CN112513936A - 图像处理方法、装置及存储介质 - Google Patents

图像处理方法、装置及存储介质 Download PDF

Info

Publication number
CN112513936A
CN112513936A CN201980049929.4A CN201980049929A CN112513936A CN 112513936 A CN112513936 A CN 112513936A CN 201980049929 A CN201980049929 A CN 201980049929A CN 112513936 A CN112513936 A CN 112513936A
Authority
CN
China
Prior art keywords
image
pixel point
gray value
target noise
denoised
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980049929.4A
Other languages
English (en)
Inventor
张青涛
龙余斌
庹伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SZ DJI Technology Co Ltd
Original Assignee
SZ DJI Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SZ DJI Technology Co Ltd filed Critical SZ DJI Technology Co Ltd
Publication of CN112513936A publication Critical patent/CN112513936A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration using non-spatial domain filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Processing (AREA)

Abstract

一种图像处理方法、装置和存储介质。所述方法包括:获取待去噪图像;根据预先确定的标定数据确定所述待去噪图像各像素点包含的目标噪声的灰度值;其中,所述标定数据基于参考图像中的所述目标噪声得到,用于确定所述目标噪声的频段和所述目标噪声的灰度值;根据各像素点包含的目标噪声的灰度值对所述待去噪图像进行去噪处理。通过标定数据作为参考,可以有效的从待去噪图像中识别噪声和真实物体,并且可以准确的估计噪声的灰度值,取得更好的去噪效果。

Description

图像处理方法、装置及存储介质
技术领域
本申请涉及图像处理技术领域,具体而言,涉及一种图像处理方法、装置及存储介质。
背景技术
由于图像传感器的材料以及制造工艺的问题,图像传感器采集的图像中通常会包含一些固定模式的噪声,这些噪声固定的出现在图像传感器采集的每张图像上的固定位置。以红外传感器为例,由于制造工艺的限制,红外焦平面阵列上的各探测单元的响应特性不一致,各探测单元存在非均匀性,导致最终采集的图像会出现一些固定模式的噪声。噪声的存在会严重影响图像的清晰度和显示效果,因而需要对图像进行去噪处理。相关技术中在对图像进行去噪时,不能有效区别固定模式噪声和实际场景物体,导致去噪效果不理想,例如,不能有效判断竖条纹和竖直物体边缘,会导致竖直物体边缘上方产生竖直形态的人工瑕疵。因而,有必要对图像噪声去除的方法加以改进,提升图像的去噪效果。
发明内容
有鉴于此,本申请提供了一种图像处理方法、装置及存储介质。
根据本申请的第一方面,提供了一种图像处理方法,所述方法包括:
获取待去噪图像;
根据预先确定的标定数据确定所述待去噪图像各像素点包含的目标噪声的灰度值;其中,所述标定数据基于参考图像中的所述目标噪声得到,用于确定所述目标噪声的频段和所述目标噪声的灰度值;
根据各像素点包含的目标噪声的灰度值对所述待去噪图像进行去噪处理。
根据本申请的第二方面,提供了一种图像处理装置,所述装置包括处理器、存储器以及存储在所述存储器上的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取待去噪图像;
根据预先确定的标定数据确定所述待去噪图像各像素点包含的目标噪声的灰度值;其中,所述标定数据基于参考图像中的所述目标噪声得到,用于确定所述目标噪声的频段和所述目标噪声的灰度值;
根据各像素点包含的目标噪声的灰度值对所述待去噪图像进行去噪处理。
根据本申请的第三方面,提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现本申请任一项所述的图像处理方法。
应用本申请的方案,通过参考图像包含的目标噪声,预先确定用于确定目标噪声频段和灰度值的标定数据,然后根据标定确定待去噪图像中各像素点包含的目标噪声的灰度值,根据各像素点包含的目标噪声的灰度值对待去噪图像进行去噪处理。通过标定数据作为参考,可以有效的从待去噪图像中识别噪声和真实物体,并且可以准确的估计噪声的灰度值,取得更好的去噪效果,提升红外去噪的准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例提供的一种包含竖条纹噪声的图像。
图2是本发明一个实施例提供的一种图像处理方法的流程图。
图3是本发明一个实施例提供的一种图像去噪装置的逻辑结构框图。
图4是本发明一个实施例提供的另一种图像去噪装置的逻辑结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
由于图像传感器的材料以及制造工艺的问题,图像传感器采集的图像中通常会包含一些固定模式的噪声,这些噪声固定的出现在图像传感器采集的每张图像上。以红外传感器为例,由于制造工艺的限制,红外焦平面阵列上的各探测单元的响应特性不一致,各探测单元存在非均匀性,导致最终采集的图像会出现一些固定模式的噪声。比如,如果红外焦平面阵列同一行的探测单元共享一个输出电路,由于各行输出电路偏置电压的差异,导致相邻两行的像素点的灰度值会出现明显的差异,最终采集的图像上会出现横条纹噪声,如果红外焦平面阵列同一列的探测单元共享一个输出电路,那么由于各列输出电路偏置电压的差异,就会导致图像上出现大量的竖条纹噪声。当然,如果红外焦平面阵列的各探测单元的输出电路是按其他模式共享或者一个探测单元独立采用一个输出电路,那么就会出现其他模式的固定噪声。如图1所示,采集得到的图像中包含很多条竖条纹噪声。
噪声的存在会严重影响图像的清晰度度和显示效果,尤其是对于红外图像这种分辨率本来就比较低的图像。因而,有必要对图像进行去噪处理。
相关技术在对图像进行去噪处理时,有的采用频域高通滤波法,即将图像数据从空间域转化到频域,由于噪声往往处于高频,因而可以过滤出高频部分,根据高频部分的像素点的灰度值得到噪声的灰度值,进而根据噪声的灰度值对图像进行去噪处理。但是这种方式有些时候无法有效的区别噪声和真实场景中的物体,尤其是当真实物体本身差异较大时,比如真实物体是棱角较多的物体,这时就比较难分别噪声和真实物体的棱角,比如无法区分竖条纹和物体边缘。这情况下采用该方法对图像噪声进行去噪处理后会产生一些瑕疵,去噪效果不理想。
有些技术会在图像传感器中设置一块遮挡区域,这个遮挡区域的探测单元无法感光,因而,这块区域中各探测单元对应的输出值即体现了探测单元的响应差异,进而可以作为参考,确定因探测单元的响应差异产生的噪声,并对图像进行去噪处理。比如每一行或列保留一个或多个探测单元被遮挡,无法感光,从而该行或列的噪声可以根据被遮挡的探测单元的输出值确定。但是这种方式需要图像图传感器保留一块遮挡区域,浪费了传感器的空间,也增加了传感器的制造工艺难度。
基于此,本申请提供了一种图像处理方法,由于噪声为固定模式的噪声,因而可以通过参考图像上的噪声确定标定数据,该标定数据用于确定噪声的参考频段和参考灰度值,然后根据标定数据从待去噪图像中有效地识别出噪声,并进行去噪处理,从达到更好的去噪效果。具体的,如图2所示,所述方法可包括以下步骤;
S202、获取待去噪图像;
S204、根据预先确定的标定数据确定所述待去噪图像各像素点包含的目标噪声的灰度值;其中,所述标定数据基于参考图像中的所述目标噪声得到,用于确定所述目标噪声的频段和所述目标噪声的灰度值;
S206、根据各像素点包含的目标噪声的灰度值对所述待去噪图像进行去噪处理。
本申请的图像处理方法可以用于各种图像采集装置中,比如,红外热像仪,图像采集装置在采集到图像后即可以直接进行去噪处理,当然也可以用于其他的对图像进行后处理的电子设备中,该电子设备从图像采集装置获取采集到待去噪图像,然后进行去噪处理。
本申请实施例中,像素点的灰度值可以指温度值。
本申请的待去噪图像可以是各种遥感图像,遥感图像为通过接收探测目标物电磁辐射信息得到的图像,比如,在某些实施例中,该待去噪图像可以是通过红外传感器采集的红外图像,当然,待去噪图像也可以是通过其他电磁波得到的图像,本申请不作限制。
本申请的目标噪声为固定模式的噪声,由于该噪声产生的主要原因是探测单元输出电路存在偏差,因而针对同一个传感器采集的图像,该噪声在图像中出现的位置基本固定。固定模式的噪声包括各种条纹噪声,比如,在某些实施例中,目标噪声可以是横条纹噪声、竖条纹噪声或者既包含横条纹噪声,也包含竖条纹噪声。在某些实施例中,目标噪声也可以是暗影、鬼点等在图像固定位置出现的其他噪声。
由于噪声产生的主要原因是探测单元输出电路存在偏差,导致图像中某些像素点的灰度值相比于邻近的像素点突然偏高或偏低,因而噪声通常包含在灰度值急剧变化的像素点。所以,可以通过频域滤波方法将高频部分过滤出来,从而得到噪声。但是这种方法往往会把真实物体中变化较大的部分也当成噪声。为了有效地区别噪声和真实物体,可以通过一参考图像中包含的目标噪声,确定标定数据,通过该标定数据来确定待去噪图像中的目标噪声所在的频段和目标噪声的灰度值,使得确定的目标噪声的灰度值更加准确。
在某些实施例中,参考图像可以是通过图像传感器采集得到的一张平面物体的图像,其中,该图像传感器为采集待去噪图像的传感器。由于平面物体表面基本一致,不存在棱角等比较突兀的地方,因而采集得到的图像上相比于邻近像素点灰度值差异较大的像素点基本可以认为都是噪声引起的,因而图像上显示出来的灰度值急剧变化的部分都是噪声,而不是真实物体本身。因而,在采集到参考图像后,可以对参考图像进行傅里叶变换或者采用预先设计的高通滤波器对参考图像进行滤波处理,以得到该标定数据。
在某些实施中,标定数据可以包括目标噪声的参考频段、目标噪声的参考灰度值以及目标噪声灰度值的参考方差。其中,该参考频段、参考灰度值和参考方差都是根据参考图像中的目标噪声得到的,用于后续对图像进行去噪时作为参考。当然,在某些实施例中,标定数据也可以只包括目标噪声的频段和灰度值。其中,目标噪声的参考灰度值可以是整张图像的噪声的灰度值的平均值,也可以是每一行或者每一列的噪声灰度值的平均值,具体可以根据实际需求去设定。
在得到参考图像后,可以对参考图像进行傅里叶变化,得到参考图像对应的频谱图,其中,可以对参考图像进行一维的傅里叶变换,比如对每一行或者每一列的图像数据进行傅里叶变化,得到每一行或每一列图像数据的频谱图,然后可以根据每一行或列的频谱图确定目标噪声所在的频段以及每一行或每一列的噪声的平均灰度值,作为所述参考灰度值,然后,根据每一行或每一列的平均灰度值计算得到一个灰度值的方差,作为所述参考方差。当然,也可以对参考图像的图像数据进行二维的傅里叶变换,得到整张图像的频谱图,然后根据频谱图确定目标噪声所在的频段以及整张图像的噪声灰度值的平均值。此外,还可以采用预先设计的高通滤波器对参考图像进行滤波处理,得到所述参考频段参考灰度值以及参考方差。具体采用哪种方式去根据参考图像确定标定数据,可以根据实际情况确定,本申请不作限制。
在确定标定数据后,可以获取图像传感器采集的待去噪图像。为了与参考图像保持一致,如果参考图像是未经过对比度拉伸的原始图像,那么待去噪图像也可以是传感器采集的未经过对比度拉伸的原始图像。然后可以根据预先确定的标定数据确定待去噪图像中的各个像素点包含目标噪声的灰度值,并根据各像素点包含噪声的灰度值对待去噪图像进行去噪处理。
为了确定待去噪图像中各像素点的目标噪声的灰度值,可以根据标定数据中目标噪声所在的参考频段从待去噪图像中确定包含目标噪声的像素点有哪些,不包含目标噪声的像素点有哪些,以及包含目标噪声的像素点中目标噪声的灰度值是多少。在某些实施例中为了确定待去噪图像中各像素点是否包含目标噪声,可以先对待去噪图像进行傅里叶变化得到待去噪图像的频谱图,或者也可以通过预先设计的高通滤波器对待去噪图像进行滤波处理,然后再根据标定数据中的参考频段确定各像素点是否包含目标噪声。比如可以对待去噪图像中的每一行或者每一列的图像数据进行傅里叶变化,得到每一行或每一列图像数据的频谱图,然后可以根据每一行或每一列的频谱图以及标定数据中的参考频段,确定该行或者该列是否包含目标噪声。
在某些实施例中,在对待去噪图像进行傅里叶变化,或者采用高通滤波器进行过滤处理后,可以根据标定数据中的参考频段从待去噪图像中确定第一像素点,其中第一像素点为参考频段之外的像素点,对于参考频段之外的像素点,可以认为不包含目标噪声,因而,可以将这些像素点包含目标噪声的灰度值设为0。举个例子,根据参考图像确定出来目标噪声所在的参考频段为大于10KHZ,那么便可以认为频率大于10KHZ的像素点为包含目标噪声像素点,如果频率小于10KHZ,则认为这个像素点不包含目标噪声,因而这个像素点包含目标噪声的灰度值为0。
在某些实施例中,在对待去噪图像进行傅里叶变化,或者采用高通滤波器进行过滤处理后,可以根据标定数据中的参考频段从待去噪图像中确定第二像素点,其中第二像素点为参考频段之内的像素点,对于参考频段之内的像素点,可以认为这些像素点包含目标噪声,因而可以进一步根据标定数据中的参考灰度值以及参考方差确定出这些像素点中包含目标噪声的灰度值。
由于待去噪图像的中物体并非都是平面物体,因而待去噪图像中出现灰度值变化较大的像素点可能是噪声和真实物体不同部位存在差异综合的结果。为了更加准确地计算第二像素点包含目标噪声的灰度值,可以根据第二像素点的灰度值、标定数据中的参考灰度值以及参考方差先确定每个第二像素点包含目标噪声的概率,然后根据每个第二像素点包含目标噪声的概率以及第二像素点的灰度值确定各第二像素点包含目标噪声的灰度值。
其中,在某些实施例中,在确定每个第二像素点包含目标噪声的概率时,可以确定第二像素点的灰度值与参考灰度值的距离,然后根据该距离以及参考方差确定每个第二像素点包含目标噪声的概率。由于根据参考图像确定的参考灰度值可以是各行或各列包含目标噪声的灰度值的平均值,参考方差也是根据各行或各列方差的平均灰度值得到,因而说明目标噪声的灰度值可以在参考方差内波动,假设参考灰度值为10,参考方差为2,说明目标噪声的灰度值可以在8~12之间。因此,可以确定第二像素点的灰度值与参考灰度值的距离,然后再将该距离与方差比较,如果该距离与方差越接近,则说明该第二像素点包含目标噪声的概率越大,该距离与方差越小,则说明该第二像素点包含目标噪声的概率越小。
在某些实施例中,所述距离可以是差值、范数距离、欧式距离、曼哈顿距离、汉明距离或余弦距离的一种或多种。其中,范数距离可以是二范数距离,或者其他各种范数空间的距离。比如,目标噪声的参考灰度值为10,而第二像素点的灰度值为8,因此,可以算这两个灰度值之间的上述一种或者多种距离,然后再跟方差比较,以此来确定各个第二像素点包含目标噪声的概率。
在确定各个第二像素点包含目标噪声的概率后,可以根据第二像素点的灰度值以及第二像素点包含目标噪声的概率确定第二像素点包含目标噪声的灰度值。在某些实施例中,可以根据第二像素点以及指定像素点的灰度值以及包含目标噪声的概率来确定第二像素点包含目标噪声的灰度值。比如可以用第二像素点的灰度值乘以对应的概率,以及指定像素点的灰度值乘以对应的概率,得到一个灰度值总量,再除以第二像素点和指定像素点的总数量,得到一个平均灰度值,作为所述第二像素点包含目标噪声的灰度值。
由于目标噪声通常为横条纹噪声或竖条纹噪声,即在图像固定的行或固定的列出现,因而在某些实施例中,指定像素点可以是该待去噪图像中与第二像素点位于同一行的像素点,或者是该待去噪图像中与第二像素点位于同一列的像素点,也可以同时包括该待去噪图像中与第二像素点位于同一行的像素点和位于同一列的像素点。通过确定每一行或每一列包含目标噪声的灰度值的总量,然后除以该行或列的像素点的总数量,得到一个平均值,作为每一行或每一列中各像素点包含目标噪声的灰度值。举个例子,假设采集得到的待去噪图像为4×4个像素点的图像,对该待去噪图像的每一列进行傅里叶变换,得到各列的频谱图,然后通过标定数据中的参考频段可以确定第一列的四个像素点对应的频率在参考频段内。假设第一列的四个像素点灰度值依次为6、10、12、5。标定数据中的参考灰度值为10,参考方差为2。根据四个像素点的灰度值,参考灰度值以及参考方差可以确定各像素点包含目标噪声的概率分别为60%、100%、80%、40%,然后可以计算这一列包含目标噪声的灰度值的总量:6×60%+10×100%+12×80%+5×40%=25.2,则该列每一个像素点包含目标噪声的灰度值的平均值为:25.2÷4=6.3。然后可以根据这个灰度值对这一列的像素点进行去噪处理。
在确定各像素点包含目标噪声的灰度值后,可以根据各像素点包含目标噪声的灰度值对待去噪图像进行去噪处理。在某些实施例中,可以将待去噪图像各像素点的灰度值减去各像素点包含目标噪声的灰度值,即可以得到去噪后的图像。当然,在某些实施例中,还可以采用预先确定的校正因子对去噪后的图像做进一步地校正,得到最终的图像。其中,校正因子可以根据经验值确定。
当然,在某些场景中,固定模式的噪声会随温度、时间等发生缓慢变化,为了更加准确地确定出各像素点包含目标噪声的灰度值,可以结合多帧连续获取的待去噪图像中目标噪声的灰度值来确定当前帧待去噪图像中的各像素点包含目标噪声的灰度值。比如,在某些实施例中,可以获取当前帧待去噪图像之前的N帧图像,其中,N为正整数,具体数值可以根据实际场景灵活设置。然后可以根据当前帧待去噪图像各像素点包含目标噪声的灰度值和获取的前N帧图像各像素点包含目标噪声的灰度值确定一个平均灰度值,将该平均灰度值作为当前帧待去噪图像各像素点包含目标噪声的灰度值。
其中,该平均灰度值可以是以各帧待去噪图像上的各像素点为粒度得到一个均值,也可以是以各帧待去噪图像上的各行或各列为粒度得到的一个均值。比如,在某些实施例中,可以分别确定当前帧待去噪图像各像素点在该N帧图像的对应像素点,以及这些对应像素点包含的目标噪声的灰度值,然后可以计算各像素点包含的目标噪声的灰度值与各像素点的对应像素点包含的目标噪声的灰度值的平均值,以下称为第一平均值,然后将计算得到的该第一平均值作为各像素点包含目标噪声的平均灰度值。即通过对各帧图像中表示同一个三维物体的像素点包含的目标噪声取平均,得到当前帧的该像素点包含噪声的平均值。
在某些实施例中,也可以逐一确定当前帧的各像素点所在的行在该N帧图像上的对应行,然后计算所述像素点所在的行包含所述目标噪声的灰度值与所述对应行包含所述目标噪声的灰度值的平均值,以下称为第二平均值,然后将第二平均值除以该行像素点的个数,即可以得到该行各像素点包含目标噪声的平均灰度值。当然,在某些实施例中,也可以先逐一确定当前帧待去噪图像各像素点所在的列在该N帧图像上的对应列,然后计算该像素点所在的列包含目标噪声的灰度值与对应列包含目标噪声的灰度值的平均值,称为第三平均值,再用该第三平均值除以该列像素点的数量得到该列各像素点包含目标噪声的平均灰度值。即可以通过对各帧图像中表示同一个三维物体的同一行的像素点或同一列的像素点包含的目标噪声取平均,以得到当前帧的该行的各像素点包含目标噪声的平均值。
通过本申请提供的图像处理方法,可以通过标定数据有效区别真实物体和固定模式噪声,准确估计固定模式噪声的灰度值,降低误判概率,并且可以降低或消除对图像进行去噪处理时产生的人工瑕疵,从而取得更好的去噪效果。同时,通过参考图像确定标定数据,无需在图像传感器保留遮挡区域作为参考,也提高了图像传感器的利用率,简化了图像传感器的制造工艺的难度。为了进一步解释本申请提供的图像处理方法,以下以一个具体实施例详细说明。
由于生产制造问题,红外传感器采集的红外图像带有固定模式噪声竖条纹等,这些竖条纹在图像中的位置相对固定,如果不经去噪处理,红外图像上会有人眼可见的竖条纹,严重影响画质和温度判断。采用目前的去噪方法去除竖条纹时,存在一缺陷,即无法有效识别竖条纹和真实物体的边缘,导致去噪效果不理想。
为了有效的去除红外图像上的竖条纹噪声,提出一种图像处理方法,主要包括以下步骤:
(1)标定数据的确定
使用该红外传感器采集一张平面物体的图像作为参考图像,然后对该参考图像的每一列的图像数据进行傅里叶变换,得到每一列图像数据对应的频谱图,然后根据频谱图确定出该竖条纹噪声所在的频段作为参考频段(假设为大于10KHZ)、各列包含噪声的灰度值的平均值作为参考灰度值(假设为10),以及各列灰度值的方差作为参考方差(假设为2)。其中,将参考频段、参考灰度值和参考方差作为标定数据存储在指定位置。
(2)对红外传感器采集的图像进行去噪
获取红外传感器采集的未经过对比度拉伸的原始图像(假设该图像为4×4图像),然后对该原始图像的每一列图像数进行傅里叶变换,得到每一列图像数据的频谱图。然后根据该频谱图和预先确定的竖条纹噪声的参考频段确定该图像中每一列的像素点对应的频率是否在该参考频段之内,如果这一列的像素点的频率在参考频段之外(比如频率小于10KHZ),则认为这一列不包含竖条纹,因而这一列每个像素点的包含竖条纹噪声的灰度值为0。如果这一列的像素点的频率在参考频段之内(比如频率大于10KHZ),则认为这一列包含竖条纹。假设1,3列的像素点频率在参考频段之外,2,4列的像素点频率在参考频段之内。可以获取第2列和第4列各像素点的灰度值,假设第2列的各像素点会灰度值分别为6、10、12、5,然后将各像素点的灰度值与参考灰度值(10)比较,计算各像素点灰度值与参考灰度值的余弦距离,然后根据余弦距离和参考方差的接近成都确定各像素点包含竖条纹噪声的概率。假设分别为60%、100%、80%、40%,然后可以计算第2列包含竖条纹噪声的灰度值的总量:6×60%+10×100%+12×80%+5×40%=25.2。然后可以获取该图像之前的3帧图像,确定第2列在这三帧图像对应的列,然后确定对应的列包含竖条纹噪声的灰度值的总量分别为26、24.8、24,因而可以求得各帧图像该列的包含竖条纹噪声灰度值的平均值:(25.2+26+24.8+24)/4=25,从而可以确定第2列每个像素点包含竖条纹噪声的灰度值为25/4=6.25。针对第4列,可以用同样的方法求得各像素点包含竖条纹噪声的灰度值,假设为7,。然后将第1列和第3列各像素点的灰度值减去0,第2列的各像素点的灰度值减去6.25,第4列的各像素点的灰度值减去7,从而得到去噪后的图像。
通过这种方法,可以有效区别真实物体和固定模式噪声,准确估计固定模式噪声的灰度值,降低误判概率,并且可以降低或消除对图像进行去噪处理时产生的人工瑕疵,从而使红外图像更干净,温度判断更准确。
另外,本申请还提供了一种图像处理装置,如图3所示,所述装置30包括处理器31、存储器32以及存储在所述存储器上的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取待去噪图像;
根据预先确定的标定数据确定所述待去噪图像各像素点包含的目标噪声的灰度值;其中,所述标定数据基于参考图像中的所述目标噪声得到,用于确定所述目标噪声的频段和所述目标噪声的灰度值;
根据各像素点包含的目标噪声的灰度值对所述待去噪图像进行去噪处理。
在某些实施例中,所述标定数据包括所述目标噪声的参考频段、所述目标噪声的参考灰度值以及所述目标噪声灰度值的参考方差。
在某些实施例中,所述处理器用于根据预先确定的标定数据确定所述待去噪图像各像素点的目标噪声的灰度值时,包括:
基于所述参考频段确定所述待去噪图像中的第一像素点,所述第一像素点为所述参考频段之外的像素点;
将所述第一像素点的目标噪声的灰度值设为0。
在某些实施例中,所述处理器用于根据预先确定的标定数据确定所述待去噪图像各像素点的目标噪声的灰度值时,包括:
基于所述参考频段确定所述待去噪图像中的第二像素点,所述第二像素点为所述参考频段之内的像素点;
基于所述第二像素点的灰度值、所述参考灰度值以及所述参考方差确定所述第二像素点包含的目标噪声的灰度值。
在某些实施例中,所述处理器用于根据预先确定的标定数据确定所述待去噪图像各像素点包含的目标噪声的灰度值之前,还用于:
对所述待去噪图像进行傅里叶变换,得到所述待去噪图像频谱图;或
采用预先设计的滤波器对所述待去噪图像进行滤波处理。
在某些实施例中,所述处理器用于基于所述第二像素点的灰度值、所述参考灰度值以及所述参考方差确定所述第二像素点的目标噪声的灰度值时,包括:
基于所述第二像素点的灰度值、所述参考灰度值以及所述参考方差确定所述第二像素点包括所述目标噪声的概率;
基于所述第二像素点的灰度值和所述概率确定所述第二像素点的目标噪声的灰度值。
在某些实施例中,所述处理器用于基于所述第二像素点的灰度值、所述参考灰度值以及所述参考方差确定所述第二像素点包括所述目标噪声的概率时,包括:
确定所述第二像素点的灰度值与所述参考灰度值之间的距离;
基于所述距离以及所述参考方差确定所述第二像素点包括所述目标噪声的概率。
在某些实施例中,所述距离包括:差值、范数距离、欧式距离、曼哈顿距离、汉明距离或余弦距离的一种或多种。
在某些实施例中,所述处理器用于基于所述第二像素点的灰度值和所述概率确定所述第二像素点的目标噪声的灰度值时,包括:
基于所述第二像素点的灰度值、所述第二像素点对应的所述概率、指定像素点的灰度值以及所述指定像素点对应的所述概率,确定所述第二像素点和所述指定像素点包含的所述目标噪声的平均灰度值;
将所述平均灰度值作为所述第二像素点包含的目标噪声的灰度值。
在某些实施例中,所述指定像素点包括:
所述待去噪图像中与所述第二像素点位于同一行的像素点;和/或
所述待去噪图像中与所述第二像素点位于同一列的像素点。
在某些实施例中,所述处理器用于根据各像素点包含的目标噪声的灰度值对所述待去噪图像进行去噪处理时,包括:
获取所述待去噪图像之前的N帧图像,N为正整数;
确定所述待去噪图像各像素点包含所述目标噪声的平均灰度值,所述平均灰度值基于所述待去噪图像各像素点包含所述目标噪声的灰度值和所述N帧图像各像素点包含所述目标噪声的灰度值确定;
基于所述平均灰度值对所述待去噪图像进行去噪处理。
在某些实施例中,所述处理器用于确定所述待去噪图像各像素点包含所述目标噪声的平均灰度值时,包括:
分别确定所述待去噪图像各像素点在所述N帧图像的对应像素点,以及所述对应像素点包含的所述目标噪声的灰度值;
计算各像素点包含的目标噪声的灰度值与各像素点的对应像素点包含的所述目标噪声的灰度值的第一平均值;
将所述第一平均值作为所述各像素点包含所述目标噪声的平均灰度值。
在某些实施例中,所述处理器用于确定所述待去噪图像各像素点包含所述目标噪声的平均灰度值时,包括:
确定所述各像素点所在的行在所述N帧图像上的对应行;
计算所述像素点所在的行包含所述目标噪声的灰度值与所述对应行包含目标噪声的灰度值的第二平均值;
基于所述第二平均值确定所述各像素点包含所述目标噪声的平均灰度值;和/或
计算所述各像素点所在的列在所述N帧图像上的对应列;
确定所述像素点所在的列包含所述目标噪声的灰度值与所述对应列包含目标噪声的灰度值的第三平均值;
基于所述第三平均值确定所述各像素点包含所述目标噪声的平均灰度值。
在某些实施例中,所述参考图像为采集的平面物体的图像。
在某些实施例中,所述目标噪声包括:横条纹噪声和/或竖条纹噪声。
在某些实施例中,所述图像为红外图像。
在某些实施例中,如图4所示,所述装置30除了包括处理器31、存储器32以及存储在所述存储器上的计算机程序之外,还包括红外传感器33,所述待去噪图像通过所述红外传感器采集得到。
在某些实施例中,所述装置用于无人机,无人机上安装有红外传感器,用于采集红外图像。
当然,在某些实施例中,所述装置也可以用于红外热像仪、红外测温仪或者是一些航空探测仪等采用电磁波成像的产品当中,或者用于一些专门对图像进行去噪处理的设备当中,比如笔记本电脑、手机或者云端服务器。
相应地,本说明书实施例还提供一种计算机存储介质,所述存储介质中存储有程序,所述程序被处理器执行时实现上述任一实施例中图像处理方法。
本说明书实施例可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可用存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (35)

1.一种图像处理方法,其特征在于,所述方法包括:
获取待去噪图像;
根据预先确定的标定数据确定所述待去噪图像各像素点包含的目标噪声的灰度值;其中,所述标定数据基于参考图像中的所述目标噪声得到,用于确定所述目标噪声的频段和所述目标噪声的灰度值;
根据各像素点包含的目标噪声的灰度值对所述待去噪图像进行去噪处理。
2.根据权利要求1所述的图像处理方法,其特征在于,所述标定数据包括所述目标噪声的参考频段、所述目标噪声的参考灰度值以及所述目标噪声灰度值的参考方差。
3.根据权利要求2所述的图像处理方法,其特征在于,根据预先确定的标定数据确定所述待去噪图像各像素点的目标噪声的灰度值,包括:
基于所述参考频段确定所述待去噪图像中的第一像素点,所述第一像素点为所述参考频段之外的像素点;
将所述第一像素点的目标噪声的灰度值设为0。
4.根据权利要求2所述的图像处理方法,其特征在于,所述根据预先确定的标定数据确定所述待去噪图像各像素点的目标噪声的灰度值,包括:
基于所述参考频段确定所述待去噪图像中的第二像素点,所述第二像素点为所述参考频段之内的像素点;
基于所述第二像素点的灰度值、所述参考灰度值以及所述参考方差确定所述第二像素点包含的目标噪声的灰度值。
5.根据权利要求1至4任一项所述的图像处理方法,所述根据预先确定的标定数据确定所述待去噪图像各像素点包含的目标噪声的灰度值之前,还包括:
对所述待去噪图像进行傅里叶变换,得到所述待去噪图像频谱图;或
采用预先设计的滤波器对所述待去噪图像进行滤波处理。
6.根据权利要求4所述的图像处理方法,其特征在于,基于所述第二像素点的灰度值、所述参考灰度值以及所述参考方差确定所述第二像素点的目标噪声的灰度值,包括:
基于所述第二像素点的灰度值、所述参考灰度值以及所述参考方差确定所述第二像素点包括所述目标噪声的概率;
基于所述第二像素点的灰度值和所述概率确定所述第二像素点的目标噪声的灰度值。
7.根据权利要求6所述的图像处理方法,其特征在于,基于所述第二像素点的灰度值、所述参考灰度值以及所述参考方差确定所述第二像素点包括所述目标噪声的概率,包括:
确定所述第二像素点的灰度值与所述参考灰度值之间的距离;
基于所述距离以及所述参考方差确定所述第二像素点包括所述目标噪声的概率。
8.根据权利要求7所述的图像处理方法,其特征在于,所述距离包括:差值、范数距离、欧式距离、曼哈顿距离、汉明距离或余弦距离的一种或多种。
9.根据权利要求6所述的图像处理方法,其特征在于,基于所述第二像素点的灰度值和所述概率确定所述第二像素点的目标噪声的灰度值,包括:
基于所述第二像素点的灰度值、所述第二像素点对应的所述概率、指定像素点的灰度值以及所述指定像素点对应的所述概率,确定所述第二像素点和所述指定像素点包含的所述目标噪声的平均灰度值;
将所述平均灰度值作为所述第二像素点包含的目标噪声的灰度值。
10.根据权利要求9所述的图像处理方法,其特征在于,所述指定像素点包括:
所述待去噪图像中与所述第二像素点位于同一行的像素点;和/或
所述待去噪图像中与所述第二像素点位于同一列的像素点。
11.根据权利要求1所述的图像处理方法,其特征在于,根据各像素点包含的目标噪声的灰度值对所述待去噪图像进行去噪处理,包括:
获取所述待去噪图像之前的N帧图像,N为正整数;
确定所述待去噪图像各像素点包含所述目标噪声的平均灰度值,所述平均灰度值基于所述待去噪图像各像素点包含所述目标噪声的灰度值和所述N帧图像各像素点包含所述目标噪声的灰度值确定;
基于所述平均灰度值对所述待去噪图像进行去噪处理。
12.根据权利要求11所述的图像处理方法,其特征在于,确定所述待去噪图像各像素点包含所述目标噪声的平均灰度值,包括:
分别确定所述待去噪图像各像素点在所述N帧图像的对应像素点,以及所述对应像素点包含的所述目标噪声的灰度值;
计算各像素点包含的目标噪声的灰度值与各像素点的对应像素点包含的所述目标噪声的灰度值的第一平均值;
将所述第一平均值作为所述各像素点包含所述目标噪声的平均灰度值。
13.根据权利要求11所述的图像处理方法,其特征在于,确定所述待去噪图像各像素点包含所述目标噪声的平均灰度值,包括:
确定所述各像素点所在的行在所述N帧图像上的对应行;
计算所述像素点所在的行包含所述目标噪声的灰度值与所述对应行包含所述目标噪声的灰度值的第二平均值;
基于所述第二平均值确定所述各像素点包含所述目标噪声的平均灰度值;和/或
确定所述各像素点所在的列在所述N帧图像上的对应列;
计算所述像素点所在的列包含所述目标噪声的灰度值与所述对应列包含目标噪声的灰度值的第三平均值;
基于所述第三平均值确定所述各像素点包含所述目标噪声的平均灰度值。
14.根据权利要求1-13任一项所述的图像处理方法,其特征在于,所述参考图像为采集的平面物体的图像。
15.根据权利要求1-14任一项所述的图像处理方法,其特征在于,所述目标噪声包括:横条纹噪声和/或竖条纹噪声。
16.根据权利要求1-15任一项所述的图像处理方法,其特征在于,所述图像为红外图像。
17.一种图像处理装置,其特征在于,所述装置包括处理器、存储器以及存储在所述存储器上的计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取待去噪图像;
根据预先确定的标定数据确定所述待去噪图像各像素点包含的目标噪声的灰度值;其中,所述标定数据基于参考图像中的所述目标噪声得到,用于确定所述目标噪声的频段和所述目标噪声的灰度值;
根据各像素点包含的目标噪声的灰度值对所述待去噪图像进行去噪处理。
18.根据权利要求17所述的图像处理装置,其特征在于,所述标定数据包括所述目标噪声的参考频段、所述目标噪声的参考灰度值以及所述目标噪声灰度值的参考方差。
19.根据权利要求18所述的图像处理装置,其特征在于,所述处理器用于根据预先确定的标定数据确定所述待去噪图像各像素点的目标噪声的灰度值时,包括:
基于所述参考频段确定所述待去噪图像中的第一像素点,所述第一像素点为所述参考频段之外的像素点;
将所述第一像素点的目标噪声的灰度值设为0。
20.根据权利要求18所述的图像处理装置,其特征在于,所述处理器用于根据预先确定的标定数据确定所述待去噪图像各像素点的目标噪声的灰度值时,包括:
基于所述参考频段确定所述待去噪图像中的第二像素点,所述第二像素点为所述参考频段之内的像素点;
基于所述第二像素点的灰度值、所述参考灰度值以及所述参考方差确定所述第二像素点包含的目标噪声的灰度值。
21.根据权利要求17-20任一项所述的图像处理装置,所述处理器用于根据预先确定的标定数据确定所述待去噪图像各像素点包含的目标噪声的灰度值之前,还用于:
对所述待去噪图像进行傅里叶变换,得到所述待去噪图像频谱图;或
采用预先设计的滤波器对所述待去噪图像进行滤波处理。
22.根据权利要求20所述的图像处理装置,其特征在于,所述处理器用于基于所述第二像素点的灰度值、所述参考灰度值以及所述参考方差确定所述第二像素点的目标噪声的灰度值时,包括:
基于所述第二像素点的灰度值、所述参考灰度值以及所述参考方差确定所述第二像素点包括所述目标噪声的概率;
基于所述第二像素点的灰度值和所述概率确定所述第二像素点的目标噪声的灰度值。
23.根据权利要求22所述的图像处理装置,其特征在于,所述处理器用于基于所述第二像素点的灰度值、所述参考灰度值以及所述参考方差确定所述第二像素点包括所述目标噪声的概率时,包括:
确定所述第二像素点的灰度值与所述参考灰度值之间的距离;
基于所述距离以及所述参考方差确定所述第二像素点包括所述目标噪声的概率。
24.根据权利要求23所述的图像处理装置,其特征在于,所述距离包括:差值、范数距离、欧式距离、曼哈顿距离、汉明距离或余弦距离的一种或多种。
25.根据权利要求22所述的图像处理装置,其特征在于,所述处理器用于基于所述第二像素点的灰度值和所述概率确定所述第二像素点的目标噪声的灰度值时,包括:
基于所述第二像素点的灰度值、所述第二像素点对应的所述概率、指定像素点的灰度值以及所述指定像素点对应的所述概率,确定所述第二像素点和所述指定像素点包含的所述目标噪声的平均灰度值;
将所述平均灰度值作为所述第二像素点包含的目标噪声的灰度值。
26.根据权利要求25所述的图像处理装置,其特征在于,所述指定像素点包括:
所述待去噪图像中与所述第二像素点位于同一行的像素点;和/或
所述待去噪图像中与所述第二像素点位于同一列的像素点。
27.根据权利要求17所述的图像处理装置,其特征在于,所述处理器用于根据各像素点包含的目标噪声的灰度值对所述待去噪图像进行去噪处理时,包括:
获取所述待去噪图像之前的N帧图像,N为正整数;
确定所述待去噪图像各像素点包含所述目标噪声的平均灰度值,所述平均灰度值基于所述待去噪图像各像素点包含所述目标噪声的灰度值和所述N帧图像各像素点包含所述目标噪声的灰度值确定;
基于所述平均灰度值对所述待去噪图像进行去噪处理。
28.根据权利要求27所述的图像处理装置,其特征在于,所述处理器用于确定所述待去噪图像各像素点包含所述目标噪声的平均灰度值时,包括:
分别确定所述待去噪图像各像素点在所述N帧图像的对应像素点,以及所述对应像素点包含的所述目标噪声的灰度值;
计算各像素点包含的目标噪声的灰度值与各像素点的对应像素点包含的所述目标噪声的灰度值的第一平均值;
将所述第一平均值作为所述各像素点包含所述目标噪声的平均灰度值。
29.根据权利要求27所述的图像处理装置,其特征在于,所述处理器用于确定所述待去噪图像各像素点包含所述目标噪声的平均灰度值时,包括:
确定所述各像素点所在的行在所述N帧图像上的对应行;
计算所述像素点所在的行包含所述目标噪声的灰度值与所述对应行包含目标噪声的灰度值的第二平均值;
基于所述第二平均值确定所述各像素点包含所述目标噪声的平均灰度值;和/或
计算所述各像素点所在的列在所述N帧图像上的对应列;
确定所述像素点所在的列包含所述目标噪声的灰度值与所述对应列包含目标噪声的灰度值的第三平均值;
基于所述第三平均值确定所述各像素点包含所述目标噪声的平均灰度值。
30.根据权利要求17-29任一项所述的图像处理装置,其特征在于,所述参考图像为采集的平面物体的图像。
31.根据权利要求17-30任一项所述的图像处理装置,其特征在于,所述目标噪声包括:横条纹噪声和/或竖条纹噪声。
32.根据权利要求17-31任一项所述的图像处理装置,其特征在于,所述图像为红外图像。
33.根据权利要求17-32任一项所述的图像处理装置,其特征在于,所述装置还包括红外传感器,所述待去噪图像通过所述红外传感器采集得到。
34.根据权利要求17-33任一项所述的图像处理装置,其特征在于,所述装置用于无人机。
35.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至16任一项所述图像处理方法。
CN201980049929.4A 2019-11-29 2019-11-29 图像处理方法、装置及存储介质 Pending CN112513936A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121987 WO2021102913A1 (zh) 2019-11-29 2019-11-29 图像处理方法、装置及存储介质

Publications (1)

Publication Number Publication Date
CN112513936A true CN112513936A (zh) 2021-03-16

Family

ID=74923730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980049929.4A Pending CN112513936A (zh) 2019-11-29 2019-11-29 图像处理方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN112513936A (zh)
WO (1) WO2021102913A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113344820A (zh) * 2021-06-28 2021-09-03 Oppo广东移动通信有限公司 图像处理方法及装置、计算机可读介质、电子设备
CN113538265A (zh) * 2021-07-06 2021-10-22 Oppo广东移动通信有限公司 图像去噪方法及装置、计算机可读介质、电子设备
WO2023284236A1 (zh) * 2021-07-15 2023-01-19 浙江宇视科技有限公司 图像盲去噪方法、装置、电子设备和存储介质
CN116563175A (zh) * 2023-07-12 2023-08-08 中国科学院长春光学精密机械与物理研究所 光电成像设备系统固定噪声去除方法、装置和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114708248A (zh) * 2022-04-22 2022-07-05 中广核风电有限公司 海底电缆状态监测数据压缩方法、装置及电子设备
CN116051409B (zh) * 2023-01-09 2024-06-07 长春理工大学 一种非制冷红外探测器的最优偏置电压控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180025474A1 (en) * 2016-07-20 2018-01-25 Alibaba Group Holding Limited Video processing method and apparatus
CN110390650A (zh) * 2019-07-23 2019-10-29 中南大学 基于密集连接和生成对抗网络的oct图像去噪方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2219133B1 (en) * 2009-02-17 2011-10-05 Autoliv Development AB A method and system of automatically detecting objects in front of a motor vehicle
CN102509269B (zh) * 2011-11-10 2014-04-02 重庆工业职业技术学院 一种结合曲线波的基于图像子块相似性的图像去噪方法
CN104036471B (zh) * 2013-03-05 2017-07-25 腾讯科技(深圳)有限公司 一种图像噪声估值方法及图像噪声估值装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180025474A1 (en) * 2016-07-20 2018-01-25 Alibaba Group Holding Limited Video processing method and apparatus
CN110390650A (zh) * 2019-07-23 2019-10-29 中南大学 基于密集连接和生成对抗网络的oct图像去噪方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113344820A (zh) * 2021-06-28 2021-09-03 Oppo广东移动通信有限公司 图像处理方法及装置、计算机可读介质、电子设备
CN113344820B (zh) * 2021-06-28 2024-05-10 Oppo广东移动通信有限公司 图像处理方法及装置、计算机可读介质、电子设备
CN113538265A (zh) * 2021-07-06 2021-10-22 Oppo广东移动通信有限公司 图像去噪方法及装置、计算机可读介质、电子设备
WO2023284236A1 (zh) * 2021-07-15 2023-01-19 浙江宇视科技有限公司 图像盲去噪方法、装置、电子设备和存储介质
CN116563175A (zh) * 2023-07-12 2023-08-08 中国科学院长春光学精密机械与物理研究所 光电成像设备系统固定噪声去除方法、装置和存储介质
CN116563175B (zh) * 2023-07-12 2023-09-15 中国科学院长春光学精密机械与物理研究所 光电成像设备系统固定噪声去除方法、装置和存储介质

Also Published As

Publication number Publication date
WO2021102913A1 (zh) 2021-06-03

Similar Documents

Publication Publication Date Title
CN112513936A (zh) 图像处理方法、装置及存储介质
US8582820B2 (en) Coded aperture camera with adaptive image processing
US8436912B2 (en) Range measurement using multiple coded apertures
US8290305B2 (en) Registration of 3D point cloud data to 2D electro-optical image data
Rossi et al. Bilateral filter-based adaptive nonuniformity correction for infrared focal-plane array systems
US20110267485A1 (en) Range measurement using a coded aperture
KR20150027291A (ko) 광류 추적 방법 및 장치
US10176557B2 (en) Apparatus, system, and method for enhancing image video data
US20110267477A1 (en) Range measurement using symmetric coded apertures
CN109447902B (zh) 一种图像拼接方法、装置、储存介质及设备
EP2639769A2 (en) Image synthesis device and computer program for image synthesis
JP6830712B1 (ja) ランダムサンプリング一貫性に基づく魚眼画像の有効領域抽出方法
Štolc et al. Depth and all-in-focus imaging by a multi-line-scan light-field camera
CN111047650A (zh) 一种用于飞行时间相机的参数标定方法
US20150116546A1 (en) Image processing apparatus, imaging apparatus, and image processing method
CN103632356B (zh) 提高图像空间分辨率的方法及装置
Reeves Image restoration: fundamentals of image restoration
US20150294142A1 (en) Apparatus and a method for detecting a motion of an object in a target space
CN112598610B (zh) 一种深度图像获得方法、装置、电子设备及存储介质
KR101982258B1 (ko) 오브젝트 검출 방법 및 오브젝트 검출 장치
CN113727095A (zh) 摄像头移动的检测方法、装置、设备、系统及存储介质
CN112950468A (zh) 图像拼接方法、电子设备及可读存储介质
CN116543022A (zh) 气体红外图像处理方法、气体检漏仪及存储介质
CN116596801A (zh) 一种图像非局部均值去噪方法及装置
WO2014165159A1 (en) System and method for blind image deconvolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210316