CN112501402B - 热作模具钢的热处理工艺 - Google Patents

热作模具钢的热处理工艺 Download PDF

Info

Publication number
CN112501402B
CN112501402B CN202011377803.0A CN202011377803A CN112501402B CN 112501402 B CN112501402 B CN 112501402B CN 202011377803 A CN202011377803 A CN 202011377803A CN 112501402 B CN112501402 B CN 112501402B
Authority
CN
China
Prior art keywords
cooling
furnace
die steel
heating
namely
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011377803.0A
Other languages
English (en)
Other versions
CN112501402A (zh
Inventor
张华�
陈敏哈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunshan Bodengtai Metal Product Co ltd
Original Assignee
Kunshan Bodengtai Metal Product Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunshan Bodengtai Metal Product Co ltd filed Critical Kunshan Bodengtai Metal Product Co ltd
Priority to CN202011377803.0A priority Critical patent/CN112501402B/zh
Publication of CN112501402A publication Critical patent/CN112501402A/zh
Application granted granted Critical
Publication of CN112501402B publication Critical patent/CN112501402B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明揭示了热作模具钢的热处理工艺,热作模具钢按照化学成分重量百分含量为:C:0.4~0.85%,Cr:2.6~3.3%,Mo:4.1~4.2%,W:5.2~5.5%,V:0.65~0.95%,Mn:0.3~0.35%,Ni:0.7~1.3%,Cs:0.36~0.52%,S≤0.01%,P≤0.005%,余量为Fe及不可避免杂质,热处理工艺包括一阶升回温步骤、二阶升回温步骤、三阶升温保温步骤、冷却步骤、深冷步骤、回火步骤。本发明采用组分优化的热作模具钢,进行多阶升回温处理,起到热应力扩散均匀作用,并结合保压冷却、深冷及回火,在满足模具钢高硬度需求的同时还能兼顾冲击韧性和高温稳定性,综合力学性能得到较大提升。

Description

热作模具钢的热处理工艺
技术领域
本发明涉及热作模具钢的热处理工艺,属于模具钢热处理工艺的技术领域。
背景技术
模具钢主要用于锻压模具和锤锻模具的生产。大型锻模需要承受的循环打击力达到上百MN,锻模温度可到达500℃以上,因此模具钢除了要具备较高淬透性、高温强度、冲击韧性和抗回火稳定性外,还需要具备良好的耐疲劳性和导热性,保障模具钢在急冷急热状态下不会产生热龟裂。
发明内容
本发明的目的是解决上述现有技术的不足,针对传统模具钢在急冷急热状态下容易产生龟裂且淬透性及冲击韧性不足的问题,提出热作模具钢的热处理工艺。
为了达到上述目的,本发明所采用的技术方案为:
热作模具钢的热处理工艺,所述热作模具钢按照化学成分重量百分含量为:
C:0.4~0.85%,Cr:2.6~3.3%,Mo:4.1~4.2%,W:5.2~5.5%,V:0.65~0.95%,Mn:0.3~0.35%,Ni:0.7~1.3%,Cs:0.36~0.52%,S≤0.01%,P≤0.005%,余量为Fe及不可避免杂质,
热处理工艺包括以下步骤:
S1一阶升回温步骤,以一阶升温速率10~12℃升温至650±10℃,并随炉降温至410±5℃;
S2二阶升回温步骤,以二阶升温速率7~8℃升温至1050±10℃,并随炉降温至823±2℃;
S3三阶升温保温步骤,以三阶升温速率5~6℃升温至1142±1℃并保温60±5min;
S4冷却步骤,维持炉内压力6bar降温至417℃维持10±1min,释放压力随炉冷却至常温;
S5深冷步骤,降温至-105℃维持2h后随炉冷却至常温;
S6回火步骤,随炉升温至417℃保温2h出炉空冷至常温。
优选地,S7二次深冷及回火,重复步骤S5和步骤S6。
优选地,所述所述热作模具钢按照化学成分重量百分含量为:
C:0.4%,Cr:2.7%,Mo:4.2%,W:5.3%,V:0.85%,Mn:0.31%,Ni:0.75%,Cs:0.52%,余量为Fe及不可避免杂质。
优选地,所述所述热作模具钢按照化学成分重量百分含量为:
C:0.85%,Cr:2.6%,Mo:4.1%,W:5.2%,V:0.65%,Mn:0.35%,Ni:0.88%,Cs:0.46%,S:0.01%,余量为Fe及不可避免杂质。
优选地,所述所述热作模具钢按照化学成分重量百分含量为:
C:0.65%,Cr:3.3%,Mo:4.1%,W:5.5%,V:0.95%,Mn:0.33%,Ni:1.3%,Cs:0.36%,P:0.005%,余量为Fe及不可避免杂质。
本发明的有益效果主要体现在:
采用组分优化的热作模具钢,进行多阶升回温处理,起到热应力扩散均匀作用,并结合保压冷却、深冷及回火,在满足模具钢高硬度需求的同时还能兼顾冲击韧性和高温稳定性,综合力学性能得到较大提升,且兼顾了成本。
附图说明
图1是本发明实施例一的200倍金相组织照片。
具体实施方式
本发明提供热作模具钢的热处理工艺。以下结合附图对本发明技术方案进行详细描述,以使其更易于理解和掌握。
热作模具钢的热处理工艺,热作模具钢按照化学成分重量百分含量为:
C:0.4~0.85%,Cr:2.6~3.3%,Mo:4.1~4.2%,W:5.2~5.5%,V:0.65~0.95%,Mn:0.3~0.35%,Ni:0.7~1.3%,Cs:0.36~0.52%,S≤0.01%,P≤0.005%,余量为Fe及不可避免杂质,
热处理工艺包括以下步骤:
一阶升回温步骤,以一阶升温速率10~12℃升温至650±10℃,并随炉降温至410±5℃;
二阶升回温步骤,以二阶升温速率7~8℃升温至1050±10℃,并随炉降温至823±2℃;
三阶升温保温步骤,以三阶升温速率5~6℃升温至1142±1℃并保温60±5min;
冷却步骤,维持炉内压力6bar降温至417℃维持10±1min,释放压力随炉冷却至常温;
深冷步骤,降温至-105℃维持2h后随炉冷却至常温;
回火步骤,随炉升温至417℃保温2h出炉空冷至常温。
本案可采用二次深冷及回火,即重复深冷步骤和回火步骤以消除残奥。
需要说明的是,本案热作模具钢在冶炼后需要经过锻造热加工,即采用镦拔锻造方式在830℃以上锻造温度状态下进行镦拔锻造,总锻造压缩比为2~2.5。
实施例一
热作模具钢按照化学成分重量百分含量为:
C:0.4%,Cr:2.7%,Mo:4.2%,W:5.3%,V:0.85%,Mn:0.31%,Ni:0.75%,Cs:0.52%,余量为Fe及不可避免杂质。
热处理工艺包括以下步骤:
一阶升回温步骤,以一阶升温速率10℃升温至650℃,并随炉降温至410℃;
二阶升回温步骤,以二阶升温速率8℃升温至1050℃,并随炉降温至823℃;
三阶升温保温步骤,以三阶升温速率6℃升温至1142℃并保温60min;
冷却步骤,维持炉内压力6bar降温至417℃维持10min,释放压力随炉冷却至常温;
深冷步骤,降温至-105℃维持2h后随炉冷却至常温;
回火步骤,随炉升温至417℃保温2h出炉空冷至常温;
二次深冷步骤,降温至-105℃维持2h后随炉冷却至常温;
二次回火步骤,随炉升温至417℃保温2h出炉空冷至常温。
热处理成型后制得样品一,其金相组织图如图1所示,可见其内部组织分布均匀。
实施例二
热作模具钢按照化学成分重量百分含量为:
C:0.85%,Cr:2.6%,Mo:4.1%,W:5.2%,V:0.65%,Mn:0.35%,Ni:0.88%,Cs:0.46%,S:0.01%,余量为Fe及不可避免杂质。
热处理工艺包括以下步骤:
一阶升回温步骤,以一阶升温速率12℃升温至660℃,并随炉降温至415℃;
二阶升回温步骤,以二阶升温速率7℃升温至1060℃,并随炉降温至823±2℃;
三阶升温保温步骤,以三阶升温速率5℃升温至1143℃并保温65min;
冷却步骤,维持炉内压力6bar降温至417℃维持10min,释放压力随炉冷却至常温;
深冷步骤,降温至-105℃维持2h后随炉冷却至常温;
回火步骤,随炉升温至417℃保温2h出炉空冷至常温。
制得样品二。
实施例三
热作模具钢按照化学成分重量百分含量为:
C:0.65%,Cr:3.3%,Mo:4.1%,W:5.5%,V:0.95%,Mn:0.33%,Ni:1.3%,Cs:0.36%,P:0.005%,余量为Fe及不可避免杂质。
热处理工艺包括以下步骤:
一阶升回温步骤,以一阶升温速率10~12℃升温至650℃,并随炉降温至410℃;
二阶升回温步骤,以二阶升温速率7~8℃升温至1050℃,并随炉降温至823℃;
三阶升温保温步骤,以三阶升温速率6℃升温至1142℃并保温60min;
冷却步骤,维持炉内压力6bar降温至417℃维持10min,释放压力随炉冷却至常温;
深冷步骤,降温至-105℃维持2h后随炉冷却至常温;
回火步骤,随炉升温至417℃保温2h出炉空冷至常温。
制得样品三。
对样品一至样品三进行检测,检测结果如下:
Figure BDA0002808608160000041
通过以上描述可以发现,本发明热作模具钢的热处理工艺,采用组分优化的热作模具钢,进行多阶升回温处理,起到热应力扩散均匀作用,并结合保压冷却、深冷及回火,在满足模具钢高硬度需求的同时还能兼顾冲击韧性和高温稳定性,综合力学性能得到较大提升,且兼顾了成本。
以上对本发明的技术方案进行了充分描述,需要说明的是,本发明的具体实施方式并不受上述描述的限制,本领域的普通技术人员依据本发明的精神实质在结构、方法或功能等方面采用等同变换或者等效变换而形成的所有技术方案,均落在本发明的保护范围之内。

Claims (2)

1.热作模具钢的热处理工艺,其特征在于:
所述热作模具钢按照化学成分重量百分含量为:
C:0.65%,Cr:3.3%,Mo:4.1%,W:5.5%,V:0.95%,Mn:0.33%,Ni:1.3%,Cs:0.36%,P:0.005%,余量为Fe及不可避免杂质,
热处理工艺包括以下步骤:
S1一阶升回温步骤,以一阶升温速率10~12℃升温至650±10℃,并随炉降温至410±5℃;
S2二阶升回温步骤,以二阶升温速率7~8℃升温至1050±10℃,并随炉降温至823±2℃;
S3三阶升温保温步骤,以三阶升温速率5~6℃升温至1142±1℃并保温60±5min;
S4冷却步骤,维持炉内压力6bar降温至417℃维持10±1min,释放压力随炉冷却至常温;
S5深冷步骤,降温至-105℃维持2h后随炉冷却至常温;
S6回火步骤,随炉升温至417℃保温2h出炉空冷至常温。
2.根据权利要求1所述热作模具钢的热处理工艺,其特征在于:
S7二次深冷及回火,重复步骤S5和步骤S6。
CN202011377803.0A 2020-11-30 2020-11-30 热作模具钢的热处理工艺 Active CN112501402B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011377803.0A CN112501402B (zh) 2020-11-30 2020-11-30 热作模具钢的热处理工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011377803.0A CN112501402B (zh) 2020-11-30 2020-11-30 热作模具钢的热处理工艺

Publications (2)

Publication Number Publication Date
CN112501402A CN112501402A (zh) 2021-03-16
CN112501402B true CN112501402B (zh) 2022-12-20

Family

ID=74968792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011377803.0A Active CN112501402B (zh) 2020-11-30 2020-11-30 热作模具钢的热处理工艺

Country Status (1)

Country Link
CN (1) CN112501402B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990292B (zh) * 2021-11-22 2024-03-29 上海亿舜模具科技有限公司 一种用于热作模具钢的热处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233168A (zh) * 2013-05-08 2013-08-07 安泰科技股份有限公司 粉末冶金高韧性冷作模具钢及其制备方法
CN105779896A (zh) * 2016-04-28 2016-07-20 太仓市沪太热处理厂 一种高碳高合金冷作模具钢的热处理工艺
CN111057952A (zh) * 2019-12-31 2020-04-24 昆山奥马热工科技有限公司 高等向性热作模具钢及其热处理工艺

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102017553B1 (ko) * 2018-03-28 2019-09-03 두산중공업 주식회사 경화능과 질화특성이 뛰어난 장수명 다이캐스팅용 열간 금형강 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233168A (zh) * 2013-05-08 2013-08-07 安泰科技股份有限公司 粉末冶金高韧性冷作模具钢及其制备方法
CN105779896A (zh) * 2016-04-28 2016-07-20 太仓市沪太热处理厂 一种高碳高合金冷作模具钢的热处理工艺
CN111057952A (zh) * 2019-12-31 2020-04-24 昆山奥马热工科技有限公司 高等向性热作模具钢及其热处理工艺

Also Published As

Publication number Publication date
CN112501402A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN109136765B (zh) 一种热作模具钢及其制备方法
CN102586647B (zh) 一种含铒高温钛合金及其制备工艺
CN109811252B (zh) 一种高强度马氏体不锈钢及其制造工艺
CN106854733B (zh) 一种14Cr17Ni2不锈钢大锻件的制造工艺
CN106756509B (zh) 一种耐高温合金结构钢及其热处理工艺
CN101654764A (zh) 一种铁镍基高弹性合金及其毛细管和毛细管的制造方法
CN112008031A (zh) 一种页岩气开采用阀体的锻造及热处理工艺
CN105063291A (zh) 一种提高13Cr9Mo2Co1NiVNbNB锻件冲击性能的热处理方法
CN112501402B (zh) 热作模具钢的热处理工艺
CN111270058B (zh) 马氏体沉淀硬化型不锈钢模块锻后热处理方法
EP2343391A1 (en) High-alloyed cold die steel
CN113265588A (zh) 一种可提高冲击性能的铬钼合金钢锻件及其制造工艺
US8252129B2 (en) Method for transforming steel blanks
CN114318124A (zh) 一种超高耐磨高韧性热作模具钢及其制备方法
CN114130935B (zh) 一种核电及军工用奥氏体不锈钢铁素体含量的控制方法
CN113737106B (zh) 1500MPa热冲压零件冷切边冲孔刀具用模具钢及其制备方法
CN115537633B (zh) 一种热作模具钢及其生产方法
CN111057952A (zh) 高等向性热作模具钢及其热处理工艺
CN104818432A (zh) 一种用于汽轮机组转子的合金材料及其制备方法
CN104099456A (zh) 9Cr18MoV钢锻件的锻造及热处理方法
CN114182067B (zh) 一种马氏体耐热不锈钢异型锻件锻造及热处理方法
CN110735020B (zh) 一种低碳钢结构件的热处理方法
CN114107637A (zh) 一种屈服强度890MPa级稀土工程机械用钢的制备方法
CN114032375A (zh) 超级13Cr不锈钢锻材的加工方法
CN107175306A (zh) 细晶af1410钢大型模锻件锻造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Heat treatment process of hot work mold steel

Effective date of registration: 20231218

Granted publication date: 20221220

Pledgee: Bank of Jiangsu Co.,Ltd. Suzhou Branch

Pledgor: KUNSHAN BODENGTAI METAL PRODUCT Co.,Ltd.

Registration number: Y2023980071775

PE01 Entry into force of the registration of the contract for pledge of patent right