CN112505512A - 一种故障电弧的识别方法、装置、设备及介质 - Google Patents

一种故障电弧的识别方法、装置、设备及介质 Download PDF

Info

Publication number
CN112505512A
CN112505512A CN202011552452.2A CN202011552452A CN112505512A CN 112505512 A CN112505512 A CN 112505512A CN 202011552452 A CN202011552452 A CN 202011552452A CN 112505512 A CN112505512 A CN 112505512A
Authority
CN
China
Prior art keywords
arc
target
sampling
neural network
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011552452.2A
Other languages
English (en)
Other versions
CN112505512B (zh
Inventor
王华荣
王建华
马越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Topscomm Communication Co Ltd
Original Assignee
Qingdao Topscomm Communication Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Topscomm Communication Co Ltd filed Critical Qingdao Topscomm Communication Co Ltd
Publication of CN112505512A publication Critical patent/CN112505512A/zh
Application granted granted Critical
Publication of CN112505512B publication Critical patent/CN112505512B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • G01R23/06Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage by converting frequency into an amplitude of current or voltage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)
  • Feedback Control In General (AREA)
  • Testing Relating To Insulation (AREA)
  • Complex Calculations (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本申请公开了一种故障电弧的识别方法,包括:以高频对目标电弧进行采样,得到高频采样信号;对高频采样信号进行预处理,得到处理采样信号;对处理采样信号进行特征提取,得到目标电弧特征;将目标电弧特征输入至神经网络模型,得到目标输出结果,并根据目标输出结果判断目标电弧是否为故障电弧;显然,因为通过高频来对目标电弧进行采样时,可以获取得到目标电弧中数量更多的电弧特征,并且,由于神经网络模型具有良好的数据分类能力,所以,当利用神经网络模型来对目标电弧进行判断时,就可以进一步提高故障电弧检测结果的准确性与可靠性。相应的,本申请所提供的一种故障电弧的识别装置、设备及介质,同样具有上述有益效果。

Description

一种故障电弧的识别方法、装置、设备及介质
技术领域
本发明涉及电力电气技术领域,特别涉及一种故障电弧的识别方法、装置、设备及介质。
背景技术
故障电弧是引起电气火灾的重要原因之一。目前,在对故障电弧进行检测时,通常是基于低频采样频率来对电弧进行采样检测,但是,此种检测方法不能有效观测出电弧中的高频率特征,容易和家用电器的频率特征发生混淆,所以,经常会出现故障电弧的误判和漏判。目前,针对这一技术问题,还没有较为有效的解决办法。
由此可见,如何进一步提高故障电弧检测结果的准确性与可靠性,是本领域技术人员亟待解决的技术问题。
发明内容
有鉴于此,本发明的目的在于提供一种故障电弧的识别方法、装置、设备及介质,以进一步提高故障电弧识别结果的准确性与可靠性。其具体方案如下:
一种故障电弧的识别方法,包括:
以高频对目标电弧进行采样,得到高频采样信号;
对所述高频采样信号进行预处理,得到处理采样信号;
对所述处理采样信号进行特征提取,得到目标电弧特征;
将所述目标电弧特征输入至神经网络模型,得到目标输出结果,并根据所述目标输出结果判断所述目标电弧是否为故障电弧;
其中,所述神经网络模型的创建过程包括:
预先获取正常电弧和故障电弧所对应的电弧特征,得到训练数据;
基于神经网络算法,利用所述训练数据建立所述神经网络模型。
优选的,所述以高频对目标电弧进行采样,得到高频采样信号的过程,包括:
以1GHz的采样速率对所述目标电弧进行采样,得到所述高频采样信号。
优选的,所述对所述高频采样信号进行预处理,得到处理采样信号的过程,包括:
对所述高频采样信号进行滤波,得到滤波采样信号。
对所述滤波采样信号进行自适应增益调整,并滤除所述滤波采样信号中的低频信号,得到所述处理采样信号。
优选的,所述对所述处理采样信号进行特征提取,得到目标电弧特征的过程,包括:
剔除所述处理采样信号中的非局部极值点,得到目标采样点;
按照时间顺序依次从所述目标采样点中选取十个采样点,得到目标采样序列;其中,所述目标采样序列包括采样点D、E、F、G、H、I、J、M、P和S;
对所述目标采样序列进行特征提取,得到幅值和离散度、幅值比离散度、始终点幅值和离散度、始终点幅值比离散度、时间比离散度、波形个数、斜率离散度、斜率差分离散度以及点和离散度;
其中,所述幅值和离散度的计算表达式为:
A1=|VDF|+|VFH|+|VHJ|+|VJP|;
所述幅值比离散度的计算表达式为:
Figure BDA0002857600680000021
式中,Vij中的i和j分别代表所述目标采样序列内各采样点的序列号,VDF=max(yD,yE,yF)-min(yD,yE,yF),VFH=max(yF,yG,yH)-min(yF,yG,yH),VHJ=max(yH,yI,yJ)-min(yH,yI,yJ),VJP=max(yJ,yM,yP)-min(yJ,yM,yP),yD、yE、yF、yG、yH、yI、yJ、yM、yP分别为采样点D、E、F、G、H、I、J、M和P在世界坐标系中的纵坐标值;
所述始终点幅值和离散度的计算表达式为:
A3=|VSDF|+|VSFH|+|VSHJ|+|VSJP|;
所述始终点幅值比离散度的计算表达式为:
Figure BDA0002857600680000031
式中,VSij中的i和j分别代表所述目标采样序列内各采样点的序列号,VSDF=|yD-yF|,VSFH=|yF-yH|,VSHJ=|yH-yJ|,VSJP=|yJ-yP|,VDF=max(yD,yE,yF)-min(yD,yE,yF),VFH=max(yF,yG,yH)-min(yF,yG,yH),VHJ=max(yH,yI,yJ)-min(yH,yI,yJ),VJP=max(yJ,yM,yP)-min(yJ,yM,yP),yD、yE、yF、yG、yH、yI、yJ、yM、yP分别为采样点D、E、F、G、H、I、J、M和P在世界坐标系中的纵坐标值;
所述时间比离散度的计算表达式为:
Figure BDA0002857600680000032
式中,T1为采样点D和F之间的时间间隔,T2为采样点F和H之间的时间间隔,T3为采样点J和H之间的时间间隔,T4为采样点P和J之间的时间间隔;
所述波形个数的计算表达式为:
Figure BDA0002857600680000033
式中,
Figure BDA0002857600680000034
表示向下取整,length(y)为所述目标采样序列的长度;
所述斜率离散度的计算表达式为:
A7=|XEF-XDE|+|XFG-XEF|+|XGH-XFG|+|XHI-XGH|+|XIJ-XHI|+|XJM-XIJ|+|XMP-XJM|
所述斜率差分离散度的计算表达式为:
A8=|XFH-XDF|+|XHJ-XFH|+|XJP-XHJ|;
所述点和离散度的计算表达式为:
A9=|yD|+|yE|+|yF|+|yG|+|yH|+|yI|+|yJ|+|yM|+|yP|;
式中,XFH=|XGH-XFG|、XDF=|XEF-XDE|、XHJ=|XIJ-XHI|、XJP=|XMP-XJM|、XEF=|yE-yF|,XDE=|yD-yE|,XFG=|yF-yG|,XGH=|yG-yH|,XHI=|yH-yI|,XIJ=|yI-yJ|,XJM=|yJ-yM|,XMP=|yM-yP|;yD、yE、yF、yG、yH、yI、yJ、yM、yP分别为采样点D、E、F、G、H、I、J、M和P在世界坐标系中的纵坐标值。
优选的,所述基于神经网络算法,利用所述训练数据建立所述神经网络模型的过程,包括:
基于卷积神经网络算法,利用所述训练数据建立所述神经网络模型。
优选的,所述将所述目标电弧特征输入至神经网络模型,得到目标输出结果的过程,包括:
将所述目标电弧特征转换为归一化特征矩阵,并将所述归一化特征矩阵输入至所述神经网络模型,得到所述目标输出结果。
相应的,本发明还公开了一种故障电弧的识别装置,包括:
信号采样模块,用于以高频对目标电弧进行采样,得到高频采样信号;
信号处理模块,用于对所述高频采样信号进行预处理,得到处理采样信号;
特征提取模块,用于对所述处理采样信号进行特征提取,得到目标电弧特征;
结果判断模块,用于将所述目标电弧特征输入至神经网络模型,得到目标输出结果,并根据所述目标输出结果判断所述目标电弧是否为故障电弧;
其中,所述神经网络模型的创建过程包括:
预先获取正常电弧和故障电弧所对应的电弧特征,得到训练数据;
基于神经网络算法,利用所述训练数据建立所述神经网络模型。
相应的,本发明还公开了一种故障电弧的识别设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如前述所公开的一种故障电弧的识别方法的步骤。
相应的,本发明还公开了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如前述所公开的一种故障电弧的识别方法的步骤。
可见,在本发明中,是预先获取正常电弧和故障电弧所对应的电弧特征,得到训练数据,之后,再基于神经网络算法,利用训练数据建立神经网络模型;在对目标电弧进行故障识别的过程中,首先是以高频对目标电弧进行采样,得到高频采样信号,然后,再对高频采样信号进行预处理,得到处理采样信号,并对处理采样信号进行特征提取,得到目标电弧特征,最后,再将目标电弧特征输入至神经网络模型,得到目标输出结果,并根据目标输出结果判断目标电弧是否为故障电弧。显然,因为通过高频来对目标电弧进行采样时,可以获取得到目标电弧中数量更多的电弧特征,并且,由于神经网络模型具有良好的数据分类能力,所以,当利用神经网络模型来对目标电弧进行判断时,就可以进一步提高故障电弧检测结果的准确性与可靠性。相应的,本发明所提供的一种故障电弧的识别装置、设备及介质,同样具有上述有益效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例所提供的一种故障电弧的识别方法的流程图;
图2为电钻在发生电弧故障时的波形示意图;
图3为开关电源在发生电弧故障时的波形示意图;
图4为空压机在发生电弧故障时的波形示意图;
图5为吸尘器在发生电弧故障时的波形示意图;
图6为吸尘器在发生电弧故障时的波形示意图;
图7为调光器在发生电弧故障时的波形示意图;
图8为目标电弧经过预处理之后,得到处理采样信号的波形示意图;
图9为对目标电弧的处理采样信号进行特征提取时的波形示意图;
图10为基于卷积神经网络算法所创建的神经网络模型的示意图;
图11为本发明实施例所提供的一种在对目标电弧进行故障识别时的示意图;
图12为本发明实施例所提供的一种故障电弧的识别装置的结构图;
图13为本发明实施例所提供的一种故障电弧的识别设备的结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参见图1,图1为本发明实施例所提供的一种故障电弧的识别方法的流程图,该识别方法包括:
步骤S11:以高频对目标电弧进行采样,得到高频采样信号;
步骤S12:对高频采样信号进行预处理,得到处理采样信号;
步骤S13:对处理采样信号进行特征提取,得到目标电弧特征;
步骤S14:将目标电弧特征输入至神经网络模型,得到目标输出结果,并根据目标输出结果判断目标电弧是否为故障电弧;
其中,神经网络模型的创建过程包括:
预先获取正常电弧和故障电弧所对应的电弧特征,得到训练数据;
基于神经网络算法,利用训练数据建立神经网络模型。
在本实施例中,是提供了一种故障电弧的识别方法,利用该识别方法可以显著提高故障电弧检测结果的准确性与可靠性。在该识别方法中,首先是预先获取正常电弧和故障电弧所对应的电弧特征,得到训练数据,然后,再基于神经网络算法,利用训练数据建立神经网络模型。
具体的,在创建神经网络模型的过程中,首先是基于神经网络算法建立待训练模型,然后,再以高频对正常电弧和故障电弧进行采样,分别得到正常电弧所对应的高频采样信号和故障电弧所对应的高频采样信号;然后,再对正常电弧所对应的高频采样信号和故障电弧所对应的高频采样信号进行预处理,分别得到正常电弧所对应的处理采样信号和故障电弧所对应的处理采样信号,最后,再对正常电弧所对应的处理采样信号和故障电弧所对应的处理采样信号进行特征提取,得到正常电弧所对应的电弧特征和故障电弧所对应的电弧特征,也即,训练数据;之后,再利用训练数据对待训练模型进行训练,就可以得到神经网络模型。显然,当获取得到神经网络模型之后,就相当于是得到了一个能够对电弧进行故障分类的数学模型。
在对目标电弧进行故障识别的过程中,首先是以高频对目标电弧进行采样,得到高频采样信号。能够想到的是,当利用高频对目标电弧进行采样时,就可以获取得到有关目标电弧数量更多的电弧特征。
具体请参见图2到图7,图2为电钻在发生电弧故障时的波形示意图;其中,图2的上半部分为电钻在发生故障电弧时,利用低频采样频率所采集到的电弧特征,图2的下半部分为电钻在发生故障时,利用高频采样频率所采集到的电弧特征;图3为开关电源在发生电弧故障时的波形示意图;其中,图3的上半部分为开关电源在发生故障电弧时,利用低频采样频率所采集到的电弧特征,图3的下半部分为开关电源在发生故障时,利用高频采样频率所采集到的电弧特征;图4为空压机在发生电弧故障时的波形示意图;其中,图4的上半部分为空压机在发生故障电弧时,利用低频采样频率所采集到的电弧特征,图4的下半部分为空压机在发生故障时,利用高频采样频率所采集到的电弧特征;图5为吸尘器在发生电弧故障时的波形示意图;其中,图5的上半部分为吸尘器在发生故障电弧时,利用低频采样频率所采集到的电弧特征,图5的下半部分为吸尘器在发生故障时,利用高频采样频率所采集到的电弧特征;图6为吸尘器在发生电弧故障时的波形示意图;其中,图6的上半部分为吸尘器在发生故障电弧时,利用低频采样频率所采集到的电弧特征,图6的下半部分为吸尘器在发生故障时,利用高频采样频率所采集到的电弧特征;图7为调光器在发生电弧故障时的波形示意图;其中,图7的上半部分为调光器在发生故障电弧时,利用低频采样频率所采集到的电弧特征,图7的下半部分为调光器在发生故障时,利用高频采样频率所采集到的电弧特征。从图2到图7可以看出,利用高频采样频率可以从目标电弧中采集得到更为明显、更具有区分度的电弧特征。
然后,再对高频采样信号进行预处理,得到处理采样信号,以将高频采样信号中的杂质信号去除,并方便后续流程的处理,之后,再对处理采样信号进行特征提取,得到目标电弧特征,最后,再将目标电弧特征输入到神经网络模型中,就可以根据神经网络模型的输出结果判断出目标电弧是否为故障电弧。
可以理解的是,在现有技术中,对目标电弧进行分类时,一般是利用设定阈值的方法来对电弧进行分类,但是,此种分类方法很难适应不同的负载环境。而神经网络模型不仅具有强大的数据学习能力,而且,还具有良好的数据分类能力,所以,当利用神经网络模型来对目标电弧进行识别判断时,就可以进一步提高在对目标电弧进行识别过程中的准确性与可靠性。
可见,在本实施例中,是预先获取正常电弧和故障电弧所对应的电弧特征,得到训练数据,之后,再基于神经网络算法,利用训练数据建立神经网络模型;在对目标电弧进行故障识别的过程中,首先是以高频对目标电弧进行采样,得到高频采样信号,然后,再对高频采样信号进行预处理,得到处理采样信号,并对处理采样信号进行特征提取,得到目标电弧特征,最后,再将目标电弧特征输入至神经网络模型,得到目标输出结果,并根据目标输出结果判断目标电弧是否为故障电弧。显然,因为通过高频来对目标电弧进行采样时,可以获取得到目标电弧中数量更多的电弧特征,并且,由于神经网络模型具有良好的数据分类能力,所以,当利用神经网络模型对目标电弧进行判断时,就可以进一步提高故障电弧检测结果的准确性与可靠性。
基于上述实施例,本实施例对技术方案作进一步的说明与优化,作为一种优选的实施方式,上述步骤:以高频对目标电弧进行采样,得到高频采样信号的过程,包括:
以1GHz的采样速率对目标电弧进行采样,得到高频采样信号。
具体的,在本实施例中,是以1GHz的采样速率来对目标电弧进行采样,得到高频采样信号,因为1GHz的采样速率远远高于现有技术中对目标电弧进行采样的采样速率,这样就会更加有利于后续过程中对目标电弧的特征提取过程。
另外,在实际应用中,可以利用ASIC(Application Specific IntegratedCircuit,专用集成电路)来以1GHz的采样速率来对目标电弧进行采样,因为通过这样的采样方式不仅可以提取到目标电弧中频率更高的采样成分,而且,ASIC相比于其它集成芯片而言,具有更强的抗干扰能力和更低的系统功耗。
基于上述实施例,本实施例对技术方案作进一步的说明与优化,作为一种优选的实施方式,上述步骤:对高频采样信号进行预处理,得到处理采样信号的过程,包括:
对高频采样信号进行滤波,得到滤波采样信号。
对滤波采样信号进行自适应增益调整,并滤除滤波采样信号中的低频信号,得到处理采样信号。
在本实施例中,是提供了一种对高频采样信号进行预处理的具体实现方法,也即,在对高频采样信号进行预处理的过程中,首先是对高频采样信号进行滤波,去除高频采样信号中的杂质信号,得到滤波采样信号,之后,再对滤波采样信号进行自适应增益调整,并滤除滤波采样信号中的低频信号,得到处理采样信号。
显然,通过本实施例所提供的技术方案,就可以相对避免杂质信号对电弧故障识别结果的影响与干扰。
基于上述实施例,本实施例对技术方案作进一步的说明与优化,作为一种优选的实施方式,上述步骤:对处理采样信号进行特征提取,得到目标电弧特征的过程,包括:
剔除处理采样信号中的非局部极值点,得到目标采样点;
按照时间顺序依次从目标采样点中选取十个采样点,得到目标采样序列;其中,目标采样序列包括采样点D、E、F、G、H、I、J、M、P和S;
对目标采样序列进行特征提取,得到幅值和离散度、幅值比离散度、始终点幅值和离散度、始终点幅值比离散度、时间比离散度、波形个数、斜率离散度、斜率差分离散度以及点和离散度;
其中,幅值和离散度的计算表达式为:
A1=|VDF|+|VFH|+|VHJ|+|VJP|;
幅值比离散度的计算表达式为:
Figure BDA0002857600680000091
式中,Vij中的i和j分别代表目标采样序列内各采样点的序列号,VDF=max(yD,yE,yF)-min(yD,yE,yF),VFH=max(yF,yG,yH)-min(yF,yG,yH),VHJ=max(yH,yI,yJ)-min(yH,yI,yJ),VJP=max(yJ,yM,yP)-min(yJ,yM,yP),yD、yE、yF、yG、yH、yI、yJ、yM、yP分别为采样点D、E、F、G、H、I、J、M和P在世界坐标系中的纵坐标值;
始终点幅值和离散度的计算表达式为:
A3=|VSDF|+|VSFH|+|VSHJ|+|VSJP|;
始终点幅值比离散度的计算表达式为:
Figure BDA0002857600680000101
式中,VSij中的i和j分别代表目标采样序列内各采样点的序列号,VSDF=|yD-yF|,VSFH=|yF-yH|,VSHJ=|yH-yJ|,VSJP=|yJ-yP|,VDF=max(yD,yE,yF)-min(yD,yE,yF),VFH=max(yF,yG,yH)-min(yF,yG,yH),VHJ=max(yH,yI,yJ)-min(yH,yI,yJ),VJP=max(yJ,yM,yP)-min(yJ,yM,yP),yD、yE、yF、yG、yH、yI、yJ、yM、yP分别为采样点D、E、F、G、H、I、J、M和P在世界坐标系中的纵坐标值;
时间比离散度的计算表达式为:
Figure BDA0002857600680000102
式中,T1为采样点D和F之间的时间间隔,T2为采样点F和H之间的时间间隔,T3为采样点J和H之间的时间间隔,T4为采样点P和J之间的时间间隔;
波形个数的计算表达式为:
Figure BDA0002857600680000103
式中,
Figure BDA0002857600680000104
表示向下取整,length(y)为目标采样序列的长度;
斜率离散度的计算表达式为:
A7=|XEF-XDE|+|XFG-XEF|+|XGH-XFG|+|XHI-XGH|+|XIJ-XHI|+|XJM-XIJ|+|XMP-XJM|
斜率差分离散度的计算表达式为:
A8=|XFH-XDF|+|XHJ-XFH|+|XJP-XHJ|;
点和离散度的计算表达式为:
A9=|yD|+|yE|+|yF|+|yG|+|yH|+|yI|+|yJ|+|yM|+|yP|;
式中,XFH=|XGH-XFG|、XDF=|XEF-XDE|、XHJ=|XIJ-XHI|、XJP=|XMP-XJM|、XEF=|yE-yF|,XDE=|yD-yE|,XFG=|yF-yG|,XGH=|yG-yH|,XHI=|yH-yI|,XIJ=|yI-yJ|,XJM=|yJ-yM|,XMP=|yM-yP|;yD、yE、yF、yG、yH、yI、yJ、yM、yP分别为采样点D、E、F、G、H、I、J、M和P在世界坐标系中的纵坐标值。
在本实施例中,是提供了一种对处理采样信号进行特征提取的具体实施方法,请参见图8和图9,图8为目标电弧经过预处理之后,得到处理采样信号的波形示意图,图9为对目标电弧的处理采样信号进行特征提取时的波形示意图。
在获取得到目标电弧的处理采样信号之后,首先是剔除处理采样信号中的非局部极值点,得到目标采样点,然后,再按照时间顺序依次从目标采样点中选取十个采样点,得到目标采样点序列;其中,目标采样序列包括采样点D、E、F、G、H、I、J、M、P和S;最后,再提取目标采样序列中的九个电弧特征,也即,幅值和离散度、幅值比离散度、始终点幅值和离散度、始终点幅值比离散度、时间比离散度、波形个数、斜率离散度、斜率差分离散度以及点和离散度。
基于上述实施例,本实施例对技术方案作进一步的说明与优化,作为一种优选的实施方式,上述步骤:基于神经网络算法,利用训练数据建立神经网络模型的过程,包括:
基于卷积神经网络算法,利用训练数据建立神经网络模型。
可以理解的是,基于神经网络算法衍生出的算法多种多样,比如:BP(BackPropagation)神经网络算法、RBF(Radial Basis Function,径向基)神经网络算法、感知器神经网络算法以及自组织神经网络算法等等。
具体的,在本实施例中,是基于卷积神经网络算法和训练数据来建立神经网络模型,因为卷积神经网络算法相比于其它类型的神经网络算法而言,不仅对高维数据的处理过程无较大压力,而且,利用卷积神经网络算法也无需对特征参数进行手动提取,只要设置好算法中的权重就可以取得最佳的分类效果,所以,在本实施例中,是基于卷积神经网络算法和训练数据来建立神经网络模型。
请参见图10,图10为基于卷积神经网络算法所创建的神经网络模型的示意图,其中,该神经网络模型是由卷积层、池化层和全连接层所构成,并且,在该神经网络模型中,卷积层是使用三个3*3的卷积核对目标电弧特征进行卷积运算,之后,是利用池化层来对卷积结果进行降维运算,也即,池化层将目标电弧特征降维成一个一维向量提供给全连接层对目标电弧进行故障识别。
显然,通过本实施例所提供的技术方案,就可以进一步提高在对目标电弧进行故障识别时的准确性。
基于上述实施例,本实施例对技术方案作进一步的说明与优化,作为一种优选的实施方式,上述步骤:将目标电弧特征输入至神经网络模型,得到目标输出结果的过程,包括:
将目标电弧特征转换为归一化特征矩阵,并将归一化特征矩阵输入至神经网络模型,得到目标输出结果。
在本实施例中,为了进一步提高神经网络模型对目标电弧的识别速度,在获取得到目标电弧的目标电弧特征之后,是将目标电弧特征转换为归一化特征矩阵,因为归一化特征矩阵能够显著提高神经网络模型的计算收敛速度,所以,当将归一化特征矩阵输入到神经网络模型中时,就可以进一步加快神经网络模型对目标电弧进行故障识别时的识别速度。
为了使得本领域技术人员能够更为清楚、明白本发明的实现原理,本实施例通过一个具体例子进行说明。请参见图11,图11为本发明实施例所提供的一种在对目标电弧进行故障识别时的示意图。
在实际操作过程中,首先是利用采样电路对目标电流进行采样,得到目标电弧,之后,再以1GHz的采样频率对目标电弧进行采样,得到高速采样信号,其次,再将高速采样信号分别通过带通滤波器1、带通滤波器2和带通滤波器3进行滤波,其中,带通滤波器1、带通滤波器2和带通滤波器3的带通频段分别为500KHz~50MHz、50MHz~100MHz和100MHz~200MHz,并以此来提取目标电弧在不同频段时的高频采样信号。
然后,再将滤波之后的每一个10ms的半波等分为500段,得到时长约为20us的分段波形,并分别对各个分段波形进行增益调整和分时处理,得到处理采样信号,之后,再提取每段处理采样信号的幅值和离散度、幅值比离散度、始终点幅值和离散度、始终点幅值比离散度、时间比离散度、波形个数、斜率离散度、斜率差分离散度以及点和离散度。与此同时,再利用过零检测电路所触发的过零信号进行特征统计,并将统计后的电弧特征输入至神经网络模型中,就可以利用神经网络模型对目标电弧进行故障识别。
需要说明的是,在本实施例中,当获取得到500段处理采样信号时,就会得到数量为500维的特征向量,而每一维的特征向量具有9个电弧特征,所以,这样利用这500*9个电弧特征就可以组成一个归一化特征矩阵,之后,再将归一化特征矩阵输入至神经网络模型,就可以根据神经网络模型的输出结果判断出目标电弧是否为故障电弧。
显然,因为通过高频来对目标电弧进行采样时,就可以获取得到目标电弧中数量更多的电弧特征,并且,由于神经网络模型具有良好的数据分类能力,所以,当利用神经网络模型对目标电弧进行判断时,就可以进一步提高故障电弧检测结果的准确性与可靠性。
请参见图12,图12为本发明实施例所提供的一种故障电弧的识别装置的结构图,该识别装置包括:
信号采样模块21,用于以高频对目标电弧进行采样,得到高频采样信号;
信号处理模块22,用于对高频采样信号进行预处理,得到处理采样信号;
特征提取模块23,用于对处理采样信号进行特征提取,得到目标电弧特征;
结果判断模块24,用于将目标电弧特征输入至神经网络模型,得到目标输出结果,并根据目标输出结果判断目标电弧是否为故障电弧;
其中,神经网络模型的创建过程包括:
预先获取正常电弧和故障电弧所对应的电弧特征,得到训练数据;
基于神经网络算法,利用训练数据建立神经网络模型。
本发明实施例所提供的一种故障电弧的识别装置,具有前述所公开的一种故障电弧的识别方法所具有的有益效果。
请参见图13,图13为本发明实施例所提供的一种故障电弧的识别设备的结构图,该识别设备包括:
存储器31,用于存储计算机程序;
处理器32,用于执行计算机程序时实现如前述所公开的一种故障电弧的识别方法的步骤。
本发明实施例所提供的一种故障电弧的识别设备,具有前述所公开的一种故障电弧的识别方法所具有的有益效果。
相应的,本发明实施例还公开了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如前述所公开的一种故障电弧的识别方法的步骤。
本发明实施例所提供的一种计算机可读存储介质,具有前述所公开的一种故障电弧的识别方法所具有的有益效果。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明所提供的一种故障电弧的识别方法、装置、设备及介质进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (9)

1.一种故障电弧的识别方法,其特征在于,包括:
以高频对目标电弧进行采样,得到高频采样信号;
对所述高频采样信号进行预处理,得到处理采样信号;
对所述处理采样信号进行特征提取,得到目标电弧特征;
将所述目标电弧特征输入至神经网络模型,得到目标输出结果,并根据所述目标输出结果判断所述目标电弧是否为故障电弧;
其中,所述神经网络模型的创建过程包括:
预先获取正常电弧和故障电弧所对应的电弧特征,得到训练数据;
基于神经网络算法,利用所述训练数据建立所述神经网络模型。
2.根据权利要求1所述的识别方法,其特征在于,所述以高频对目标电弧进行采样,得到高频采样信号的过程,包括:
以1GHz的采样速率对所述目标电弧进行采样,得到所述高频采样信号。
3.根据权利要求1所述的识别方法,其特征在于,所述对所述高频采样信号进行预处理,得到处理采样信号的过程,包括:
对所述高频采样信号进行滤波,得到滤波采样信号。
对所述滤波采样信号进行自适应增益调整,并滤除所述滤波采样信号中的低频信号,得到所述处理采样信号。
4.根据权利要求1所述的识别方法,其特征在于,所述对所述处理采样信号进行特征提取,得到目标电弧特征的过程,包括:
剔除所述处理采样信号中的非局部极值点,得到目标采样点;
按照时间顺序依次从所述目标采样点中选取十个采样点,得到目标采样序列;其中,所述目标采样序列包括采样点D、E、F、G、H、I、J、M、P和S;
对所述目标采样序列进行特征提取,得到幅值和离散度、幅值比离散度、始终点幅值和离散度、始终点幅值比离散度、时间比离散度、波形个数、斜率离散度、斜率差分离散度以及点和离散度;
其中,所述幅值和离散度的计算表达式为:
A1=|VDF|+|VFH|+|VHJ|+|VJP|;
所述幅值比离散度的计算表达式为:
Figure FDA0002857600670000021
式中,Vij中的i和j分别代表所述目标采样序列内各采样点的序列号,VDF=max(yD,yE,yF)-min(yD,yE,yF),VFH=max(yF,yG,yH)-min(yF,yG,yH),VHJ=max(yH,yI,yJ)-min(yH,yI,yJ),VJP=max(yJ,yM,yP)-min(yJ,yM,yP),yD、yE、yF、yG、yH、yI、yJ、yM、yP分别为采样点D、E、F、G、H、I、J、M和P在世界坐标系中的纵坐标值;
所述始终点幅值和离散度的计算表达式为:
A3=|VSDF|+|VSFH|+|VSHJ|+|VSJP|;
所述始终点幅值比离散度的计算表达式为:
Figure FDA0002857600670000022
式中,VSij中的i和j分别代表所述目标采样序列内各采样点的序列号,VSDF=|yD-yF|,VSFH=|yF-yH|,VSHJ=|yH-yJ|,VSJP=|yJ-yP|,VDF=max(yD,yE,yF)-min(yD,yE,yF),VFH=max(yF,yG,yH)-min(yF,yG,yH),VHJ=max(yH,yI,yJ)-min(yH,yI,yJ),VJP=max(yJ,yM,yP)-min(yJ,yM,yP),yD、yE、yF、yG、yH、yI、yJ、yM、yP分别为采样点D、E、F、G、H、I、J、M和P在世界坐标系中的纵坐标值;
所述时间比离散度的计算表达式为:
Figure FDA0002857600670000023
式中,T1为采样点D和F之间的时间间隔,T2为采样点F和H之间的时间间隔,T3为采样点J和H之间的时间间隔,T4为采样点P和J之间的时间间隔;
所述波形个数的计算表达式为:
Figure FDA0002857600670000024
式中,
Figure FDA0002857600670000025
表示向下取整,length(y)为所述目标采样序列的长度;
所述斜率离散度的计算表达式为:
A7=|XEF-XDE|+|XFG-XEF|+|XGH-XFG|+|XHI-XGH|+|XIJ-XHI|+|XJM-XIJ|+|XMP-XJM|
所述斜率差分离散度的计算表达式为:
A8=|XFH-XDF|+|XHJ-XFH|+|XJP-XHJ|;
所述点和离散度的计算表达式为:
A9=|yD|+|yE|+|yF|+|yG|+|yH|+|yI|+|yJ|+|yM|+|yP|;
式中,XFH=|XGH-XFG|、XDF=|XEF-XDE|、XHJ=|XIJ-XHI|、XJP=|XMP-XJM|、XEF=|yE-yF|,XDE=|yD-yE|,XFG=|yF-yG|,XGH=|yG-yH|,XHI=|yH-yI|,XIJ=|yI-yJ|,XJM=|yJ-yM|,XMP=|yM-yP|;yD、yE、yF、yG、yH、yI、yJ、yM、yP分别为采样点D、E、F、G、H、I、J、M和P在世界坐标系中的纵坐标值。
5.根据权利要求1所述的识别方法,其特征在于,所述基于神经网络算法,利用所述训练数据建立所述神经网络模型的过程,包括:
基于卷积神经网络算法,利用所述训练数据建立所述神经网络模型。
6.根据权利要求1至5任一项所述的识别方法,其特征在于,所述将所述目标电弧特征输入至神经网络模型,得到目标输出结果的过程,包括:
将所述目标电弧特征转换为归一化特征矩阵,并将所述归一化特征矩阵输入至所述神经网络模型,得到所述目标输出结果。
7.一种故障电弧的识别装置,其特征在于,包括:
信号采样模块,用于以高频对目标电弧进行采样,得到高频采样信号;
信号处理模块,用于对所述高频采样信号进行预处理,得到处理采样信号;
特征提取模块,用于对所述处理采样信号进行特征提取,得到目标电弧特征;
结果判断模块,用于将所述目标电弧特征输入至神经网络模型,得到目标输出结果,并根据所述目标输出结果判断所述目标电弧是否为故障电弧;
其中,所述神经网络模型的创建过程包括:
预先获取正常电弧和故障电弧所对应的电弧特征,得到训练数据;
基于神经网络算法,利用所述训练数据建立所述神经网络模型。
8.一种故障电弧的识别设备,其特征在于,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如权利要求1至6任一项所述的一种故障电弧的识别方法的步骤。
9.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述的一种故障电弧的识别方法的步骤。
CN202011552452.2A 2020-01-02 2020-12-24 一种故障电弧的识别方法、装置、设备及介质 Active CN112505512B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010000565 2020-01-02
CN2020100005655 2020-01-02

Publications (2)

Publication Number Publication Date
CN112505512A true CN112505512A (zh) 2021-03-16
CN112505512B CN112505512B (zh) 2023-01-10

Family

ID=74923375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011552452.2A Active CN112505512B (zh) 2020-01-02 2020-12-24 一种故障电弧的识别方法、装置、设备及介质

Country Status (5)

Country Link
US (1) US11831138B2 (zh)
EP (1) EP4024063B1 (zh)
CN (1) CN112505512B (zh)
CA (1) CA3153759C (zh)
WO (1) WO2021136053A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376474A (zh) * 2021-04-26 2021-09-10 国网天津市电力公司城南供电分公司 一种基于广义s变换的神经网络故障电弧识别系统及方法
CN114330452A (zh) * 2021-12-31 2022-04-12 河北工业大学 训练方法、电弧故障检测方法、装置、电子设备及介质
CN117076933A (zh) * 2023-10-16 2023-11-17 锦浪科技股份有限公司 电弧判断模型的训练、光伏直流电弧检测方法及计算设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018119A1 (fr) 2022-07-19 2024-01-25 Hager-Electro Sas Procede, dispositif, appareillage de detection d'un defaut d'arc electrique

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090310755A1 (en) * 2008-06-13 2009-12-17 Conexant Systems, Inc. Systems and methods for performing loop analysis based on un-calibrated single-ended line testing
CN101696986A (zh) * 2009-10-26 2010-04-21 吴为麟 故障电弧检测方法及保护装置
CN203981767U (zh) * 2014-06-14 2014-12-03 三科电器集团有限公司 故障电弧采样与检测装置
CN204028283U (zh) * 2014-05-31 2014-12-17 浙江合极电气科技有限公司 一种新型的故障电弧检测装置
CN105718958A (zh) * 2016-01-27 2016-06-29 江苏省电力公司检修分公司 基于线性判别分析和支持向量机的断路器故障诊断方法
CN108646149A (zh) * 2018-04-28 2018-10-12 国网江苏省电力有限公司苏州供电分公司 基于电流特征提取的故障电弧识别方法
CN110320452A (zh) * 2019-06-21 2019-10-11 河南理工大学 一种串联故障电弧检测方法
CN112269110A (zh) * 2020-10-19 2021-01-26 合肥阳光新能源科技有限公司 一种电弧故障判定方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876528B2 (en) * 2000-03-04 2005-04-05 Passi Seymour, Inc. Two winding resonating arc fault sensor which boosts arc fault signals while rejecting arc mimicking noise
GB0104763D0 (en) * 2001-02-27 2001-04-18 Smiths Group Plc Arc detection
CN101706527B (zh) 2009-10-30 2012-01-04 西安交通大学 基于电流高频分量时频特征的电弧故障检测方法
CN103543375B (zh) 2013-08-26 2016-02-10 上海交通大学 基于小波变换和时域混合特征的交流故障电弧检测方法
CN103823179A (zh) * 2014-01-15 2014-05-28 云南电力试验研究院(集团)有限公司电力研究院 一种非接触式空间高频高压断路器动作特性测量方法
US20160370420A1 (en) * 2015-06-16 2016-12-22 Clinton Instrument Company Apparatus and method for spark fault detection and typing
CN105223476A (zh) 2015-09-16 2016-01-06 北京芯同汇科技有限公司 一种基于高频特征的故障电弧检测方法与装置
CN105425118B (zh) 2015-10-29 2018-09-04 山东建筑大学 一种多信息融合故障电弧检测方法及装置
CN108535589B (zh) 2018-05-21 2021-04-06 彭浩明 一种故障电弧检测方法及装置
CN110376489B (zh) * 2019-08-13 2021-07-27 南京东博智慧能源研究院有限公司 一种智能配电网故障电弧检测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090310755A1 (en) * 2008-06-13 2009-12-17 Conexant Systems, Inc. Systems and methods for performing loop analysis based on un-calibrated single-ended line testing
CN101696986A (zh) * 2009-10-26 2010-04-21 吴为麟 故障电弧检测方法及保护装置
CN204028283U (zh) * 2014-05-31 2014-12-17 浙江合极电气科技有限公司 一种新型的故障电弧检测装置
CN203981767U (zh) * 2014-06-14 2014-12-03 三科电器集团有限公司 故障电弧采样与检测装置
CN105718958A (zh) * 2016-01-27 2016-06-29 江苏省电力公司检修分公司 基于线性判别分析和支持向量机的断路器故障诊断方法
CN108646149A (zh) * 2018-04-28 2018-10-12 国网江苏省电力有限公司苏州供电分公司 基于电流特征提取的故障电弧识别方法
CN110320452A (zh) * 2019-06-21 2019-10-11 河南理工大学 一种串联故障电弧检测方法
CN112269110A (zh) * 2020-10-19 2021-01-26 合肥阳光新能源科技有限公司 一种电弧故障判定方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S. ARUNACHALAM ET AL: "A Parametric Model Approach to Arc Fault Detection for DC and AC Power Systems", 《CONFERENCE RECORD OF THE 2006 IEEE INDUSTRY APPLICATIONS CONFERENCE FORTY-FIRST IAS ANNUAL MEETING》 *
殷浩楠: "低压故障电弧特征分析与模式识别", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 *
贾霄翔: "航空交流故障电弧的试验研究与特征提取", 《万方学位论文》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376474A (zh) * 2021-04-26 2021-09-10 国网天津市电力公司城南供电分公司 一种基于广义s变换的神经网络故障电弧识别系统及方法
CN114330452A (zh) * 2021-12-31 2022-04-12 河北工业大学 训练方法、电弧故障检测方法、装置、电子设备及介质
CN117076933A (zh) * 2023-10-16 2023-11-17 锦浪科技股份有限公司 电弧判断模型的训练、光伏直流电弧检测方法及计算设备
CN117076933B (zh) * 2023-10-16 2024-02-06 锦浪科技股份有限公司 电弧判断模型的训练、光伏直流电弧检测方法及计算设备

Also Published As

Publication number Publication date
US11831138B2 (en) 2023-11-28
EP4024063A4 (en) 2023-01-11
EP4024063B1 (en) 2024-03-20
EP4024063A1 (en) 2022-07-06
US20220390501A1 (en) 2022-12-08
CA3153759A1 (en) 2021-07-08
CA3153759C (en) 2023-04-04
WO2021136053A1 (zh) 2021-07-08
EP4024063C0 (en) 2024-03-20
CN112505512B (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
CN112505512B (zh) 一种故障电弧的识别方法、装置、设备及介质
CN113049922B (zh) 一种采用卷积神经网络的故障电弧信号检测方法
CN108535589B (zh) 一种故障电弧检测方法及装置
US10790779B2 (en) Systems and methods for determining arc events using wavelet decomposition and support vector machines
Zhang et al. A new method for on-line monitoring discharge pulse in WEDM-MS process
JP4760614B2 (ja) 信号識別装置の学習データの選択方法
Tong et al. Detection and classification of power quality disturbances based on wavelet packet decomposition and support vector machines
CN113297786B (zh) 一种基于半监督式机器学习的低压故障电弧感知方法
CN113920062A (zh) 一种红外热成像电力设备故障检测方法
Khan et al. XPQRS: Expert power quality recognition system for sensitive load applications
CN113298124B (zh) 一种基于参数匹配的多层次直流故障电弧检测方法
CN113514724A (zh) 光伏系统及其电弧检测方法、装置
Ahmad et al. Data-based fault diagnosis of power cable system: comparative study of k-NN, ANN, random forest, and CART
CN113589119A (zh) 一种基于软阈值函数的局部放电故障检测方法
Aggarwal et al. Recognition of voltage sag causes using vector quantization based orthogonal wavelet
CN112348159A (zh) 一种故障电弧神经网络优化训练方法
Nandi et al. Classification of Power Quality Disturbances using Artificial Intelligence: A Review
CN116304975A (zh) 一种基于多特征融合的电弧模型判别方法、装置及介质
CN114155878B (zh) 一种人工智能检测系统、方法和计算机程序
Veena et al. Classification of power quality disturbances using time/frequency domain features
Mohammed et al. Distribution Power System Protected by Petersen Coil: Detection of Single Line to Ground Fault Using Deep Learning
CN117743770A (zh) 一种基于滑动窗的标准差nilm事件检测方法
Meyer Power quality event analysis using wavelet feature based fuzzy classification
CN116312548A (zh) 一种针对说话人识别系统对抗样本的通用检测系统及方法
Huang et al. Human emotion recognition using the adaptive sub-layer-compensation based facial edge detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant