CN112499653A - 一种含碘方钠石的制备方法 - Google Patents

一种含碘方钠石的制备方法 Download PDF

Info

Publication number
CN112499653A
CN112499653A CN202011455079.9A CN202011455079A CN112499653A CN 112499653 A CN112499653 A CN 112499653A CN 202011455079 A CN202011455079 A CN 202011455079A CN 112499653 A CN112499653 A CN 112499653A
Authority
CN
China
Prior art keywords
iodine
sodalite
naoh solution
sio
tabletting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011455079.9A
Other languages
English (en)
Other versions
CN112499653B (zh
Inventor
林世建
杨冬燕
王梦辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN202011455079.9A priority Critical patent/CN112499653B/zh
Publication of CN112499653A publication Critical patent/CN112499653A/zh
Application granted granted Critical
Publication of CN112499653B publication Critical patent/CN112499653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/78Compounds containing aluminium and two or more other elements, with the exception of oxygen and hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/19Alkali metal aluminosilicates, e.g. spodumene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明涉及一种含碘方钠石的制备方法,包括以下步骤:S1.称取原料;S2.混合研磨;S3.压片;S4.高温烧结;S5.二次研磨;S6.配置NaOH溶液;S7.溶解杂质;S8.洗涤;S9.干燥。本发明提出的高温固相+压片+NaOH溶液洗涤的制备方法可得到理想的含碘方钠石,避免了水热法中出现的相分离,又因为含碘方钠石的高温固相合成没有引入H2O和OH,因此避免了羟基方钠石杂质相的生成。产物中剩余的未反应物质和产生的其他杂质相可通过NaOH溶液溶解并通过抽滤洗涤去除,得到纯净的含碘方钠石。碘挥发的问题也可通过压片得到较好的解决,成功的将碘固定在方钠石上。

Description

一种含碘方钠石的制备方法
技术领域
本发明涉及核废物固化和化工技术领域,特别涉及一种含碘方钠石的制备方法。
背景技术
高放废物的长久安全处置是制约核能可持续发展的关键问题,放射性同位素129I具有长半衰期、强放射性和高迁移率,如果处置不当,129I易迁移到生态环境中,从而对生物造成危害。对人类而言,129I会积累在甲状腺中,对人体产生危害,所以129I是需重点处置的放射性核素。方钠石Na8Al6Si6O24Cl2是自然界中稳定存在的一种矿相,根据“类质同象”原理,I-可占据Cl-位置,所以,方钠石矿相是潜在的129I固化基材。
本发明以稳定的127I作为模拟核素,对含碘方钠石Na8Al6Si6O24Cl2-xIx(x=0-2)进行制备。含碘方钠石的合成通常有水热法和高温固相法,水热法可在低于200℃的温度环境下进行,从而避免碘的挥发。然而,水热法合成的产物中会有羟基方钠石的存在,并且I-和Cl-半径的显著差异,会使方钠石晶格发生畸变,出现相分离。高温固相法可克服I-和Cl-离子占位的互相排斥,从而形成热力学上稳定的固溶体,避免因I-与Cl-的半径差异引起的相分离现象。然而传统的高温固相法容易造成碘化物的挥发,并引入其他杂质相,无法得到纯净的含碘方钠石。
发明内容
本发明为了解决上述问题,用高温固相法代替水热法制备含碘的方钠石材料,并对传统高温固相法制备含碘方钠石的流程进行了改进。
一种含碘方钠石的制备方法,包括以下步骤:
S1.称取原料:
6 NaAlO2+6 SiO2+2(1-x)NaCl+2 x NaI=Na8Al6Si6O24Cl2-xIx
根据上述化学反应方程式,称取适量的NaAlO2、SiO2、NaCl和NaI作为原始反应物制备含碘方钠石Na8Al6Si6O24Cl2-xIx(x=0-2);
S2.混合研磨:将称量好的原始反应物在球磨机上球磨4次,每次30min;
S3.压片:将混合充分的原始反应物在压片机上压片,压强为40MPa,时间保持5min,制得片状物料;
S4.高温烧结:将压成片状的物料放在氧化铝坩埚上,放入马弗炉中烧结,升温速率为5℃/min,反应温度为850℃,反应时间为3h,降温速率为5℃/min,合成含有SiO2和Na2SiO3杂质的含碘方钠石;
S5.二次研磨:将反应后的片状产物再次放入球磨机中球磨120min,将其球磨成粉末状产物;
S6.配置NaOH溶液:配置5mol/L的NaOH溶液;
S7.溶解杂质:将球磨好的粉末状产物放入5mol/L的NaOH溶液中,用磁力搅拌器搅拌120min,溶解SiO2和Na2SiO3杂质,并制得固液混合物;
S8.洗涤:将搅拌好的固液混合物用循环水式真空泵进行抽滤,使其固液分离并用去离子水进行稀释洗涤,得到沉淀物;
S9.干燥:将沉淀物在恒温干燥箱下干燥,温度为120℃,时间为24h,即得到干燥的、物相纯净的含碘方钠石样品粉末。
作为优选的,步骤S6中按5g产物对应100mL的5mol/L NaOH溶液的比例,确定NaOH溶液的用量。
作为优选的,步骤S8中,用去离子水进行多次稀释洗涤,直至水溶液为中性,得到沉淀物。
本发明的有益效果为:
(1)用高温固相法代替水热法,避免了水热法中出现的相分离;
(2)含碘方钠石的高温固相合成没有引入H2O和OH-,因此避免了羟基方钠石杂质相的生成,产物中剩余的未反应物质和产生的其他杂质相可通过NaOH溶液抽滤并洗涤去除;
(3)碘的挥发可通过对原始反应物压片抑制,成功的将碘固定在方钠石上。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为x=1含碘方钠石NaOH溶液洗涤与未洗涤的X射线衍射(XRD)图;
图2为x=1含碘方钠石压片与未压片的XRD衍射图;
图3为高温固相+压片+NaOH溶液洗涤成功合成的含碘方钠石Na8Al6Si6O24Cl2-xIx(x=0-2)XRD衍射图。
具体实施方式
下面将结合对本发明的实施方案进行详细描述,本领域技术人员将会理解,下列实施例仅用于说明本发明,而不视为限定本发明的范围,实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
一种含碘方钠石的制备方法,包括以下步骤:
S1.称取原料:
6 NaAlO2+6 SiO2+2(1-x)NaCl+2 x NaI=Na8Al6Si6O24Cl2-xIx
根据上述化学反应方程式,称取适量的NaAlO2、SiO2、NaCl和NaI作为原始反应物制备含碘方钠石Na8Al6Si6O24Cl2-xIx(x=0-2);
S2.混合研磨:将称量好的原始反应物在球磨机上球磨4次,每次30min,目的是将原始反应物充分混合研磨,以确保后续的反应充分;
S3.压片:将混合充分的原始反应物在压片机上压片,压强为40MPa,时间保持5min,制得片状物料;
S4.高温烧结:将压成片状的物料放在氧化铝坩埚上,放入马弗炉中高温烧结,升温速率为5℃/min,反应温度为850℃,反应时间为3h,降温速率为5℃/min,合成含有SiO2和Na2SiO3杂质的含碘方钠石;
S5.二次研磨:将反应后的片状产物再次放入球磨机中球磨120min,将其球磨成粉末状产物;
S6.配置NaOH溶液:配置5mol/L的NaOH溶液,按5g产物对应100mL的5mol/L NaOH溶液的比例,确定NaOH溶液的用量;
S7.溶解杂质:将球磨好的粉末状产物放入5mol/L的NaOH溶液中,用磁力搅拌器搅拌120min,溶解SiO2和Na2SiO3杂质,并制得固液混合物;
S8.洗涤:将搅拌好的固液混合物用循环水式真空泵进行抽滤,使其固液分离并用去离子水进行稀释洗涤,得到沉淀物;
S9.干燥:将沉淀物在恒温干燥箱下干燥温度为120℃,时间为24h,即得到干燥的、物相纯净的含碘方钠石样品粉末。
根据附图实验数据可知,图1表明NaOH溶液洗涤可成功去除含碘方钠石中的SiO2和Na2SiO3杂质,得到纯净的含碘方钠石相。
图2表明压片可有效抑制碘的挥发,含碘方钠石中碘的含量可通过(110)晶面的衍射峰的强度定性判断,强度越高碘含量越低。
图3表明高温固相+压片+NaOH溶液洗涤可成功合成不同系列的含碘方钠石Na8Al6Si6O24Cl2-xIx(x=0-2)。所有组分的衍射峰与含碘方钠石一致,且没有其他杂质峰的存在。
本发明的含碘方钠石高温固相+压片+NaOH溶液洗涤的制备方法可得到理想的含碘方钠石,避免了水热法中出现的相分离。又因为含碘方钠石的高温固相合成没有引入H2O和OH-,因此避免了羟基方钠石杂质相的生成。产物中剩余的未反应物质和产生的其他杂质相可通过NaOH溶液抽滤并洗涤去除,得到纯净的含碘方钠石。碘挥发的问题也可通过压片得到较好的解决,成功的将碘固定在方钠石上。
以上所述仅为本发明专利的较佳实施例而已,并不用以限制本发明专利,凡在本发明专利的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明专利的保护范围之内。

Claims (3)

1.一种含碘方钠石的制备方法,其特征在于,包括以下步骤:
S1.称取原料:
6NaAlO2+6SiO2+2(1-x)NaCl+2x NaI=Na8Al6Si6O24Cl2-xIx
根据上述化学反应方程式,称取适量的NaAlO2、SiO2、NaCl和NaI作为原始反应物制备含碘方钠石Na8Al6Si6O24Cl2-xIx(x=0-2);
S2.混合研磨:将称量好的原始反应物在球磨机上球磨4次,每次30min;
S3.压片:将混合充分的原始反应物在压片机上压片,压强为40MPa,时间保持5min,制得片状物料;
S4.高温烧结:将压成片状的物料放在氧化铝坩埚上,放入马弗炉中进行高温烧结,升温速率为5℃/min,烧结温度为850℃,保温时间为3h,降温速率为5℃/min,合成含有SiO2和Na2SiO3杂质的含碘方钠石;
S5.二次研磨:将烧结后的片状产物再次放入球磨机中球磨120min,将其球磨成粉末状产物;
S6.配置NaOH溶液:配置5mol/L的NaOH溶液;
S7.溶解杂质:将球磨好的粉末状产物放入5mol/L的NaOH溶液中,用磁力搅拌器搅拌120min,溶解SiO2和Na2SiO3杂质,得到固液混合物;
S8.洗涤:将搅拌好的固液混合物用循环水式真空泵进行抽滤,使其固液分离并用去离子水进行稀释洗涤,得到沉淀物;
S9.干燥:将沉淀物放在恒温干燥箱中干燥,温度为120℃,干燥时间为24h,即得到干燥的、物相纯净的含碘方钠石样品粉末。
2.根据权利要求1所述的一种含碘方钠石的制备方法,其特征在于,步骤S6中按5g产物对应100mL的5mol/L NaOH溶液的比例,确定NaOH溶液的用量。
3.根据权利要求1所述的一种含碘方钠石的制备方法,其特征在于,步骤S8中,用去离子水进行多次稀释洗涤,直至水溶液为中性,得到沉淀物。
CN202011455079.9A 2020-12-10 2020-12-10 一种含碘方钠石的制备方法 Active CN112499653B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011455079.9A CN112499653B (zh) 2020-12-10 2020-12-10 一种含碘方钠石的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011455079.9A CN112499653B (zh) 2020-12-10 2020-12-10 一种含碘方钠石的制备方法

Publications (2)

Publication Number Publication Date
CN112499653A true CN112499653A (zh) 2021-03-16
CN112499653B CN112499653B (zh) 2022-08-16

Family

ID=74973518

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011455079.9A Active CN112499653B (zh) 2020-12-10 2020-12-10 一种含碘方钠石的制备方法

Country Status (1)

Country Link
CN (1) CN112499653B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1410569A (en) * 1972-12-12 1975-10-15 Ibm Method of preparing sodalite
CN106587099A (zh) * 2016-12-01 2017-04-26 神华集团有限责任公司 一种粉煤灰酸法提铝残渣制备方钠石和zsm‑5型分子筛的方法以及粉煤灰的利用方法
TW201841458A (zh) * 2017-02-21 2018-11-16 美商明亮光源能源公司 磁流體動力發電機
CN109095476A (zh) * 2018-09-20 2018-12-28 北京科技大学 一种利用粉煤灰亚熔盐碱水热法制备羟基方钠石的方法
CN111863304A (zh) * 2020-08-20 2020-10-30 中国原子能科学研究院 放射性碘废物的方钠石基陶瓷固化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1410569A (en) * 1972-12-12 1975-10-15 Ibm Method of preparing sodalite
CN106587099A (zh) * 2016-12-01 2017-04-26 神华集团有限责任公司 一种粉煤灰酸法提铝残渣制备方钠石和zsm‑5型分子筛的方法以及粉煤灰的利用方法
TW201841458A (zh) * 2017-02-21 2018-11-16 美商明亮光源能源公司 磁流體動力發電機
CN109095476A (zh) * 2018-09-20 2018-12-28 北京科技大学 一种利用粉煤灰亚熔盐碱水热法制备羟基方钠石的方法
CN111863304A (zh) * 2020-08-20 2020-10-30 中国原子能科学研究院 放射性碘废物的方钠石基陶瓷固化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MADDRELL ER ET AL.: "Capture of iodine from the vapour phase and immobilisation as sodalite", 《JOURNAL OF NUCLEAR MATERIALS》 *
刘刈等: "放射性碘洗脱液固化实验研究", 《中国原子能科学研究院年报》 *

Also Published As

Publication number Publication date
CN112499653B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
US4514329A (en) Process for vitrifying liquid radioactive waste
CN104291349B (zh) 一种以粉煤灰为原料制备p型分子筛的方法
Behrens et al. Titanium silicates, M3HTi4O4 (SiO4) 3· 4H2O (M= Na+, K+), with three-dimensional tunnel structures for the selective removal of strontium and cesium from wastewater solutions
EP0046085B1 (en) Method of encapsulating nuclear waste
US9302918B2 (en) Process for preparing an oxyhalogenide and/or oxide of actinide(s) and/or of lanthanide(s) from a medium comprising at least one molten salt
Yudintsev et al. Matrices for immobilization of the rare earth–actinide waste fraction, synthesized by cold crucible induction melting
CN112499653B (zh) 一种含碘方钠石的制备方法
CN110291593A (zh) 用于处理有害污泥和离子交换介质的组合物和方法
EA023074B1 (ru) Способ экстракции по меньшей мере одного химического элемента из среды солевого расплава
CN105004681B (zh) 一种氟磷灰石陶瓷固化体的化学稳定性评价方法
US11120922B2 (en) Method for producing solidified radioactive waste
Clearfield et al. In situ type study of hydrothermally prepared titanates and silicotitanates
US3330889A (en) Preparation of heat sources for radioisotope heated thermoelectric generators
CN106882813A (zh) 一种利用无机原料合成纳米水合结晶硅钛酸钠的方法
Chong Characterization of Sodalite Based Waste Forms for Immobilization of 129I
Barney Immobilization of aqueous radioactive cesium wastes by conversion to aluminosilicate minerals
Louis-Jean Revisiting the Chemistry of Uranium and Rhenium Fluorides: Implication to Fuel Cycle and Nuclear Forensics Science
JPH06186396A (ja) ハロゲン化物塩の放射性廃棄物を固定するための高濃度結晶化方ソーダ石ペレットの合成方法
Kumar et al. Synthesis and structural characterization of pure and Nd-doped zircon
JP7350223B2 (ja) 放射性アルミニウム廃棄物処理方法
Nam Aqueous synthesis of iodide sodalite for the immobilization of I-129
KR102155844B1 (ko) 원자력발전소 해체 폐기물 원소 분석 방법
Vance et al. Ceramic phases for immobilization of 129 I
US2545920A (en) Transuranic metal malides and a process for the production thereof
Goel et al. Apatite and sodalite based glass-bonded waste forms for immobilization of 129I and mixed halide radioactive wastes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant