuugcgu gcucuucaca gucggguuac aggcgaguuc ccuguggcgu 4980
uuccuacucc uaaugagagu uccuuccgga cucuuacgug ucuccuggcc uggccccagg 5040
aaggaaauga ugcagcuugc uccuuccuca ucucucaggc ugugccuuaa uucagaacac 5100
caaaagagag gaacgucggc agaggcuccu gacggggccg aagaauugug agaacagaac 5160
agaaacucag gguuucugcu ggguggagac ccacguggcu gcccuggugg cagugucuga 5220
ggguucucug ucaaguggcg guaaaggcuc aggcuggugu ucuuccucua ucuccacucc 5280
ugucaggccc ccaaguccuc aguauuuuag cuuuguggcu uccugauggc agaaaaaucu 5340
uaauugguug guuugcucuc cagauaauca cuagccagau uucgaaauua cuuuuuagcc 5400
gagguuauga uaacaucuac uguauccuuu agaauuuuaa ccuauaaaac uaugucuacu 5460
gguuucugcc ugugugcuua uguuaaaaaa aaaaagaaag aaagaaacug uucuuuucau 5520
uugguaccau agugugaaga gcugggagca augacuguua aacaugcuau ggcacaucua 5580
uuuauagucu guuauguaga acaaauguaa uauauuaaaa cguuauauua uauauaauga 5640
acuuuguacu acccaccuuu uguaucagua uuauguacca cuagagagau uacaaggcuu 5700
ucagcagccg cuguuguuuu guuaaagacu uugagaaacu cgaaggaauc cuuucaugga 5760
auaugcagcu auauacccua ccgucucucu caucucaaac ggaggaggag gaggaggagu 5820
cagguauaau gugagugugu ucuacguguc cuuguucucu guucuuagga ggaaugauuu 5880
caucaaaugu uuauaugcuu uauaaaccaa uaaacguauu cugaguaaag aga 5933
<210> 8
<211> 1349
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 8
Met Glu Ser Lys Ala Leu Leu Ala Val Ala Leu Trp Phe Cys Val Glu
1 5 10 15
Thr Arg Ala Ala Ser Val Gly Leu Pro Gly Asp Phe Leu His Pro Pro
20 25 30
Lys Leu Ser Thr Gln Lys Asp Ile Leu Thr Ile Leu Ala Asn Thr Thr
35 40 45
Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro
50 55 60
Asn Ala Gln Arg Asp Ser Glu Glu Arg Val Leu Val Thr Glu Cys Gly
65 70 75 80
Gly Gly Asp Ser Ile Phe Cys Lys Thr Leu Thr Ile Pro Arg Val Val
85 90 95
Gly Asn Asp Thr Gly Ala Tyr Lys Cys Ser Tyr Arg Asp Val Asp Ile
100 105 110
Ala Ser Thr Val Tyr Val Tyr Val Arg Asp Tyr Arg Ser Pro Phe Ile
115 120 125
Ala Ser Val Ser Asp Gln His Gly Val Val Tyr Ile Thr Glu Asn Lys
130 135 140
Asn Lys Thr Val Val Ile Pro Cys Leu Gly Ser Ile Ser Asn Leu Asn
145 150 155 160
Val Ser Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly
165 170 175
Asn Arg Ile Ser Trp Asp Ser Lys Lys Gly Phe Thr Ile Pro Ser Tyr
180 185 190
Met Ile Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys Ile Asn Asp
195 200 205
Glu Ser Tyr Gln Ser Ile Met Tyr Ile Val Val Val Val Gly Tyr Arg
210 215 220
Ile Tyr Asp Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val
225 230 235 240
Gly Glu Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val
245 250 255
Gly Ile Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys
260 265 270
Lys Leu Val Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys
275 280 285
Lys Phe Leu Ser Thr Leu Thr Ile Asp Gly Val Thr Arg Ser Asp Gln
290 295 300
Gly Leu Tyr Thr Cys Ala Ala Ser Ser Gly Leu Met Thr Lys Lys Asn
305 310 315 320
Ser Thr Phe Val Arg Val His Glu Lys Pro Phe Val Ala Phe Gly Ser
325 330 335
Gly Met Glu Ser Leu Val Glu Ala Thr Val Gly Glu Arg Val Arg Ile
340 345 350
Pro Ala Lys Tyr Leu Gly Tyr Pro Pro Pro Glu Ile Lys Trp Tyr Lys
355 360 365
Asn Gly Ile Pro Leu Glu Ser Asn His Thr Ile Lys Ala Gly His Val
370 375 380
Leu Thr Ile Met Glu Val Ser Glu Arg Asp Thr Gly Asn Tyr Thr Val
385 390 395 400
Ile Leu Thr Asn Pro Ile Ser Lys Glu Lys Gln Ser His Val Val Ser
405 410 415
Leu Val Val Tyr Val Pro Pro Gln Ile Gly Glu Lys Ser Leu Ile Ser
420 425 430
Pro Val Asp Ser Tyr Gln Tyr Gly Thr Thr Gln Thr Leu Thr Cys Thr
435 440 445
Val Tyr Ala Ile Pro Pro Pro His His Ile His Trp Tyr Trp Gln Leu
450 455 460
Glu Glu Glu Cys Ala Asn Glu Pro Ser Gln Ala Val Ser Val Thr Asn
465 470 475 480
Pro Tyr Pro Cys Glu Glu Trp Arg Ser Val Glu Asp Phe Gln Gly Gly
485 490 495
Asn Lys Ile Glu Val Asn Lys Asn Gln Phe Ala Leu Ile Glu Gly Lys
500 505 510
Asn Lys Thr Val Ser Thr Leu Val Ile Gln Ala Ala Asn Val Ser Ala
515 520 525
Leu Tyr Lys Cys Glu Ala Val Asn Lys Val Gly Arg Gly Glu Arg Val
530 535 540
Ile Ser Phe His Val Thr Arg Gly Pro Glu Ile Thr Leu Gln Pro Asp
545 550 555 560
Met Gln Pro Thr Glu Gln Glu Ser Val Ser Leu Trp Cys Thr Ala Asp
565 570 575
Arg Ser Thr Phe Glu Asn Leu Thr Trp Tyr Lys Leu Gly Pro Gln Pro
580 585 590
Leu Pro Ile His Val Gly Glu Leu Pro Thr Pro Val Cys Lys Asn Leu
595 600 605
Asp Thr Leu Trp Lys Leu Asn Ala Thr Met Phe Ser Asn Ser Thr Asn
610 615 620
Asp Ile Leu Ile Met Glu Leu Lys Asn Ala Ser Leu Gln Asp Gln Gly
625 630 635 640
Asp Tyr Val Cys Leu Ala Gln Asp Arg Lys Thr Lys Lys Arg His Cys
645 650 655
Val Val Arg Gln Leu Thr Val Leu Glu Arg Val Ala Pro Thr Ile Thr
660 665 670
Gly Asn Leu Glu Asn Gln Thr Thr Ser Ile Gly Glu Ser Ile Glu Val
675 680 685
Ser Cys Thr Ala Ser Gly Asn Pro Pro Pro Gln Ile Met Trp Phe Lys
690 695 700
Asp Asn Glu Thr Leu Val Glu Asp Ser Gly Ile Val Leu Lys Asp Gly
705 710 715 720
Asn Arg Asn Leu Thr Ile Arg Arg Val Arg Lys Glu Asp Glu Gly Leu
725 730 735
Tyr Thr Cys Gln Ala Cys Asn Val Leu Gly Cys Ala Arg Ala Glu Thr
740 745 750
Leu Phe Ile Ile Glu Gly Ala Gln Glu Lys Thr Asn Leu Glu Val Ile
755 760 765
Ile Leu Val Gly Thr Ala Val Ile Ala Met Phe Phe Trp Leu Leu Leu
770 775 780
Val Ile Val Leu Arg Thr Val Lys Arg Ala Asn Glu Gly Glu Leu Lys
785 790 795 800
Thr Gly Tyr Leu Ser Ile Val Met Asp Pro Asp Glu Leu Pro Leu Asp
805 810 815
Glu Arg Cys Glu Arg Leu Pro Tyr Asp Ala Ser Lys Trp Glu Phe Pro
820 825 830
Arg Asp Arg Leu Lys Leu Gly Lys Pro Leu Gly Arg Gly Ala Phe Gly
835 840 845
Gln Val Ile Glu Ala Asp Ala Phe Gly Ile Asp Lys Thr Ala Thr Cys
850 855 860
Lys Thr Val Ala Val Lys Met Leu Lys Glu Gly Ala Thr His Ser Glu
865 870 875 880
His Arg Ala Leu Met Ser Glu Leu Lys Ile Leu Ile His Ile Gly His
885 890 895
His Leu Asn Val Val Asn Leu Leu Gly Ala Cys Thr Lys Pro Gly Gly
900 905 910
Pro Leu Met Val Ile Val Glu Phe Cys Lys Phe Gly Asn Leu Ser Thr
915 920 925
Tyr Leu Arg Gly Lys Arg Asn Glu Phe Val Pro Tyr Lys Ser Lys Gly
930 935 940
Ala Arg Phe Arg Gln Gly Lys Asp Tyr Val Gly Glu Leu Ser Val Asp
945 950 955 960
Leu Lys Arg Arg Leu Asp Ser Ile Thr Ser Ser Gln Ser Ser Ala Ser
965 970 975
Ser Gly Phe Val Glu Glu Lys Ser Leu Ser Asp Val Glu Glu Glu Glu
980 985 990
Ala Ser Glu Glu Leu Tyr Lys Asp Phe Leu Thr Leu Glu His Leu Ile
995 1000 1005
Cys Tyr Ser Phe Gln Val Ala Lys Gly Met Glu Phe Leu Ala Ser Arg
1010 1015 1020
Lys Cys Ile His Arg Asp Leu Ala Ala Arg Asn Ile Leu Leu Ser Glu
1025 1030 1035 1040
Lys Asn Val Val Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr
1045 1050 1055
Lys Asp Pro Asp Tyr Val Arg Lys Gly Asp Ala Arg Leu Pro Leu Lys
1060 1065 1070
Trp Met Ala Pro Glu Thr Ile Phe Asp Arg Val Tyr Thr Ile Gln Ser
1075 1080 1085
Asp Val Trp Ser Phe Gly Val Leu Leu Trp Glu Ile Phe Ser Leu Gly
1090 1095 1100
Ala Ser Pro Tyr Pro Gly Val Lys Ile Asp Glu Glu Phe Cys Arg Arg
1105 1110 1115 1120
Leu Lys Glu Gly Thr Arg Met Arg Ala Pro Asp Tyr Thr Thr Pro Glu
1125 1130 1135
Met Tyr Gln Thr Met Leu Asp Cys Trp His Glu Asp Pro Asn Gln Arg
1140 1145 1150
Pro Ser Phe Ser Glu Leu Val Glu His Leu Gly Asn Leu Leu Gln Ala
1155 1160 1165
Asn Ala Gln Gln Asp Gly Lys Asp Tyr Ile Val Leu Pro Met Ser Glu
1170 1175 1180
Thr Leu Ser Met Glu Glu Asp Ser Gly Leu Ser Leu Pro Thr Ser Pro
1185 1190 1195 1200
Val Ser Cys Met Glu Glu Glu Glu Val Cys Asp Pro Lys Phe His Tyr
1205 1210 1215
Asp Asn Thr Ala Gly Ile Ser His Tyr Leu Gln Asn Ser Lys Arg Lys
1220 1225 1230
Ser Arg Pro Val Ser Val Lys Thr Phe Glu Asp Ile Pro Leu Glu Glu
1235 1240 1245
Pro Glu Val Lys Val Ile Pro Asp Asp Ser Gln Thr Asp Ser Gly Met
1250 1255 1260
Val Leu Ala Ser Glu Glu Leu Lys Thr Leu Glu Asp Arg Asn Lys Leu
1265 1270 1275 1280
Ser Pro Ser Phe Gly Gly Met Met Pro Ser Lys Ser Arg Glu Ser Val
1285 1290 1295
Ala Ser Glu Gly Ser Asn Gln Thr Ser Gly Tyr Gln Ser Gly Tyr His
1300 1305 1310
Ser Asp Asp Thr Asp Thr Thr Val Tyr Ser Ser Asp Glu Ala Gly Leu
1315 1320 1325
Leu Lys Met Val Asp Ala Ala Val His Ala Asp Ser Gly Thr Thr Leu
1330 1335 1340
Arg Ser Pro Pro Val
1345
<210> 9
<211> 4000
<212> DNA
<213> mouse (mouse)
<400> 9
caactactct accactgagc gtgatatcct tggtccctta aaagttatcc tctgtcctta 60
ataatgctta gcaatcatat ttgcttaaaa tatttattga atgactgcat gaatgaatga 120
atgaatgagc taacagaaaa ctcatgacca tgtgggtgat ttccgaaaca gagtgtgaga 180
tctttggtgg catgtccttg tagactgtct gccaccagta tctatcatct tgaaggtgac 240
tattgagtag tttatatgca tgtgaaaaac caaaccttct attctcttac tcatagcctc 300
tcttaatcat agccctgtgg catggagtgt accattgata tcttcctgga atactttttc 360
aggggacagc gggacctgga ctggctttgg cccaatgctc agcgtgattc tgaggaaagg 420
gtattggtga ctgaatgcgg cggtggtgac agtatcttct gcaaaacact caccattccc 480
agggtggttg gaaatgatac tggagcctac aagtgctcgt accgggacgt cgacatagcc 540
tccactgttt atgtctatgt tcgaggtaag tggtgggcca gaatgtactt ccccgtctgc 600
ttccaatgtc gtaaatgcaa tagagtcaag aagagttgag tctagtaaga ggcttgttgg 660
aaaagatgtt tgcccctata aatctcggag cttctctgcc aggctccctt agggaaggac 720
tcaccagaag tctgggtttt ggttggagct gcacgtctct tctctggcta ggtcagccct 780
gcttcctttt ctaccttgct ctgtgattcc ttgggacccg acaggagcta tggagacgcc 840
taagatgtct tctgctcttt gagactctgg gatctttgca aatgaggagg cttggaggtg 900
aataatagag aggtttctgt ggtgagatag gttatctgga gcagggagga ggtttttaca 960
ggaatgcata gggaaatagc caaggactct agaggctgtt tttttttttt tcttttttct 1020
ttctccctcc cccataagat ctttcctttt cacattaccc ctttattaaa ataaattcac 1080
atacccatgt gcaaagcaca acactgtctt gtctttgctt gtgtgaactg agagggcttg 1140
ggaccaaccc cagggagata tgaacagtct tcatggacat agcaagtatc ttattttgag 1200
gtgctggcta gctgcttggg cttccttcat agactttccc tttcagggct aaagatctag 1260
gactgattca caggacacct ttagtttcat gtcaaaggaa cttagctttt gtcttacata 1320
aaaaagttag ttttgtgatg taatcaaggt ttgtaacttt acatccatat aataaaaact 1380
acagtgtgac atgtactcca tatgtagggg atgaatagga tctcttttac attctaaaaa 1440
ttgcacacca ccttttcttg tgatcactgc ctgtaacaac atctgcttca caggaatcta 1500
aagatttctt tgtcactctt ttttttcttt ctttctttct ttttgtgaaa gagagttttg 1560
catgtatgta tgtgtagttt gtgcgtgcat gctatctgtg aaggtcagaa gtgggcattg 1620
gatcccctgg acctgcagtt acagagccac cacgtgggtg ctgggcactg aacccaggtc 1680
ctctgcagga gcagccagtg cttccatctg ctaggccatc tctccagccc tgagttgcat 1740
tatatttgac acaggcatac aatgttgtat ttctttcaga gaaggatgga tctatacaag 1800
tattttattt attcatctgt atgtacccct acgtctccgg gaatttgaga cgggtgaaaa 1860
tgactttaag gttttttatt tcctgaaagc cactcaccag gcaggaaggt tctttaccgg 1920
ggcaccaacc acccttgcat atctacactt ccattcagta gggtcagtgt atggaagacc 1980
agacgccata tccaaatatc ccatgatgct cttgagcttc tcagtggttg tctattcttt 2040
ttgctccggg taagccaagt ataccacaga gttctgtgcc tcccctcctc accctgcaga 2100
gctgagggag gcaaggctca gtcagacctt ggagaatgcc tggctccttt tgatctcgca 2160
gtcttgggag acgtggctct ctcagaagat tgcaaggatt tcctgctctc agcctgtctg 2220
gaaatgcttc aagatgagct tctcctccag tatcttgata cttccttctc cccgagtcag 2280
gaaacctgga gacatgagaa aagtcatttc gtggcttaca ataaatgttt tattttggga 2340
ggatgcgtgg ttgtttggta ttcttttgtt tacttcccct ttagggttac tgaaatagct 2400
tacggcatag ctttagtctt aagtcaagag gtgaatttag cttctcaagg cttgctcatg 2460
aactattcca ttaccatgtc catggaggag aggcaggagc aacaagcact ggtttccagc 2520
actgtctgct tgtatccttg gtgcctctgg atataccata aaattctgct cctgcctcag 2580
cttaggtttc agagttgagc tattcaagag tttgctcatg aaatttaaca acaggaaaaa 2640
aagcattgaa tgtagtattc ccagtggata ggtctttagc gtcccctctt acttcctcag 2700
tcctctgacc catctagcgg tggatggagc caggaagctg gccttcgctg tgcaggataa 2760
tggtgatggc atgtggggag tgaagtttgc tgcattgctc tgctttccag ctgggaagga 2820
aatcaggttt ctgctgttga aaggaattag ttactcttct tccctttggt ttcattaact 2880
ctttcttcac ctctgaaaag gcttgatcag atgtgtgggg gttaggaggt gaggtgttat 2940
ctctgggatt tcaagtagtg gctccagacc atgtgttctg tctctagggg atgaagttac 3000
tcccagacat gtattaaaac tgtatgaatg atgtctgaaa gatatcaaaa cttctctggc 3060
tttcatctca atctttggaa ttgtgttttt cctaatactt attgtcatag atatgaataa 3120
gtgctaaatc ttgaactaaa tgtagtggct atgaaacatt actttataaa gactcttatc 3180
tacagtcctc acagacttaa gattattata aaaaccattc ttctgaatta ctgaatcatc 3240
tgaaataaaa aacaatcaaa tcattgttat tttctcttag tttaaagatc ctattttttt 3300
ttttttagtc atttacatta ctttcctaat ggaaaaccat gaacttttat catcataaaa 3360
ctcagagttt aagtgtatgg tcttaaatga aatcttttat tttatgtaaa aataatctat 3420
taggccgggc ggtggtggca caagccttta atcccagcac ttgggagaca gaggcagacg 3480
aatctctgag ttcgaggaca gcctggtcta cagagtgagt tccaggacag ccagggctat 3540
acagagaaag cctgtctcaa aaaacaaaca aacaaacaaa caaacaaaca aaaaaacaaa 3600
aaaatctatt aaagcatgga ctattaaaat agattctgcc tggtaatatt ccatgtagaa 3660
gaagctaagt tattttgttg gaatctttct tcactttctc tctgtctgtc tgtctgtgtc 3720
tctctgtctc tctgtttctc tgtctgtctg tttctgtctc tgtgtgtatg tgtttctctg 3780
ccctcctcga tcacatcttt agagccagat agctatgtgc agactagcct gtggatgtcc 3840
gcattcatgc aagttgtcaa tgatagccat tctgtcattc aattagagtt catggaccca 3900
aagactactt aactttcctg ctaataattc actaggagaa ttccctcttc ttctagatta 3960
cagatcacca ttcatcgcct ctgtcagtga ccagcatggc 4000
<210> 10
<211> 3933
<212> DNA
<213> mouse (mouse)
<400> 10
ctccacgtgt tctttgtaat ctatcttcaa tggctctgcg tccttttaac cagaaagcaa 60
aattagcacg cgcttcagtc tgtaccatat tttctgtcca cgtagtcatc actgtgagaa 120
aactatttgc catgagtaag aaatgccttt ctgttcccga ttctcacttt gtttgaatgg 180
ttaactcaca gaaatgacac ttcaatatat acctggggaa aaatagattt ggtgttgggc 240
attgctattc aactagtgac aaggatcaaa ggttcaggat tttccccaga gcagagacaa 300
gattcactca taaacaatag atgattaata ggtgattgct tttgtgatat ggacaatccg 360
gggttataat tgaaatatga aaggaaactt cgtttcccct ggctgtgcgt gtgcgagaga 420
gtgtgtgtgt gtatgagtgt gttttgtgtg tgtgtgtgtg tatgggtgtg ttatgtgtgt 480
gtgtgtgtat gatcgatatg aaccctaacc tttgtttttc agtcagtatt ctgtgtcaga 540
acatttcatc ttcagaagag cgttcctgga tcttgttttt gtaatacact aagggaacaa 600
tgtgactcta ttgtgtgagt gaaggagtgg tgtgcaaggg ggtgactcag ggtggttaga 660
gaggtaggtt tggcagaatt ctaacatctc caagtctaaa tgttggcccc tttcatctgc 720
ccaactcacc atgtccagtg ctgcatctag agccactagc atgctctcaa atctctaaga 780
tggttaggat tctataaact gcacctgcaa ctgaagatgc caaagtgcat ggtagttctg 840
tcactaccaa agtggttcat ggcttggtgc caaatccagg gaggatgcac ccgccagttc 900
tctctggtac tctgcctcca cccactagcc atctgcatta ggttatcatg cctatgtggg 960
cacagtggca tagatactat ggagacagga aaggggtggg ggggagcgag agagagagag 1020
agagagagag agagagagag agagagagag agagagagag agagaggaag agaggaagag 1080
aggaagagag gaagagagga agagagagga gagggtagac attgaatgct tctacagaag 1140
ttcagctgtc agatgttaat atgagactat tcacacataa actgattgag accattgaat 1200
ctttgacctt tcttctgtct cttacatgag taggctttta agcctttaca tacaggtaga 1260
accattactt ctctggaaac atcagagaaa ccaaatccac ttacagatgc actcagagct 1320
cactcccaac tggtaactct tattttgcca actaattaat tgcttgtctt ctggcttctg 1380
gcttcaagcc tcccagcttg aggctcattt caactgacac tgcacagtgt gagtggagag 1440
actgagaccc taagtgataa ttgttttctc ttaatcacct ggtgctaagc atttggtgct 1500
gcgagcctcc tgcccgtatc tctccacttg gaatgtgttc tggagagcaa cctacagtct 1560
tacttgctag cctttccctt gctccctcca cacataaggc ctttatcttg gcgctctctg 1620
tctctgcctg tctctctgtg tgagtctctg tctgtctgtc tatctgtcta tctctgtgtt 1680
cgtctttctg tctgcctgcc tgcctgcctg cctgtctgtc tgtctgtctg tctgtctgtc 1740
tctccctctc tttatttctg tgtctctccc tcacctatcc ttcccttctc tgtcttcctc 1800
tcttttctcc tctttcaggc ttctgccaca tagggacaag gtggtcagct caatttggac 1860
aaatccagta taacccttga acagaccacc aagttcctgt atctcacaga caagtagctt 1920
aaccttttaa gccttatttc ttcatctgaa aactgaaggt tactgaaaaa ataaagaagg 1980
gcgctatatt taaagtgaag ggcgctatat ttaaagtgac cagtgcatag taggtgtgtg 2040
gtcacaagta gctgtctgcg caaagagctt tacttatctc cttgtgtaga ttcctaaaca 2100
atcaattttc ccatgccaca taagcaaaga tgttgactat catcacaaaa tcagactcaa 2160
gtacccatga atagaagtat attttttcct tagagttctc tcaccagaca catccctata 2220
atgtatctct tttttaaaat atttttatta catattttcc tcaattacat ttccaatgct 2280
atctccaaag tcccccatac cctccccccc ttccctaccc agccattccc atttttttgg 2340
ccctggcatt cccctgtact ggggcatata cagtttgcgt gtccaatggg cctctctttc 2400
cagtgatggc cgactaggcc atcttttgat acatatgcag ctagagtcaa gagctccggg 2460
gtactggtta gttcataatg ttgttccacc tatagggttg cagatccctt tagctccttg 2520
ggaactttct ctagctcctc ctttgggagc cctgtgatcc atccaatagc tgactgagca 2580
tccacttctg tgtttgctag gccctggcat agtctcacaa gagacagcta catctgggtc 2640
ctttcgataa aatcttgcta tataatgtat ctcttaagac acgtgtaagc acctgtggtt 2700
cattgctgga tgtcttcatg agtggtgtgt ttctgttgtt ctttaaaagt atgaactcta 2760
tccagcttaa ggagctattg gtccctagga atcttaaaag tgggtgacat gaggtcctgc 2820
cttttctccc ttcatgtcac ccactttgtc accttctacc ataggctatg aatttccagc 2880
tgttgatcac tcaaacatgt cttccaggtg cccaggaaaa gaccaacttg gaagtcatta 2940
tcctcgtcgg cactgcagtg attgccatgt tcttctggct ccttcttgtc attgtcctac 3000
ggaccgttaa gcgggtaaca acataatttc cctcctgtcc cttgtgtctt ggtttttgtg 3060
attaatggaa gctgactggg tttctttcag cggcttcttc ccattgttat tggctcaatg 3120
ggcacatttt tacctcaata caataacatt cttgtccatt ttctttgggt ggactgtggg 3180
cattaattga tgggagccac cagaggggtg aaaggtttgg actgtccact gtaattaaga 3240
tttagaaacc ttattctgaa ctcttttttg gaaactgaag tggcactaaa ggcaggatta 3300
taatagcagc gctctcaaac accatgagtt ttattggaaa atgagattat catgaatgag 3360
gcccttatta aacaacaata tgtatacaaa acaacaacca aacaagaggc cgtgtgtgta 3420
tgacggggag gatttatgct ttccaggcca atgaagggga actgaagaca ggctacttgt 3480
ctattgtcat ggatccagat gaattgccct tggatgagcg ctgtgaacgc ttgccttatg 3540
atgccagcaa gtgggaattc cccagggacc ggctgaaact aggtgagttg tcaactgcta 3600
ttaacttgat ataagttttt acccgctcat ctggctctct gttaagacaa tgacagatct 3660
ggtctattta gatgatgtat tctgatttat aaatattaat tttatctctt gactttgggt 3720
aatcatccat ttagctttct agtagtaagg agcctgtgca accatccaaa gcagggcatt 3780
ttgaaaagca aatggaaaaa ccagaacaaa ggaggaaagt gctctgtggg tctaactggg 3840
atgcaccatc ctcttgacca attggaatct tcatatgcct tttgacagtg tgacaatcaa 3900
agtgtatttt gtaataccac tgtcattggt tct 3933
<210> 11
<211> 1797
<212> DNA
<213> Intelligent (Homo sapiens)
<400> 11
gtcgtgtaca ttactgagaa caaaaacaaa actgtggtga ttccatgtct cgggtccatt 60
tcaaatctca acgtgtcact ttgtgcaaga tacccagaaa agagatttgt tcctgatggt 120
aacagaattt cctgggacag caagaagggc tttactattc ccagctacat gatcagctat 180
gctggcatgg tcttctgtga agcaaaaatt aatgatgaaa gttaccagtc tattatgtac 240
atagttgtcg ttgtagggta taggatttat gatgtggttc tgagtccgtc tcatggaatt 300
gaactatctg ttggagaaaa gcttgtctta aattgtacag caagaactga actaaatgtg 360
gggattgact tcaactggga atacccttct tcgaagcatc agcataagaa acttgtaaac 420
cgagacctaa aaacccagtc tgggagtgag atgaagaaat ttttgagcac cttaactata 480
gatggtgtaa cccggagtga ccaaggattg tacacctgtg cagcatccag tgggctgatg 540
accaagaaga acagcacatt tgtcagggtc catgaaaaac cttttgttgc ttttggaagt 600
ggcatggaat ctctggtgga agccacggtg ggggagcgtg tcagaatccc tgcgaagtac 660
cttggttacc cacccccaga aataaaatgg tataaaaatg gaatacccct tgagtccaat 720
cacacaatta aagcggggca tgtactgacg attatggaag tgagtgaaag agacacagga 780
aattacactg tcatccttac caatcccatt tcaaaggaga agcagagcca tgtggtctct 840
ctggttgtgt atgtcccacc ccagattggt gagaaatctc taatctctcc tgtggattcc 900
taccagtacg gcaccactca aacgctgaca tgtacggtct atgccattcc tcccccgcat 960
cacatccact ggtattggca gttggaggaa gagtgcgcca acgagcccag ccaagctgtc 1020
tcagtgacaa acccataccc ttgtgaagaa tggagaagtg tggaggactt ccagggagga 1080
aataaaattg aagttaataa aaatcaattt gctctaattg aaggaaaaaa caaaactgta 1140
agtacccttg ttatccaagc ggcaaatgtg tcagctttgt acaaatgtga agcggtcaac 1200
aaagtcggga gaggagagag ggtgatctcc ttccacgtga ccaggggtcc tgaaattact 1260
ttgcaacctg acatgcagcc cactgagcag gagagcgtgt ctttgtggtg cactgcagac 1320
agatctacgt ttgagaacct cacatggtac aagcttggcc cacagcctct gccaatccat 1380
gtgggagagt tgcccacacc tgtttgcaag aacttggata ctctttggaa attgaatgcc 1440
accatgttct ctaatagcac aaatgacatt ttgatcatgg agcttaagaa tgcatccttg 1500
caggaccaag gagactatgt ctgccttgct caagacagga agaccaagaa aagacattgc 1560
gtggtcaggc agctcacagt cctagagcgt gtggcaccca cgatcacagg aaacctggag 1620
aatcagacga caagtattgg ggaaagcatc gaagtctcat gcacggcatc tgggaatccc 1680
cctccacaga tcatgtggtt taaagataat gagacccttg tagaagactc aggcattgta 1740
ttgaaggatg ggaaccggaa cctcactatc cgcagagtga ggaaggagga cgaaggc 1797
<210> 12
<211> 367
<212> DNA
<213> mouse (mouse)
<400> 12
ctctacacct gccaggcctg caatgtcctt ggctgtgcaa gagcggagac gctcttcata 60
atagaaggtc agtgtgatgt cataggctca tcagatggtc tctggcaatt cgatcgcatt 120
ggacatagct gcacatactt tgagtaggat gccttgtggg tgactcatgg tgacactggt 180
ggttgttaag cctcgtctct gagatgttca tttaagtgtc acacaagtgt acatagcctg 240
aaggcaattt tacacaatat ttttcagtgt acctaccttt tttgactggg atctgtcaca 300
tgaaattagg ggtcggtgct cagaaagttt tagatcttat tcgtctgtga ggtctgagtt 360
acggttt 367
<210> 13
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
cgcggtcgac aagctcaact actctaccac tgagc 35
<210> 14
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
gccatgctgg tcactgacag 20
<210> 15
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
agtgaccagc atggcgtcgt gtacattact gagaa 35
<210> 16
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
ccattatgta cctgactgat 20
<210> 17
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
tcaggtacat aatggctcca cgtgttcttt gtaat 35
<210> 18
<211> 35
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
tagaggatcg gcgcgagaac caatgacagt ggtat 35
<210> 19
<211> 4082
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
gtcgtgtaca ttactgagaa caaaaacaaa actgtggtga ttccatgtct cgggtccatt 60
tcaaatctca acgtgtcact ttgtgcaaga tacccagaaa agagatttgt tcctgatggt 120
aacagaattt cctgggacag caagaagggc tttactattc ccagctacat gatcagctat 180
gctggcatgg tcttctgtga agcaaaaatt aatgatgaaa gttaccagtc tattatgtac 240
atagttgtcg ttgtagggta taggatttat gatgtggttc tgagtccgtc tcatggaatt 300
gaactatctg ttggagaaaa gcttgtctta aattgtacag caagaactga actaaatgtg 360
gggattgact tcaactggga atacccttct tcgaagcatc agcataagaa acttgtaaac 420
cgagacctaa aaacccagtc tgggagtgag atgaagaaat ttttgagcac cttaactata 480
gatggtgtaa cccggagtga ccaaggattg tacacctgtg cagcatccag tgggctgatg 540
accaagaaga acagcacatt tgtcagggtc catgaaaaac cttttgttgc ttttggaagt 600
ggcatggaat ctctggtgga agccacggtg ggggagcgtg tcagaatccc tgcgaagtac 660
cttggttacc cacccccaga aataaaatgg tataaaaatg gaatacccct tgagtccaat 720
cacacaatta aagcggggca tgtactgacg attatggaag tgagtgaaag agacacagga 780
aattacactg tcatccttac caatcccatt tcaaaggaga agcagagcca tgtggtctct 840
ctggttgtgt atgtcccacc ccagattggt gagaaatctc taatctctcc tgtggattcc 900
taccagtacg gcaccactca aacgctgaca tgtacggtct atgccattcc tcccccgcat 960
cacatccact ggtattggca gttggaggaa gagtgcgcca acgagcccag ccaagctgtc 1020
tcagtgacaa acccataccc ttgtgaagaa tggagaagtg tggaggactt ccagggagga 1080
aataaaattg aagttaataa aaatcaattt gctctaattg aaggaaaaaa caaaactgta 1140
agtacccttg ttatccaagc ggcaaatgtg tcagctttgt acaaatgtga agcggtcaac 1200
aaagtcggga gaggagagag ggtgatctcc ttccacgtga ccaggggtcc tgaaattact 1260
ttgcaacctg acatgcagcc cactgagcag gagagcgtgt ctttgtggtg cactgcagac 1320
agatctacgt ttgagaacct cacatggtac aagcttggcc cacagcctct gccaatccat 1380
gtgggagagt tgcccacacc tgtttgcaag aacttggata ctctttggaa attgaatgcc 1440
accatgttct ctaatagcac aaatgacatt ttgatcatgg agcttaagaa tgcatccttg 1500
caggaccaag gagactatgt ctgccttgct caagacagga agaccaagaa aagacattgc 1560
gtggtcaggc agctcacagt cctagagcgt gtggcaccca cgatcacagg aaacctggag 1620
aatcagacga caagtattgg ggaaagcatc gaagtctcat gcacggcatc tgggaatccc 1680
cctccacaga tcatgtggtt taaagataat gagacccttg tagaagactc aggcattgta 1740
ttgaaggatg ggaaccggaa cctcactatc cgcagagtga ggaaggagga cgaaggcctc 1800
tacacctgcc aggcctgcaa tgtccttggc tgtgcaagag cggagacgct cttcataata 1860
gaaggtcagt gtgatgtcat aggctcatca gatggtctct ggcaattcga tcgcattgga 1920
catagctgca catactttga gtaggatgcc ttgtgggtga ctcatggtga cactggtggt 1980
tgttaagcct cgtctctgag atgttcattt aagtgtcaca caagtgtaca tagcctgaag 2040
gcaattttac acaatatttt tcagtgtacc tacctttttt gactgggatc tgtcacatga 2100
aattaggggt cggtgctcag aaagttttag atcttattcg tctgtgaggt ctgagttacg 2160
gtttggcgcg gctgtgggtg ctgatgaacg gtcatcctca ccaaccccat ttcataagct 2220
tgatatcgaa ttccgaagtt cctattctct agaaagtata ggaacttcag gtctgaagag 2280
gagtttacgt ccagccaagc tagcttggct gcaggtcgtc gaaattctac cgggtagggg 2340
aggcgctttt cccaaggcag tctggagcat gcgctttagc agccccgctg ggcacttggc 2400
gctacacaag tggcctctgg cctcgcacac attccacatc caccggtagg cgccaaccgg 2460
ctccgttctt tggtggcccc ttcgcgccac cttctactcc tcccctagtc aggaagttcc 2520
cccccgcccc gcagctcgcg tcgtgcagga cgtgacaaat ggaagtagca cgtctcacta 2580
gtctcgtgca gatggacagc accgctgagc aatggaagcg ggtaggcctt tggggcagcg 2640
gccaatagca gctttgctcc ttcgctttct gggctcagag gctgggaagg ggtgggtccg 2700
ggggcgggct caggggcggg ctcaggggcg gggcgggcgc ccgaaggtcc tccggaggcc 2760
cggcattctg cacgcttcaa aagcgcacgt ctgccgcgct gttctcctct tcctcatctc 2820
cgggcctttc gacctgcagc ctgttgacaa ttaatcatcg gcatagtata tcggcatagt 2880
ataatacgac aaggtgagga actaaaccat gggatcggcc attgaacaag atggattgca 2940
cgcaggttct ccggccgctt gggtggagag gctattcggc tatgactggg cacaacagac 3000
aatcggctgc tctgatgccg ccgtgttccg gctgtcagcg caggggcgcc cggttctttt 3060
tgtcaagacc gacctgtccg gtgccctgaa tgaactgcag gacgaggcag cgcggctatc 3120
gtggctggcc acgacgggcg ttccttgcgc agctgtgctc gacgttgtca ctgaagcggg 3180
aagggactgg ctgctattgg gcgaagtgcc ggggcaggat ctcctgtcat ctcaccttgc 3240
tcctgccgag aaagtatcca tcatggctga tgcaatgcgg cggctgcata cgcttgatcc 3300
ggctacctgc ccattcgacc accaagcgaa acatcgcatc gagcgagcac gtactcggat 3360
ggaagccggt cttgtcgatc aggatgatct ggacgaagag catcaggggc tcgcgccagc 3420
cgaactgttc gccaggctca aggcgcgcat gcccgacggc gatgatctcg tcgtgaccca 3480
tggcgatgcc tgcttgccga atatcatggt ggaaaatggc cgcttttctg gattcatcga 3540
ctgtggccgg ctgggtgtgg cggaccgcta tcaggacata gcgttggcta cccgtgatat 3600
tgctgaagag cttggcggcg aatgggctga ccgcttcctc gtgctttacg gtatcgccgc 3660
tcccgattcg cagcgcatcg ccttctatcg ccttcttgac gagttcttct gaggggatca 3720
attctctaga gctcgctgat cagcctcgac tgtgccttct agttgccagc catctgttgt 3780
ttgcccctcc cccgtgcctt ccttgaccct ggaaggtgcc actcccactg tcctttccta 3840
ataaaatgag gaaattgcat cgcattgtct gagtaggtgt cattctattc tggggggtgg 3900
ggtggggcag gacagcaagg gggaggattg ggaagacaat agcaggcatg ctggggatgc 3960
ggtgggctct atggcttctg aggcggaaag aaccagctgg ggctcgacta gagcttgcgg 4020
aacccttcga agttcctatt ctctagaaag tataggaact tcatcagtca ggtacataat 4080
gg 4082
<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
aacttcttac tctcccttgc ttat 24
<210> 21
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
tgaaatgggg ttggtgagga tgac 24
<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
gctgtgggtg ctgatgaacg 20
<210> 23
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
caaagggcca ctgacacaag actc 24
<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
ccattggcga gaccattgaa gtga 24
<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
agcgctcatc caagggcaat 20
<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
gtattgggga aagcatcgaa gtct 24
<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
agcgctcatc caagggcaat 20

Claims (8)

1. A construction method of a humanized KDR gene modified animal cell is characterized by comprising the following steps:
transforming an endogenous KDR gene in the mouse stem cells by using a gene editing technology to obtain a humanized KDR gene;
the construction method comprises the following steps: the whole sequence of the No. 4 to No. 14 exons and a part of the sequence of the No. 15 exon of the mouse Kdr gene have the mRNA sequence shown as SEQ ID NO: 1, the sequence of the mRNA is shown as SEQ ID NO: 3 is shown in the specification;
the construction method specifically comprises the following steps: providing a human KDR gene homologous recombination vector, introducing the human KDR gene homologous recombination vector into mouse cells, and transferring the mouse cells into a culture solution for culture;
the human KDR gene homologous recombination vector comprises a 5 'homology arm, a humanized KDR gene coding region, a resistance gene expression frame and a 3' homology arm which are sequentially arranged from a 5 'end to a 3' end;
specific sites which can be recognized by recombinase are arranged between the coding region of the humanized KDR gene and the expression frame of the resistance gene and between the expression frame of the resistance gene and the 3' homology arm;
the specific site is an FRT site.
2. The method for constructing a humanized KDR genetically modified animal cell according to claim 1, wherein the humanized KDR gene is selected from at least one of the following groups:
(a) the CDS coding sequence of the humanized KDR gene is shown as SEQ ID NO: 6 is shown in the specification;
(b) the mRNA sequence transcribed by the humanized KDR gene is shown as SEQ ID NO: 7 is shown in the specification;
(c) the protein sequence coded by the humanized KDR gene is shown as SEQ ID NO: shown in fig. 8.
3. The method for constructing a humanized KDR genetically engineered animal cell of claim 1, wherein the DNA sequence of the 5' homology arm is as set forth in SEQ ID NO: 9 is shown in the figure;
the DNA sequence of the 3' homology arm is shown as SEQ ID NO: 10 is shown in the figure;
the DNA sequence of the coding region of the humanized KDR gene is shown as SEQ ID NO: shown at 11.
4. A humanized KDR genetically modified animal cell obtained by the method for constructing a humanized KDR genetically modified animal cell according to any one of claims 1 to 3.
5. A method for constructing a humanized KDR gene modified animal model, which is characterized in that the humanized KDR gene modified animal cell of claim 4 is injected into blastocyst, and is transplanted into a surrogate mother body for development through embryo to obtain an animal of generation F0;
the blastocyst is a wild animal blastocyst.
6. The method of constructing a humanized KDR genetically engineered animal model of claim 5, further comprising: mating the F0 generation animals with animals expressing recombinase to obtain F1 generation animals with resistance genes removed;
mating the F1 generation animal with a wild animal, expanding the population, mating the heterozygote animal with the heterozygote animal to obtain a homozygote animal, and establishing a stable humanized KDR gene modified animal strain;
the recombinase is a Flp recombinase.
7. A cell or cell line or cell culture derived from a humanized KDR genetically engineered animal model obtained by the method of constructing a humanized KDR genetically engineered animal model according to any one of claims 5 to 6, or progeny thereof.
8. A tissue or organ derived from a humanized KDR genetically engineered animal model obtained by the method for constructing a humanized KDR genetically engineered animal model according to any one of claims 5 to 6, or a progeny thereof.
CN202011475952.0A 2020-12-14 2020-12-14 Construction method and application of humanized KDR gene modified animal model Active CN112522316B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011475952.0A CN112522316B (en) 2020-12-14 2020-12-14 Construction method and application of humanized KDR gene modified animal model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011475952.0A CN112522316B (en) 2020-12-14 2020-12-14 Construction method and application of humanized KDR gene modified animal model

Publications (2)

Publication Number Publication Date
CN112522316A CN112522316A (en) 2021-03-19
CN112522316B true CN112522316B (en) 2022-04-05

Family

ID=75000044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011475952.0A Active CN112522316B (en) 2020-12-14 2020-12-14 Construction method and application of humanized KDR gene modified animal model

Country Status (1)

Country Link
CN (1) CN112522316B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066778A (en) * 1996-11-06 2000-05-23 The Regents Of The University Of Michigan Transgenic mice expressing APC resistant factor V
CN111549072A (en) * 2020-06-03 2020-08-18 上海南方模式生物科技股份有限公司 VISTA gene humanized animal cell, animal model construction method and application
CN111690689A (en) * 2020-06-03 2020-09-22 上海南方模式生物科技股份有限公司 Construction method and application of humanized CCR2 gene modified animal model

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066778A (en) * 1996-11-06 2000-05-23 The Regents Of The University Of Michigan Transgenic mice expressing APC resistant factor V
CN111549072A (en) * 2020-06-03 2020-08-18 上海南方模式生物科技股份有限公司 VISTA gene humanized animal cell, animal model construction method and application
CN111690689A (en) * 2020-06-03 2020-09-22 上海南方模式生物科技股份有限公司 Construction method and application of humanized CCR2 gene modified animal model

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KDR基因重组的T7噬菌体疫苗构建及其对小鼠Lewis肺癌抑制作用的研究;孙红梅等;《肿瘤》;20061130;第26卷(第11期);第971页左栏第1段,第974页左栏第2段 *

Also Published As

Publication number Publication date
CN112522316A (en) 2021-03-19

Similar Documents

Publication Publication Date Title
CN106470545B (en) Humanization IL-4 and IL-4R α animal
CN107815468B (en) Preparation method and application of humanized gene modified animal model
CN107815465B (en) Preparation method and application of humanized gene modified animal model
CA2296434C (en) Mutations in the myostatin gene cause double-muscling in mammals
CN107815466B (en) Preparation method and application of humanized gene modified animal model
CN111118019B (en) Construction method and application of humanized cytokine IL3 gene modified non-human animal
KR101476010B1 (en) Expression vector for establishing hyper-producing cells, and hyper-producing cells
CN111197058A (en) Preparation method and application of humanized CD73 gene animal model
AU2022200784B2 (en) Non-human animal exhibiting diminished upper and lower motor neuron function and sensory perception
CN114277055A (en) Non-human animal humanized by IL1B and IL1A genes and construction method and application thereof
CN112779285A (en) Construction method and application of humanized IL-10 and IL-10RA gene modified animal
CN108070613B (en) Preparation method and application of humanized gene modified animal model
CN113088537B (en) Construction method and application of TLR9 gene humanized animal model
CN112522316B (en) Construction method and application of humanized KDR gene modified animal model
CN108070614B (en) Preparation method and application of humanized gene modified animal model
CN114134183B (en) Construction method and application of SIGLEC15 gene humanized animal model
CN113046389B (en) CCR2 gene humanized non-human animal and construction method and application thereof
CN112626122B (en) hKDR humanized mouse model and establishing method and application thereof
CN111793648B (en) Construction method and application of ETAR gene humanized and transformed non-human animal
CN111304247B (en) Preparation method and application of humanized LAG-3 gene modified animal model
CN109280674B (en) Construction method and application of non-human model animal for screening antibody
US20100107265A1 (en) Double-muscling in mammals
CN117384960B (en) TL1A gene humanized non-human animal and construction method and application thereof
CN113817770B (en) Construction method and application of CD73 gene humanized non-human animal
CN114316025A (en) VEGFR2 gene humanized non-human animal and construction method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Sun Ruilin

Inventor after: Wang Jinjin

Inventor after: Zhou Yu

Inventor after: Mao Wenying

Inventor before: Fei Jian

Inventor before: Sun Ruilin

Inventor before: Wang Jinjin

Inventor before: Zhou Yu

Inventor before: Mao Wenying

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant