CN112518435A - 曲面高精度激光打磨方法及装置 - Google Patents

曲面高精度激光打磨方法及装置 Download PDF

Info

Publication number
CN112518435A
CN112518435A CN202011302006.6A CN202011302006A CN112518435A CN 112518435 A CN112518435 A CN 112518435A CN 202011302006 A CN202011302006 A CN 202011302006A CN 112518435 A CN112518435 A CN 112518435A
Authority
CN
China
Prior art keywords
curved surface
polishing
dimensional
laser
roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011302006.6A
Other languages
English (en)
Other versions
CN112518435B (zh
Inventor
闫志民
宿友亮
黎游
刘伟
慕松
马忠诚
张文迁
乔静
马林慧
韩闯
周志国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tiandi Ningxia Support Equipment Co ltd
Ningxia University
Original Assignee
Tiandi Ningxia Support Equipment Co ltd
Ningxia University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tiandi Ningxia Support Equipment Co ltd, Ningxia University filed Critical Tiandi Ningxia Support Equipment Co ltd
Priority to CN202011302006.6A priority Critical patent/CN112518435B/zh
Publication of CN112518435A publication Critical patent/CN112518435A/zh
Application granted granted Critical
Publication of CN112518435B publication Critical patent/CN112518435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

一种曲面高精度激光打磨方法,选取零件的加工曲面,将加工曲面映射成曲面图像,将曲面图像划分成多个平面的子区域,发射激光信号至每个子区域,并根据反射回的激光信号来检测每个子区域的实际粗糙度,预设打磨基准粗糙度,若检测到的每个子区域的实际粗糙度均小于基准粗糙度,则运行第一打磨方式,若检测到的任一子区域的实际粗糙度大于基准粗糙度,则运行第二打磨方式,采用全覆盖打磨与区域性打磨相结合,克服了采用单一全覆盖打磨或单一区域性打磨的不足,进一步提高了打磨精度,缩短了打磨时间,本发明实施例还提出了一种曲面高精度激光打磨装置。

Description

曲面高精度激光打磨方法及装置
技术领域
本发明涉及曲面表面修复技术领域,特别涉及一种曲面高精度激光打磨方法及装置。
背景技术
在整个机械加工工艺中,对制造出的工件都需要进行打磨,尤其是在某些精度较高的领域运用中。现代制造业的高速发展,对表面的精度要求越来越高,表面的抛光打磨,不仅仅增加了工件的美观性,同时还改善了材料表面的耐腐蚀,耐磨性以及一些特殊的性能。
传统的打磨方法多由人工操作,费时费力,效率低,往往是接触式的,在复杂件的抛光打磨就比较困难了,因此激光打磨技术进入该领域,其打磨技术区别于传统的技术,是一种新型的材料表面加工技术,发展前景广阔。
原设计激光打磨技术,适用于规则的曲面,应用范围受限,全覆盖式打磨方式,打磨效率低,打磨轨迹之间存在未打磨的间隙,打磨精度低。
发明内容
有鉴于此,针对上述不足,有必要提出一种打磨效率高,打磨精度高的曲面高精度激光打磨方法。
还有必要提出一种打磨效率高,打磨精度高的曲面高精度激光打磨装置。
一种曲面高精度激光打磨方法,所述方法包括:
选取零件的加工曲面,将加工曲面映射成曲面图像;
将曲面图像划分成多个平面的子区域;
发射激光信号至每个子区域,并根据反射回的激光信号来检测每个子区域的实际粗糙度;
预设打磨基准粗糙度,若检测到的每个子区域的实际粗糙度均小于基准粗糙度,则运行第一打磨方式,若检测到的任一子区域的实际粗糙度大于基准粗糙度,则运行第二打磨方式。
优选的,所述第一打磨方式,具体包括:
对加工曲面的表面进行三维扫描,扫描时分别沿着所述加工曲面的长度方向和宽度方向按序扫描,获得所述加工曲面上的多个曲面特征点;
将所述多个曲面特征点按扫描路径拟合三维扫描路径曲线;
驱动激光器按照沿三维扫描路径曲线运动。
优选的,所述第二打磨方式,具体包括:
逐次采集实际粗糙度小于基准粗糙度的子区域的三维微观轮廓图;
逐次对每个实际粗糙度小于基准粗糙度的子区域的三维微观轮廓图的微观凸面最高峰标定,形成一组与每个实际粗糙度小于基准粗糙度的子区域对应的第二打磨点组,所述第二打磨点组为三维空间离散点;
对所述第二打磨点组进行三维曲线拟合,形成三维打磨曲线;
驱动激光器按照沿三维打磨曲线运动。
优选的,对所述第二打磨点组进行三维曲线拟合,形成一级三维打磨曲线之后,还包括:
对三维打磨曲线进行逼近计算。
优选的,所述驱动激光器按照沿三维打磨曲线运动之前,还包括:
计算所述激光器的运动速度V,所述激光器的速度V由如下公式进行计算,
Figure BDA0002787191540000021
式中,I为激光束强度,Rl为零件材料的反射率,C为零件材料的比热容,ΔT为零件材料的沸点与室温之差,TR为零件材料的熔点,RF为零件材料的沸点,ρ为零件材料的密度。
一种曲面高精度激光打磨装置,所述装置包括:
CCD摄像机,用于选取零件的加工曲面,将加工曲面映射成曲面图像;
图像处理器,用于将曲面图像划分成多个平面的子区域;
检测模块,用于发射激光信号至每个子区域,并根据反射回的激光信号获得每个子区域的实际粗糙度;
微处理模块,用于预设打磨基准粗糙度,若检测到的每个子区域的实际粗糙度均小于基准粗糙度,则运行第一打磨方式,若检测到的任一子区域的实际粗糙度大于基准粗糙度,则运行第二打磨方式。
优选的,所述微处理模块包括:
扫描模块,用于对加工曲面的表面进行三维扫描,扫描时分别沿着所述加工曲面的长度方向和宽度方向按序扫描,获得所述加工曲面上的多个曲面特征点;
第一拟合模块,用于将所述多个曲面特征点按扫描路径拟合三维扫描路径曲线;
第一执行模块,用于驱动激光器按照沿三维扫描路径曲线运动。
优选的,所述微处理模块包括:
三维图像采集器,用于逐次采集实际粗糙度小于基准粗糙度的子区域的三维微观轮廓图;
标定模块,用于逐次对每个实际粗糙度小于基准粗糙度的子区域的三维微观轮廓图的微观凸面最高峰标定,形成一组与每个实际粗糙度小于基准粗糙度的子区域对应的第二打磨点组,所述第二打磨点组为三维空间离散点;
第二拟合模块,用于对所述第二打磨点组进行三维曲线拟合,形成三维打磨曲线;
第二执行模块,用于驱动激光器按照沿三维打磨曲线运动。
优选的,所述微处理模块还包括:
误差逼近模块,用于对三维打磨曲线进行逼近计算。
优选的,所述微处理模块还包括:
速度计算模块,用于计算所述激光器的运动速度V,所述激光器的速度V由如下公式进行计算,
Figure BDA0002787191540000041
式中,I为激光束强度,Rl为零件材料的反射率,C为零件材料的比热容,ΔT为零件材料的沸点与室温之差,TR为零件材料的熔点,RF为零件材料的沸点,ρ为零件材料的密度。
与现有技术相比,本发明的有益效果在于:
突破了区域性打磨的技术难题,利用三维图像采集器采集待打磨子区域的三维微观轮廓图,并通过标定模块标定各个待打磨子区域的三维微观轮廓图的微观凸面最高峰,形成三维离散点组成的第二打磨点组,再利用曲线拟合、逼近算法得到最优的激光器打磨轨迹,极大的缩短了打磨时间,并消除了全覆盖式打磨方式,打磨轨迹之间存在的未打磨的间隙,极大的提高了打磨精度。采用全覆盖打磨与区域性打磨相结合,克服了采用单一全覆盖打磨或单一区域性打磨的不足,进一步提高了打磨精度,缩短了打磨时间。
附图说明
图1为所述曲面高精度激光打磨装置功能模块图。
图中:曲面高精度激光打磨装置10、CCD摄像机11、图像处理器12、检测模块13、微处理模块14、扫描模块141、第一拟合模块142、第一执行模块143、三维图像采集器144、标定模块145、第二拟合模块146、第二执行模块147、误差逼近模块148、速度计算模块149、激光器20。
具体实施方式
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
本发明实施例提供了一种曲面高精度激光打磨方法,方法包括:
选取零件的加工曲面,将加工曲面映射成曲面图像;
将曲面图像划分成多个平面的子区域;
发射激光信号至每个子区域,并根据反射回的激光信号来检测每个子区域的实际粗糙度;
预设打磨基准粗糙度,若检测到的每个子区域的实际粗糙度均小于基准粗糙度,则运行第一打磨方式,若检测到的任一子区域的实际粗糙度大于基准粗糙度,则运行第二打磨方式。
第一打磨方式对整个加工曲面进行打磨,作为解释性说明,可以是采用脉宽较大的激光直接对曲面进行覆盖式打磨。
第二打磨方式只对粗糙度大的子区域打磨,作为解释性说明,采用纳米级激光进行打磨。
与现有技术相比,本发明的有益效果在于:
突破了区域性打磨的技术难题,利用三维图像采集器144采集待打磨子区域的三维微观轮廓图,并通过标定模块145标定各个待打磨子区域的三维微观轮廓图的微观凸面最高峰,形成三维离散点组成的第二打磨点组,再利用曲线拟合、逼近算法得到最优的激光器20打磨轨迹,极大的缩短了打磨时间,并消除了全覆盖式打磨方式,打磨轨迹之间存在的未打磨的间隙,极大的提高了打磨精度。采用全覆盖打磨与区域性打磨相结合,克服了采用单一全覆盖打磨或单一区域性打磨的不足,进一步提高了打磨精度,缩短了打磨时间。
进一步,第一打磨方式,具体包括:
对加工曲面的表面进行三维扫描,扫描时分别沿着加工曲面的长度方向和宽度方向按序扫描,获得加工曲面上的多个曲面特征点;
将多个曲面特征点按扫描路径拟合三维扫描路径曲线;
驱动激光器20按照沿三维扫描路径曲线运动。
进一步,第二打磨方式,具体包括:
逐次采集实际粗糙度小于基准粗糙度的子区域的三维微观轮廓图;
逐次对每个实际粗糙度小于基准粗糙度的子区域的三维微观轮廓图的微观凸面最高峰标定,形成一组与每个实际粗糙度小于基准粗糙度的子区域对应的第二打磨点组,第二打磨点组为三维空间离散点;
对第二打磨点组进行三维曲线拟合,形成三维打磨曲线;
具体可采用三次NURBS曲线对第二打磨点组拟合。
驱动激光器20按照沿三维打磨曲线运动。
进一步,对第二打磨点组进行三维曲线拟合,形成一级三维打磨曲线之后,还包括:
对三维打磨曲线进行逼近计算。
进一步,驱动激光器20按照沿三维打磨曲线运动之前,还包括:
计算激光器20的运动速度V,激光器20的速度V由如下公式进行计算,
Figure BDA0002787191540000061
式中,I为激光束强度,Rl为零件材料的反射率,C为零件材料的比热容,ΔT为零件材料的沸点与室温之差,TR为零件材料的熔点,RF为零件材料的沸点,ρ为零件材料的密度。
参见图1,本发明实施例还提供了一种曲面高精度激光打磨装置10,装置包括:
CCD摄像机11,用于选取零件的加工曲面,将加工曲面映射成曲面图像;
具体的,CCD摄像机11例如为美国FLI公司ML11002高灵敏度CCD相机。
图像处理器12,用于将曲面图像划分成多个平面的子区域;
具体的,图像处理器12例如为嵌入式图像处理平台,机器视觉教学实验平台VS1600。
检测模块13,用于发射激光信号至每个子区域,并根据反射回的激光信号获得每个子区域的实际粗糙度;
具体的,检测模块13采用SuperView WX 100白光干涉测头。
微处理模块14,用于预设打磨基准粗糙度,若检测到的每个子区域的实际粗糙度均小于基准粗糙度,则运行第一打磨方式,若检测到的任一子区域的实际粗糙度大于基准粗糙度,则运行第二打磨方式。
参见图1,进一步,微处理模块14包括:
扫描模块141,用于对加工曲面的表面进行三维扫描,扫描时分别沿着加工曲面的长度方向和宽度方向按序扫描,获得加工曲面上的多个曲面特征点;
第一拟合模块142,用于将多个曲面特征点按扫描路径拟合三维扫描路径曲线;
具体的,扫描模块141例如为轮廓仪,曲面特征点信息可导入MATLAB进行拟合、逼近计算。
第一执行模块143,用于驱动激光器20按照沿三维扫描路径曲线运动。
激光器20可采用德国EdgeWave GmbH提供的脉冲宽度为12PS、激光波长为355nm/532nm、激光最高为30W~90W、激光频率为0~2000KHz、聚焦光斑为15μm。
参见图1,进一步,微处理模块14包括:
三维图像采集器144,用于逐次采集实际粗糙度小于基准粗糙度的子区域的三维微观轮廓图;
标定模块145,用于逐次对每个实际粗糙度小于基准粗糙度的子区域的三维微观轮廓图的微观凸面最高峰标定,形成一组与每个实际粗糙度小于基准粗糙度的子区域对应的第二打磨点组,第二打磨点组为三维空间离散点;
具体的,标定模块145、三维图像采集器144采用MV-80008路实时高清晰图像采集卡实现。
第二拟合模块146,用于对第二打磨点组进行三维曲线拟合,形成三维打磨曲线;
第二执行模块147,用于驱动激光器20按照沿三维打磨曲线运动。
参见图1,进一步,微处理模块14还包括:
误差逼近模块148,用于对三维打磨曲线进行逼近计算。
具体的,误差逼近模块148,基于离散化点保证加工精度的要求,计算拟合曲线上离散化点是否在误差范围内,筛选或添加误差内的离散点,然后再生成所在误差范围内的最佳拟合曲线。若在区域内出现,标定点之间的间隔比较大或出现某标定点周围无其它标定点时,此时无法生成的连续拟合曲线或者拟合曲线生成较差,可用皮秒脉冲激光器20对点进行打磨。
参见图1,进一步,微处理模块14还包括:
速度计算模块149,用于计算激光器20的运动速度V,激光器20的速度V由如下公式进行计算,
Figure BDA0002787191540000081
式中,I为激光束强度,Rl为零件材料的反射率,C为零件材料的比热容,ΔT为零件材料的沸点与室温之差,TR为零件材料的熔点,RF为零件材料的沸点,ρ为零件材料的密度。
本发明实施例中模块或单元,可以通过通用集成电路,例如CPU(CentralProcessing Unit,中央处理器),或通过ASIC(Application Specific IntegratedCircuit,专用集成电路)来实现。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成的,程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
本发明实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例装置中的模块或单元可以根据实际需要进行合并、划分和删减。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (10)

1.一种曲面高精度激光打磨方法,其特征在于,所述方法包括:
选取零件的加工曲面,将加工曲面映射成曲面图像;
将曲面图像划分成多个平面的子区域;
发射激光信号至每个子区域,并根据反射回的激光信号来检测每个子区域的实际粗糙度;
预设打磨基准粗糙度,若检测到的每个子区域的实际粗糙度均小于基准粗糙度,则运行第一打磨方式,若检测到的任一子区域的实际粗糙度大于基准粗糙度,则运行第二打磨方式。
2.如权利要求1所述的曲面高精度激光打磨方法,其特征在于,所述第一打磨方式,具体包括:
对加工曲面的表面进行三维扫描,扫描时分别沿着所述加工曲面的长度方向和宽度方向按序扫描,获得所述加工曲面上的多个曲面特征点;
将所述多个曲面特征点按扫描路径拟合三维扫描路径曲线;
驱动激光器按照沿三维扫描路径曲线运动。
3.如权利要求1所述的曲面高精度激光打磨方法,其特征在于,所述第二打磨方式,具体包括:
逐次采集实际粗糙度小于基准粗糙度的子区域的三维微观轮廓图;
逐次对每个实际粗糙度小于基准粗糙度的子区域的三维微观轮廓图的微观凸面最高峰标定,形成一组与每个实际粗糙度小于基准粗糙度的子区域对应的第二打磨点组,所述第二打磨点组为三维空间离散点;
对所述第二打磨点组进行三维曲线拟合,形成三维打磨曲线;
驱动激光器按照沿三维打磨曲线运动。
4.如权利要求3所述的曲面高精度激光打磨方法,其特征在于,对所述第二打磨点组进行三维曲线拟合,形成一级三维打磨曲线之后,还包括:
对三维打磨曲线进行逼近计算。
5.如权利要求3所述的曲面高精度激光打磨方法,其特征在于,所述驱动激光器按照沿三维打磨曲线运动之前,还包括:
计算所述激光器的运动速度V,所述激光器的速度V由如下公式进行计算,
Figure FDA0002787191530000021
式中,I为激光束强度,Rl为零件材料的反射率,C为零件材料的比热容,ΔT为零件材料的沸点与室温之差,TR为零件材料的熔点,RF为零件材料的沸点,ρ为零件材料的密度。
6.一种曲面高精度激光打磨装置,其特征在于,所述装置包括:
CCD摄像机,用于选取零件的加工曲面,将加工曲面映射成曲面图像;
图像处理器,用于将曲面图像划分成多个平面的子区域;
检测模块,用于发射激光信号至每个子区域,并根据反射回的激光信号获得每个子区域的实际粗糙度;
微处理模块,用于预设打磨基准粗糙度,若检测到的每个子区域的实际粗糙度均小于基准粗糙度,则运行第一打磨方式,若检测到的任一子区域的实际粗糙度大于基准粗糙度,则运行第二打磨方式。
7.如权利要求6所述的曲面高精度激光打磨装置,其特征在于,所述微处理模块包括:
扫描模块,用于对加工曲面的表面进行三维扫描,扫描时分别沿着所述加工曲面的长度方向和宽度方向按序扫描,获得所述加工曲面上的多个曲面特征点;第一拟合模块,用于将所述多个曲面特征点按扫描路径拟合三维扫描路径曲线;第一执行模块,用于驱动激光器按照沿三维扫描路径曲线运动。
8.如权利要求6所述的曲面高精度激光打磨装置,其特征在于,所述微处理模块包括:
三维图像采集器,用于逐次采集实际粗糙度小于基准粗糙度的子区域的三维微观轮廓图;
标定模块,用于逐次对每个实际粗糙度小于基准粗糙度的子区域的三维微观轮廓图的微观凸面最高峰标定,形成一组与每个实际粗糙度小于基准粗糙度的子区域对应的第二打磨点组,所述第二打磨点组为三维空间离散点;
第二拟合模块,用于对所述第二打磨点组进行三维曲线拟合,形成三维打磨曲线;
第二执行模块,用于驱动激光器按照沿三维打磨曲线运动。
9.如权利要求8所述的曲面高精度激光打磨装置,其特征在于,所述微处理模块还包括:
误差逼近模块,用于对三维打磨曲线进行逼近计算。
10.如权利要求8所述的曲面高精度激光打磨装置,其特征在于,所述微处理模块还包括:
速度计算模块,用于计算所述激光器的运动速度V,所述激光器的速度V由如下公式进行计算,
Figure FDA0002787191530000031
式中,I为激光束强度,Rl为零件材料的反射率,C为零件材料的比热容,ΔT为零件材料的沸点与室温之差,TR为零件材料的熔点,RF为零件材料的沸点,ρ为零件材料的密度。
CN202011302006.6A 2020-11-19 2020-11-19 曲面高精度激光打磨方法及装置 Active CN112518435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011302006.6A CN112518435B (zh) 2020-11-19 2020-11-19 曲面高精度激光打磨方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011302006.6A CN112518435B (zh) 2020-11-19 2020-11-19 曲面高精度激光打磨方法及装置

Publications (2)

Publication Number Publication Date
CN112518435A true CN112518435A (zh) 2021-03-19
CN112518435B CN112518435B (zh) 2021-12-14

Family

ID=74981703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011302006.6A Active CN112518435B (zh) 2020-11-19 2020-11-19 曲面高精度激光打磨方法及装置

Country Status (1)

Country Link
CN (1) CN112518435B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477944A (zh) * 2021-06-22 2021-10-08 南京联空智能增材研究院有限公司 用于增材产品的表面处理方法
CN114714244A (zh) * 2021-12-29 2022-07-08 友达光电股份有限公司 自动研磨系统及其操作方法
CN115388817A (zh) * 2022-10-27 2022-11-25 山东微晶自动化有限公司 基于图像处理分析实现铸造件打磨质量检测的方法
CN117428581A (zh) * 2023-12-21 2024-01-23 苏州博宏源机械制造有限公司 基于机械抛光的处理效率优化方法、系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174665A (ja) * 2002-11-27 2004-06-24 Ricoh Co Ltd 曲面加工方法および曲面加工装置
CN102501172A (zh) * 2011-11-22 2012-06-20 清华大学 用于机器人修磨系统的面向空间曲面加工的在位测量方法
CN107052950A (zh) * 2017-05-25 2017-08-18 上海莫亭机器人科技有限公司 一种复杂曲面打磨抛光系统及方法
CN111468991A (zh) * 2020-04-30 2020-07-31 重庆见芒信息技术咨询服务有限公司 基于曲面修补的打磨抛光机器人的路径规划方法及系统
CN113084351A (zh) * 2021-04-15 2021-07-09 湖北文理学院 一种采用飞秒激光加工面齿轮的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174665A (ja) * 2002-11-27 2004-06-24 Ricoh Co Ltd 曲面加工方法および曲面加工装置
CN102501172A (zh) * 2011-11-22 2012-06-20 清华大学 用于机器人修磨系统的面向空间曲面加工的在位测量方法
CN107052950A (zh) * 2017-05-25 2017-08-18 上海莫亭机器人科技有限公司 一种复杂曲面打磨抛光系统及方法
CN111468991A (zh) * 2020-04-30 2020-07-31 重庆见芒信息技术咨询服务有限公司 基于曲面修补的打磨抛光机器人的路径规划方法及系统
CN113084351A (zh) * 2021-04-15 2021-07-09 湖北文理学院 一种采用飞秒激光加工面齿轮的方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113477944A (zh) * 2021-06-22 2021-10-08 南京联空智能增材研究院有限公司 用于增材产品的表面处理方法
CN114714244A (zh) * 2021-12-29 2022-07-08 友达光电股份有限公司 自动研磨系统及其操作方法
CN114714244B (zh) * 2021-12-29 2023-08-22 友达光电股份有限公司 自动研磨系统及其操作方法
CN115388817A (zh) * 2022-10-27 2022-11-25 山东微晶自动化有限公司 基于图像处理分析实现铸造件打磨质量检测的方法
CN117428581A (zh) * 2023-12-21 2024-01-23 苏州博宏源机械制造有限公司 基于机械抛光的处理效率优化方法、系统及存储介质
CN117428581B (zh) * 2023-12-21 2024-02-27 苏州博宏源机械制造有限公司 基于机械抛光的处理效率优化方法、系统及存储介质

Also Published As

Publication number Publication date
CN112518435B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
CN112518435B (zh) 曲面高精度激光打磨方法及装置
Huang et al. Development of a real-time laser-based machine vision system to monitor and control welding processes
CN101718536B (zh) 三角形金刚石刀具角度高精度自动测量系统和测量方法
CN110064819B (zh) 基于结构光的柱面纵向焊缝特征区域提取、焊缝跟踪方法及系统
Temmler et al. Design surfaces by laser remelting
CA2012449C (en) Machine vision system
Darafon et al. Characterization of grinding wheel topography using a white chromatic sensor
CN100349689C (zh) 基于环形激光视觉传感的焊缝自动定位方法
CN103759648A (zh) 一种基于激光双目视觉的复杂角焊缝位置检测方法
Shahabi et al. In-cycle monitoring of tool nose wear and surface roughness of turned parts using machine vision
Shahabi et al. Noncontact roughness measurement of turned parts using machine vision
CN101839700A (zh) 一种非接触式影像测量系统
CN106903553A (zh) 微径铣刀磨损检测系统及方法
CN101786200A (zh) 一种自由曲面上的投影式激光刻蚀方法
CN102001025B (zh) 一种超重型车床加工精度特性在机测量装置及方法
Peng et al. Application of machine vision method in tool wear monitoring
CN109458949A (zh) 一种物体表面形貌扫描重构设备
CN106737194B (zh) 一种气囊轮廓在位检测方法及装置
GB2536167A (en) Surface shape measuring device and machine tool provided with same, and surface shape measuring method
CN108062072A (zh) 一种双摄像头图像采集装置及图像拼接的平底铣刀磨损在线检测方法
Shahabi et al. Assessment of flank wear and nose radius wear from workpiece roughness profile in turning operation using machine vision
Qin et al. Research on automatic monitoring method of face milling cutter wear based on dynamic image sequence
CN207058207U (zh) 高速切削微细铣刀磨损深度在位测量装置
CN109059810A (zh) 固结磨料磨具表面地貌检测方法及装置
Genyu et al. Fiber laser CNC tangential turing V-shaped concave diamond grinding wheel system based on machine vision technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant