CN112504272B - 一种快速无人机路径重构方法 - Google Patents

一种快速无人机路径重构方法 Download PDF

Info

Publication number
CN112504272B
CN112504272B CN202010674946.1A CN202010674946A CN112504272B CN 112504272 B CN112504272 B CN 112504272B CN 202010674946 A CN202010674946 A CN 202010674946A CN 112504272 B CN112504272 B CN 112504272B
Authority
CN
China
Prior art keywords
planned path
path
representing
new
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010674946.1A
Other languages
English (en)
Other versions
CN112504272A (zh
Inventor
郑多
裴培
林德福
宋韬
李斌
范世鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202010674946.1A priority Critical patent/CN112504272B/zh
Publication of CN112504272A publication Critical patent/CN112504272A/zh
Application granted granted Critical
Publication of CN112504272B publication Critical patent/CN112504272B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种快速无人机路径重构方法,该方法在探测到路径中存在障碍物时,将障碍物模拟成椭圆形,利用凸优化在求解优化问题的全局优化和快速求解的特性,快速重构出可以规避椭圆形障碍物的新的规划路径,为了确保新的规划路径的准确与可靠性,再通过迭代的方式进一步修正该规划路径,直至基本达到稳态为止。

Description

一种快速无人机路径重构方法
技术领域
本发明涉及无人机的自动路径规划,具体涉及一种快速无人机路径重构方法。
背景技术
无人机在按照预先设定的航迹飞行过程中,由于环境变化,可能会突然出现障碍物,无人机需要在飞行过程中对预先设定的航迹进行重构,按照新的路径进行飞行作业。
但是现有技术中,重新规划路径需要的信息很多,解算过程复杂,解算耗时较长,难以实时提供新的规划路径;而且自动规划的路径受到障碍物外形尺寸的影响较大,往往需要绕更远的路,消耗更多的时间,在实际工作过程中,一般都是通过人工控制的方式来避开障碍物,自动化程度较低。
由于上述原因,本发明人对现有的无人机路径规划方法做了深入研究,以期待设计出一种能够解决上述问题的新的路径规划方法。
发明内容
为了克服上述问题,本发明人进行了锐意研究,设计出一种快速无人机路径重构方法,该方法在探测到路径中存在障碍物时,将障碍物模拟成椭圆形,利用凸优化在求解优化问题的全局优化和快速求解的特性,快速重构出可以规避椭圆形障碍物的新的规划路径,为了确保新的规划路径的准确与可靠性,再通过迭代的方式进一步修正该规划路径,直至基本达到稳态为止,从而完成本发明。
具体来说,本发明的目的在于提供以一种快速无人机路径重构方法,该方法包括如下步骤:
步骤1,通过安装在无人机上的探测器实时探测无人机原始规划路径中是否存在障碍物;
步骤2,在发现原始规划路径中存在障碍物时,探测获知障碍物的圆心位置、障碍物的长轴半径和短轴半径。
步骤3,通过重构获得新的规划路径。
其中,在所述步骤3中,待获得的新的规划路径(xv[i],yv[i])满足下式(一)和式(二)中的约束:
Figure BDA0002583710540000021
Figure BDA0002583710540000022
且所述待获得的新的规划路径(xv[i],yv[i])能够使得目标函数取最小值,所述取最小值的目标函数如下式(三)中所述:
Figure BDA0002583710540000023
其中,χc[i]表示cos(ψv)[i],χs[i]表示sin(ψv)[i],v表示无人机当前的速度,χa[i]表示
Figure BDA0002583710540000024
amax表示无人机最大允许的加速度,ψvmax表示无人机最大允许的飞行方位角,
xv[i]表示新的规划路径中离散点i处的X轴坐标,yv[i]表示新的规划路径中离散点i处的Y轴坐标,
xv[i+1]表示新的规划路径中离散点i+1处的X轴坐标,yv[i+1]表示新的规划路径中离散点i+1处的Y轴坐标,χs[i+1]表示新的规划路径中离散点i+1处的速度方位角正弦值;
td表示离散的时间步长;
Figure BDA0002583710540000037
表示原始规划路径中第N个离散点处的Y轴坐标;
A1、A2和A3分别表示轨迹规划计算的中间变量。
其中,A1、A2和A3通过下式获得:
Figure BDA0002583710540000031
Figure BDA0002583710540000032
Figure BDA0002583710540000033
其中,
Figure BDA0002583710540000034
表示原始规划路径中离散点i处的X轴坐标,
Figure BDA0002583710540000035
表示原始规划路径中离散点i处的Y轴坐标;
xn表示第n个障碍物的圆心的X轴坐标,yn表示第n个障碍区圆心的Y轴坐标;
an表示第n个障碍物的长半轴,bn表示第n个障碍物的短半轴。
其中,rn通过下式获得:
Figure BDA0002583710540000036
其中,在步骤3中,在得到新的规划路径后,对得到的新的规划路径进行迭代,以便于进一步优化规划路径,得到最终的规划路径。
其中,所述迭代过程包括如下子步骤:
子步骤1,根据得到的新的规划路径解算出中间变量A1′、A2′和A3′;
子步骤2,将中间变量A1′、A2′和A3′代入到约束式(五)中,
通过使得待获得的新的规划路径(xv[i],yv[i])满足约束式(一)和式(五),且所述待获得的新的规划路径(xv[i],yv[i])能够使得目标函数J取最小值,得到该待获得的新的规划路径;
Figure BDA0002583710540000041
Figure BDA0002583710540000042
所述取最小值的目标函数如下式(三)中所述:
Figure BDA0002583710540000043
子步骤3,重复子步骤1和子步骤2,实时解算相邻两条规划路径之间的偏差,以确定迭代是否终止。
其中,在子步骤3中,若相邻两条规划路径之间的偏差值不小于设定值ε,利用最后一次迭代得到的新的规划路径解算中间变量A1′、A2′和A3′,即继续重复子步骤1;若相邻两条规划路径之间的偏差值小于设定值ε,即下式(四)成立时,停止迭代,最后一次迭代得到的新的规划路径即为最终的规划路径;
||Yk-Yk-1||<ε   (四)
其中,k表示迭代次数,Yk表示第k次迭代得到的规划路径,
Figure BDA0002583710540000051
优选地,ε的取值为
Figure BDA0002583710540000052
其中,中间变量A1′、A2′和A3′通过下式获得:
Figure BDA0002583710540000053
Figure BDA0002583710540000054
Figure BDA0002583710540000055
中间变量rn′通过下式获得:
Figure BDA0002583710540000056
其中,
Figure BDA0002583710540000057
表示上一次迭代得到的规划路径中离散点i处的X轴坐标,
Figure BDA0002583710540000058
表示上一次迭代得到的规划路径中离散点i处的Y轴坐标。
本发明所具有的有益效果包括:
根据本发明提供的快速无人机路径重构方法中的计算过程简单,计算迅速,可以在1秒以内实现求解,得到新的规划路径,从而可以实现实时规划控制。
附图说明
图1示出根据本发明一种快速无人机路径重构方法整体逻辑流程图;
图2示出根据本发明实验例中的规划路径及障碍物示意图。
具体实施方式
下面通过附图和实施例对本发明进一步详细说明。通过这些说明,本发明的特点和优点将变得更为清楚明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
根据本发明提供的快速无人机路径重构方法,如图1中所示,该方法包括如下步骤:
步骤1,通过安装在无人机上的探测器实时探测无人机原始规划路径中是否存在障碍物;
步骤2,在发现原始规划路径中存在障碍物时,探测获知障碍物的圆心位置、障碍物的长轴半径和短轴半径,若未发现障碍物,控制飞行器继续沿着原始规划路径飞行,直至到达目标位置;
步骤3,通过重构获得新的规划路径。
优选地,所述探测器具体包括雷达探测器,红外感应探测器,超声波探测器,激光距离感应器,双目视觉探测器中的一种或多种。
在一个优选的实施方式中,在步骤1中,无人机在起飞之前其内部已经装载了地图和飞行路径,其在飞行过程中实时通过探测器对环境进行建模,在地图的绝对坐标系中观察建模的障碍物是否在飞行的路径上,如果障碍物在飞行路径上,则重新进行路径规划。
在一个优选的实施方式中,在步骤2中,通过雷达探测障碍的位置和方向,通过双摄像头组成双目视觉探系统来探测距离,或者通过激光距离传感器探测距离,通过摄像头拍摄障碍物的照片,并分析障碍物的轮廓,再按照最大轮廓将障碍物圆整为椭圆形,进而获得障碍物的圆心位置、长轴半径和短轴半径,在圆整的过程中,确保障碍物完全落入到椭圆内即可。
本申请中涉及到的路径都是指二维平面上的路径,对应的坐标点及障碍物也都是特指二维平面上的坐标点及障碍物。
本申请中,每条规划路径都被离散为N个点,所述N的取值与路径的长短有关,一般为100~500。
在一个优选的实施方式中,在所述步骤3中,待获得的新的规划路径由(xv[i],yv[i])表示;其中,xv[i]表示新的规划路径中离散点i处的X轴坐,yv[i]表示新的规划路径中离散点i处的Y轴坐标;离散点i表示规划路径中的任意一个离散点。
所述待获得的新的规划路径(xv[i],yv[i])满足下式(一)和式(二)中的约束:
Figure BDA0002583710540000071
Figure BDA0002583710540000081
且所述待获得的新的规划路径(xv[i],yv[i])能够使得目标函数J取最小值,所述取最小值的目标函数如下式(三)中所述:
Figure BDA0002583710540000082
其中,χc[i]表示cos(ψv)[i],即新的规划路径中离散点i的速度方位角ψv的余弦值;χs[i]表示sin(ψv)[i],即新的规划路径中离散点i的速度方位角ψv的正弦值;v表示无人机当前的速度,通过安装在无人机上的GPS和无人机自身惯导获得;χa[i]表示
Figure BDA0002583710540000083
amax表示无人机最大允许的加速度,是无人机控制系统的设定值;ψvmax表示无人机最大允许的飞行方位角,是无人机控制系统的设定值;xv表示新的规划路径中离散坐标位置的X轴坐标;yv表示新的规划路径中离散坐标位置的Y轴坐标;yv[1]表示新的规划路径中第一个离散点处的Y轴坐标,yv[2]表示新的规划路径中第二个离散点处的Y轴坐标,yv[N]表示新的规划路径中第N个离散点处的Y轴坐标;cosψv表示速度方位角的余弦值;
Figure BDA0002583710540000084
表示速度方位角的角速度;χs[i]表示新的规划路径中离散点i处的速度方位角正弦值。
td表示离散的时间步长,通过预估的飞行时间tf除以离散点个数N获得;所述预估的飞行时间tf是由规划路径中剩余路程除以飞行器速度得到的。
xv[i+1]表示新的规划路径中离散点i+1处的X轴坐标,yv[i+1]表示新的规划路径中离散点i+1处的Y轴坐标,χs[i+1]表示新的规划路径中离散点i+1处的速度方位角正弦值。
Figure BDA0002583710540000091
表示原始规划路径中第一个离散点处的Y轴坐标,
Figure BDA0002583710540000092
表示原始规划路径中第二个离散点处的Y轴坐标,
Figure BDA0002583710540000093
表示原始规划路径中第N个离散点处的Y轴坐标。
A1、A2和A3分别表示轨迹规划计算的中间变量,通过下式获得:
Figure BDA0002583710540000094
Figure BDA0002583710540000095
Figure BDA0002583710540000096
其中,
Figure BDA0002583710540000097
表示原始规划路径中离散点i处的X轴坐标,
Figure BDA0002583710540000098
表示原始规划路径中离散点i处的Y轴坐标;
xn表示第n个障碍物的圆心的X轴坐标,通过探测器建模获得;yn表示第n个障碍区圆心的Y轴坐标,通过探测器建模获得。
an表示第n个障碍物的长半轴,bn表示第n个障碍物的短半轴,当具有多个障碍物时,an中的n表示第n个障碍物,每个障碍物都对应计算出一组A1、A2和A3,每组A1、A2和A3都对应一组式(一)和式(二)的约束,即n个障碍物对应有n组式(一)和式(二)的约束。
rn表示轨迹规划过程中的中间变量,通过下式获得:
Figure BDA0002583710540000101
在一个优选的实施方式中,在步骤3中,在得到新的规划路径后,对得到的新的规划路径进行迭代,以便于进一步优化规划路径,得到最终的规划路径;其中,每次迭代都可以得到一条新的规划路径,当相邻两次迭代得到的两条新的规划路径之间偏差小于设定值时,迭代停止,最后一条规划路径即为最终的规划路径。
所述迭代过程包括如下子步骤:
子步骤1,根据得到的新的规划路径解算出中间变量A1′、A2′和A3′,
Figure BDA0002583710540000102
Figure BDA0002583710540000103
Figure BDA0002583710540000104
其中,rn′表示轨迹规划过程中的中间变量,通过下式获得:
Figure BDA0002583710540000105
其中,
Figure BDA0002583710540000106
表示上一次迭代得到的规划路径中离散点i处的X轴坐标,
Figure BDA0002583710540000107
表示上一次迭代得到的规划路径中离散点i处的Y轴坐标。
xn表示第n个障碍物的圆心的X轴坐标,通过探测器建模获得;yn表示第n个障碍区圆心的Y轴坐标,通过探测器建模获得。
an表示第n个障碍物的长半轴,bn表示第n个障碍物的短半轴,当具有多个障碍物时,an中的n表示第n个障碍物,每个障碍物都对应计算出一组A1′、A2′和A3′,每组A1′、A2′和A3′都对应一组式(一)和式(二)的约束,即n个障碍物对应有n组式(一)和式(二)的约束;
子步骤2,将中间变量A1′、A2′和A3′代入到约束式(五)中,
通过使得待获得的新的规划路径(xv[i],yv[i])满足约束式(一)和式(五),且所述待获得的新的规划路径(xv[i],yv[i])能够使得目标函数J取最小值,得到该待获得的新的规划路径;
Figure BDA0002583710540000111
Figure BDA0002583710540000112
所述取最小值的目标函数如下式(三)中所述:
Figure BDA0002583710540000113
子步骤3,实时解算相邻两条规划路径之间的偏差,若相邻两条规划路径之间的偏差值不小于设定值ε,利用最后一次迭代得到的新的规划路径解算中间变量A1′、A2′和A3′,即重复子步骤1;若相邻两条规划路径之间的偏差值小于设定值ε,即下式(四)成立时,停止迭代,最后一次迭代得到的新的规划路径即为最终的规划路径。
||Yk-Yk-1||<ε   (四)
其中,k表示迭代次数,Yk表示第k次迭代得到的规划路径,Yk-1表示第k-1次迭代得到的规划路径,
Figure BDA0002583710540000121
举例说明:
第一次迭代求得的规划路径
Figure BDA0002583710540000122
第二次迭代求得的规划路径
Figure BDA0002583710540000123
第k-1次迭代求得的规划路径
Figure BDA0002583710540000124
第k次迭代求得的规划路径
Figure BDA0002583710540000125
本发明中优选地,ε的取值为
Figure BDA0002583710540000126
单位为米,当该设定值ε取值为(10,10)时,即
Figure BDA0002583710540000127
时;
上述式(四)可以等价改写为:
Figure BDA0002583710540000128
Figure BDA0002583710540000129
这N项中的最大值小于10,且
Figure BDA00025837105400001210
这N项中的最大值也小于10时,上述不等式成立。
通过设置上述迭代及迭代终止条件,即能够兼顾到路径规划的准确性,还能够极大缩短迭代时间,使得从发现障碍物到获得最终的规划路径所需时间控制在1秒内,进而使得无人机能够实时根据障碍物信息沿着相应的新的规划路径飞行。
实验例:
无人机原始规划路径的起点为(0,0),规划路径的终点为(40km,30km);原始规划路径的轨迹如图2中的细实线所示。
在规划路径中存在障碍物,如图2中所示,障碍物为AZ1、AZ2、AZ3、AZ4、AZ5,其具体参数如下:
编号 中心坐标(km) 长轴(km) 短轴(km)
1 (15,10) 5 9
2 (25,10) 3.5 3.5
3 (35,11.5) 5 1.5
4 (25,0) 6 5
5 (26.5,20) 8 5
无人机在从起点起飞后,实时探测障碍物,在探测发现原始规划路径中存在障碍物时,重构新的规划路径(xv[i],yv[i]),使得(xv[i],yv[i])满足约束式(一)和约束式(二);
Figure BDA0002583710540000131
Figure BDA0002583710540000141
且规划路径(xv[i],yv[i])能够使得目标函数取最小值,所述取最小值的目标函数如下式(三)中所述:
Figure BDA0002583710540000142
其中,中间变量A1、A2和A3通过原始规划路径解算;
在得到新的规划路径后,通过上述约束式(一)和约束式(五)进行约束,使得目标函数取最小值,逐步进行重构迭代,
Figure BDA0002583710540000143
其中的中间A1′、A2′和A3′通过上一次迭代得到的规划路径解算,当得到的相邻两条规划路径之间的偏差值小于设定值(9.85,8.33)时,迭代停止。
得到最终的规划路径所用时间为0.9秒,所述最终的规划路径如图2中的虚线所示。
对比例:
无人机原始规划路径的起点为(0,0),规划路径的终点为(40km,30km),规划路径中存在的障碍物与实验例中的相同,
采用GPOPS(通用非线性规划求解器)获得新的规划路径,用时1052.4秒,得到的规划路径如图2中的点划线所示。
对比图2中的点划线和虚线可知,本申请提出的方法能够达到与通用非线性规划求解器类似的路径规划效果;通过本申请提出的方法得到的新的规划路径完美避开了障碍物,可以实现障碍物规避的任务要求,且解算时间短,将解算时间由通用非线性规划求解器的1052.4秒缩短到0.9秒,解算效率提升逾千倍,从而使得本申请提出的方法能够应用在飞行器上做实时规划处理。
以上结合了优选的实施方式对本发明进行了说明,不过这些实施方式仅是范例性的,仅起到说明性的作用。在此基础上,可以对本发明进行多种替换和改进,这些均落入本发明的保护范围内。

Claims (6)

1.一种快速无人机路径重构方法,其特征在于,该方法包括如下步骤:
步骤1,通过安装在无人机上的探测器实时探测无人机原始规划路径中是否存在障碍物;
步骤2,在发现原始规划路径中存在障碍物时,探测获知障碍物的圆心位置、障碍物的长轴半径和短轴半径;
步骤3,通过重构获得新的规划路径;
在所述步骤3中,待获得的新的规划路径(xv[i],yv[i])满足下式(一)和式(二)中的约束:
Figure FDA0004027255790000011
Figure FDA0004027255790000012
且所述待获得的新的规划路径(xv[i],yv[i])能够使得目标函数J取最小值,所述取最小值的目标函数如下式(三)中所述:
Figure FDA0004027255790000013
其中,χc[i]表示cos(ψv)[i],χs[i]表示sin(ψv)[i],v表示无人机当前的速度,χa[i]表示
Figure FDA0004027255790000014
amax表示无人机最大允许的加速度,ψvmax表示无人机最大允许的飞行方位角,
xv[i]表示新的规划路径中离散点i处的X轴坐标,yv[i]表示新的规划路径中离散点i处的Y轴坐标,
xv[i+1]表示新的规划路径中离散点i+1处的X轴坐标,yv[i+1]表示新的规划路径中离散点i+1处的Y轴坐标,χs[i+1]表示新的规划路径中离散点i+1处的速度方位角正弦值;
td表示离散的时间步长,
Figure FDA0004027255790000021
表示原始规划路径中第N个离散点处的Y轴坐标;
A1、A2和A3分别表示轨迹规划计算的中间变量;
A1、A2和A3分别通过下式获得:
Figure FDA0004027255790000022
Figure FDA0004027255790000023
Figure FDA0004027255790000024
其中,
Figure FDA0004027255790000025
表示原始规划路径中离散点i处的X轴坐标,
Figure FDA0004027255790000026
表示原始规划路径中离散点i处的Y轴坐标;
xn表示第n个障碍物的圆心的X轴坐标,yn表示第n个障碍区圆心的Y轴坐标;
an表示第n个障碍物的长半轴,bn表示第n个障碍物的短半轴;
rn通过下式获得:
Figure FDA0004027255790000027
2.根据权利要求1所述的快速无人机路径重构方法,其特征在于,
在步骤3中,在得到新的规划路径后,对得到的新的规划路径进行迭代,以便于进一步优化规划路径,得到最终的规划路径。
3.根据权利要求2所述的快速无人机路径重构方法,其特征在于,
所述迭代过程包括如下子步骤:
子步骤1,根据得到的新的规划路径解算出中间变量A1′、A2′和A3′;
子步骤2,将中间变量A1′、A2′和A3′代入到约束式(五)中,
通过使得待获得的新的规划路径(xv[i],yv[i])满足约束式(一)和式(五),且所述待获得的新的规划路径(xv[i],yv[i])能够使得目标函数J取最小值,得到该待获得的新的规划路径;
Figure FDA0004027255790000031
Figure FDA0004027255790000032
所述取最小值的目标函数如下式(三)中所述:
Figure FDA0004027255790000033
子步骤3,重复子步骤1和子步骤2,实时解算相邻两条规划路径之间的偏差,以确定迭代是否终止。
4.根据权利要求3所述的快速无人机路径重构方法,其特征在于,
在子步骤3中,若相邻两条规划路径之间的偏差值不小于设定值ε,利用最后一次迭代得到的新的规划路径解算中间变量A1′、A2′和A3′,即继续重复子步骤1;若相邻两条规划路径之间的偏差值小于设定值ε,即下式(四)成立时,停止迭代,最后一次迭代得到的新的规划路径即为最终的规划路径;
||Yk-Yk-1||<ε    (四)
其中,k表示迭代次数,Yk表示第k次迭代得到的规划路径,
Figure FDA0004027255790000041
5.根据权利要求4所述的快速无人机路径重构方法,其特征在于,ε的取值为
Figure FDA0004027255790000042
6.根据权利要求3所述的快速无人机路径重构方法,其特征在于,
中间变量A1′、A2′和A3′通过下式获得:
Figure FDA0004027255790000043
Figure FDA0004027255790000044
Figure FDA0004027255790000045
中间变量rn′通过下式获得:
Figure FDA0004027255790000051
其中,
Figure FDA0004027255790000052
表示上一次迭代得到的规划路径中离散点i处的X轴坐标,
Figure FDA0004027255790000053
表示上一次迭代得到的规划路径中离散点i处的Y轴坐标。
CN202010674946.1A 2020-07-14 2020-07-14 一种快速无人机路径重构方法 Active CN112504272B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010674946.1A CN112504272B (zh) 2020-07-14 2020-07-14 一种快速无人机路径重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010674946.1A CN112504272B (zh) 2020-07-14 2020-07-14 一种快速无人机路径重构方法

Publications (2)

Publication Number Publication Date
CN112504272A CN112504272A (zh) 2021-03-16
CN112504272B true CN112504272B (zh) 2023-04-07

Family

ID=74953360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010674946.1A Active CN112504272B (zh) 2020-07-14 2020-07-14 一种快速无人机路径重构方法

Country Status (1)

Country Link
CN (1) CN112504272B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106970648A (zh) * 2017-04-19 2017-07-21 北京航空航天大学 城市低空环境下无人机多目标路径规划联合搜索方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079943B2 (en) * 2003-10-07 2006-07-18 Deere & Company Point-to-point path planning
CN103995984A (zh) * 2014-06-09 2014-08-20 武汉科技大学 一种基于椭圆约束的机器人路径规划方法和装置
US9524647B2 (en) * 2015-01-19 2016-12-20 The Aerospace Corporation Autonomous Nap-Of-the-Earth (ANOE) flight path planning for manned and unmanned rotorcraft
EP3065018A1 (en) * 2015-03-04 2016-09-07 Sercel Method for determining a sail path of at least one vessel of a fleet of vessels
WO2017144350A1 (en) * 2016-02-25 2017-08-31 Nec Europe Ltd. Method for motion planning for autonomous moving objects
CN106774329B (zh) * 2016-12-29 2019-08-13 大连理工大学 一种基于椭圆切线构造的机器人路径规划方法
CN110018689B (zh) * 2019-05-15 2020-07-07 福州大学 一种基于动态窗口的多虚拟目标点全局动态路径规划算法
CN110412877B (zh) * 2019-08-30 2023-03-28 中国人民解放军海军航空大学 一种基于nsp算法的舰载机甲板路径规划最优控制方法
CN111310312B (zh) * 2020-01-21 2022-08-23 中国人民解放军国防科技大学 航天器避障轨迹快速规划方法、装置和计算机设备

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106970648A (zh) * 2017-04-19 2017-07-21 北京航空航天大学 城市低空环境下无人机多目标路径规划联合搜索方法

Also Published As

Publication number Publication date
CN112504272A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
Scherer et al. River mapping from a flying robot: state estimation, river detection, and obstacle mapping
Lugo-Cárdenas et al. Dubins path generation for a fixed wing UAV
Schäfer et al. Multicopter unmanned aerial vehicle for automated inspection of wind turbines
Achtelik et al. Motion‐and uncertainty‐aware path planning for micro aerial vehicles
Al-Sharman et al. Precision landing using an adaptive fuzzy multi-sensor data fusion architecture
US20150134182A1 (en) Position estimation and vehicle control in autonomous multi-vehicle convoys
CN103914068A (zh) 一种基于栅格地图的服务机器人自主导航方法
CN111508282B (zh) 低空无人机农田作业飞行障碍物冲突检测方法
CN112789672A (zh) 控制和导航系统、姿态优化、映射和定位技术
Yu et al. Observability-based local path planning and obstacle avoidance using bearing-only measurements
Yu et al. An improved hector SLAM algorithm based on information fusion for mobile robot
CN102944241A (zh) 基于多胞型线性微分包含的航天器相对姿态确定方法
EP3916356A1 (en) Global positioning denied navigation
US11087158B2 (en) Error correction of airborne vehicles using natural patterns
US11360476B1 (en) Systems and methods for monitoring aircraft control systems using artificial intelligence
Xia et al. Integrated emergency self-landing method for autonomous uas in urban aerial mobility
CN112504272B (zh) 一种快速无人机路径重构方法
Wang et al. Micro aerial vehicle navigation with visual-inertial integration aided by structured light
Ryu et al. Vision-based wind and position estimation with fixed-wing unmanned aerial vehicle
Jeong et al. Parametric study of sensor placement for vision-based relative navigation system of multiple spacecraft
US11887317B2 (en) Object trajectory forecasting
Guan et al. A new integrated navigation system for the indoor unmanned aerial vehicles (UAVs) based on the neural network predictive compensation
Tahir et al. A review of UAV platforms for autonomous applications: comprehensive analysis and future directions
Dang et al. Visual-inertial odometry-enhanced geometrically stable icp for mapping applications using aerial robots
Xie et al. Micro aerial vehicle indoor localization using prior map and spare sonars

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant