CN112495590A - Magnesium-containing silicate mineral inhibitor and application thereof - Google Patents

Magnesium-containing silicate mineral inhibitor and application thereof Download PDF

Info

Publication number
CN112495590A
CN112495590A CN202110012491.1A CN202110012491A CN112495590A CN 112495590 A CN112495590 A CN 112495590A CN 202110012491 A CN202110012491 A CN 202110012491A CN 112495590 A CN112495590 A CN 112495590A
Authority
CN
China
Prior art keywords
magnesium
silicate mineral
inhibitor
containing silicate
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110012491.1A
Other languages
Chinese (zh)
Inventor
李博
张晶
王少东
简胜
唐鑫
张曙光
杨林
谢峰
吕向文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Metallurgical Research Institute
Original Assignee
Kunming Metallurgical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Metallurgical Research Institute filed Critical Kunming Metallurgical Research Institute
Priority to CN202110012491.1A priority Critical patent/CN112495590A/en
Publication of CN112495590A publication Critical patent/CN112495590A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/018Mixtures of inorganic and organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/06Depressants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; Specified applications
    • B03D2203/02Ores
    • B03D2203/04Non-sulfide ores

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The invention discloses a magnesium-containing silicate mineral inhibitor and application thereof. The application is the application of the magnesium-containing silicate mineral inhibitor in the flotation process of magnesium-containing silicate minerals. The talc inhibitor suspension can inhibit talc alone without inhibiting molybdenite, and compared with the traditional method for inhibiting talc alone without inhibiting sulfur, the method has the advantages that the grade of copper concentrate is improved by 5-8%, the grade of molybdenum in copper-molybdenum bulk concentrate is improved by 5-10%, the content of MgO is reduced by 50-80%, and the gangue mineral mixing rate in copper-molybdenum bulk concentrate is reduced by 40%. The method has the advantages of simple process, less raw material consumption, low cost, no need of heating, environmental friendliness and no pollution, and effectively solves the problem that the magnesium-containing silicate minerals such as talc and the like are difficult to separate from the useful minerals such as copper, molybdenum and the like by flotation.

Description

Magnesium-containing silicate mineral inhibitor and application thereof
Technical Field
The invention belongs to the technical field of chemical industry, and particularly relates to a magnesium-containing silicate mineral inhibitor and application thereof.
Background
Along with the continuous development and utilization of copper and molybdenum resources, the resource amount of easily-selected copper and molybdenum sulfide ores is gradually reduced, the ores are poor, fine and hybridized more and more serious, and the ore dressing difficulty is increased more and more. Some foreign high-talc copper-molybdenum ore contains multiple metals such as copper, molybdenum, lead, zinc and the like, most of copper mainly exists in chalcopyrite, copper blue and chalcocite in the form of independent minerals, and part of copper exists in biotite, serpentine, chlorite, talc and tremolite in the form of homogeneous phases or mechanical mixing. The gangue minerals such as talc and the like are easy to argillize in the ore grinding process, so that the gangue minerals such as talc and the like are easy to adsorb the surface of copper molybdenum sulfide minerals, the action of agents such as collecting agents, foaming agents and the like and the copper molybdenum sulfide minerals is prevented, the floatability of the talc is close to that of chalcopyrite and molybdenite, the floatability is good, a small amount of foaming agents can float to copper molybdenum mixed concentrate, the recovery of copper and molybdenum is influenced, and the flotation difficulty is increased continuously.
Therefore, there is a need to develop a talc flotation inhibitor and a suitable separation method for separating talc-type copper-molybdenum sulfide ores containing copper, sulfur, molybdenum, lead, zinc and the like from magnesium-containing silicate minerals such as talc, serpentine and chlorite, so as to maximize the resource utilization rate.
Disclosure of Invention
The invention provides a method for inhibiting gangue minerals such as talc and the like and improving the grade of copper-molybdenum bulk concentrates in the flotation separation process of copper, molybdenum and sulfur, aiming at the problem that the flotation of useful minerals is influenced because the floatability of magnesium-containing silicate easy-to-float gangue minerals such as talc, serpentine and chlorite is similar to that of useful minerals such as chalcopyrite and molybdenite in the flotation process.
The invention relates to an inhibitor capable of selectively reducing floatability of magnesium-containing silicate minerals such as talc and the like, which reduces floatability of gangue minerals such as talc and the like without reducing floatability of copper minerals and molybdenum minerals by the contact action of a medicament and the surface of the ores in an ore pulp system in which minerals such as chalcopyrite, molybdenite and the like coexist, thereby achieving the purpose of separating the magnesium-containing silicate minerals such as talc and the like from useful minerals such as copper, molybdenum and the like.
The first purpose of the invention is to provide a magnesium-containing silicate mineral inhibitor; the second purpose is to provide the application of the magnesium silicate mineral inhibitor.
The first purpose of the invention is realized by that the magnesium silicate mineral inhibitor consists of DH and sodium hexametaphosphate, and the DH consists of guar gum, carboxymethyl cellulose CMC and lignin.
The second purpose of the invention is realized by the application of the magnesium-containing silicate mineral inhibitor in the flotation process of magnesium-containing silicate minerals.
The invention has the beneficial effects that:
1. under the condition that suspension prepared by using DH and sodium hexametaphosphate according to the ratio of 1: 1-1: 3 is used as a talc inhibitor and butyl xanthate or Z-200 is used as a copper-molybdenum flotation collector, compared with the traditional method for simply inhibiting sulfur and not inhibiting talc, the method has the advantages that the grade of copper concentrate is improved by 5-8%, the grade of molybdenum in the copper concentrate is improved by 5-10%, the content of MgO is reduced by 50-80%, and the gangue mineral mixing rate is reduced by 40%.
2. Under the condition that suspension prepared from DH and sodium hexametaphosphate according to the ratio of 1: 1-1: 3 is used as a talc inhibitor and butyl xanthate or Z-200 is used as a copper-molybdenum collecting agent, the using amount of lime as a sulfur inhibitor is reduced by 30-50%.
3. The talc inhibitor suspension can independently inhibit talc without inhibiting molybdenite, and solves the problem that the molybdenum mineral enters flotation tailings because the floatability of the molybdenum mineral is reduced while the gangue is inhibited by a conventional inhibitor.
4. The method has the advantages of simple process, less raw material consumption, low cost, no need of heating, environmental friendliness, no pollution and capability of effectively solving the problem that the magnesium-containing silicate minerals such as talc and the like are difficult to separate from the useful minerals such as copper, molybdenum and the like by flotation.
Drawings
FIG. 1 is a schematic roughing diagram of an overall embodiment of the present invention.
Detailed Description
The present invention is further illustrated by the following examples, which are not intended to be limiting in any way, and any modifications or alterations based on the teachings of the present invention are intended to fall within the scope of the present invention.
The magnesium-containing silicate mineral inhibitor consists of DH and sodium hexametaphosphate, wherein the DH consists of guar gum, carboxymethyl cellulose (CMC) and lignin.
The mass ratio of DH to sodium hexametaphosphate is 1: 1-1: 3.
The mass ratio of the guar gum to the carboxymethyl cellulose CMC to the lignin is (3-5): (2-4): (1-2).
The application of the magnesium-containing silicate mineral inhibitor is the application of the magnesium-containing silicate mineral inhibitor in a magnesium-containing silicate mineral flotation process.
The application specific operation of the magnesium-containing silicate mineral inhibitor in the magnesium-containing silicate mineral flotation process comprises the steps of ore treatment, magnesium-containing silicate mineral inhibitor preparation and flotation, and specifically comprises the following steps:
A. ore treatment: crushing raw material ores, adding water, grinding the ores until the ore pulp with the particle size of-20 mu m accounts for 75-80%, and adjusting the pH value of the ore pulp to 7-9 to obtain a material a;
B. preparing a magnesium silicate mineral inhibitor: adding water into a magnesium-containing silicate mineral inhibitor to prepare a suspension with the mass percentage concentration of 8-15% to obtain a material b;
C. flotation: adding 4000-6000 g of sulfur inhibitor, 300-1000 g of material b, 200-500 g of copper-molybdenum collecting agent and 20-50 g of foaming agent into each ton of raw material ore, fully and uniformly stirring, aerating, and floating copper and molybdenum ore under the condition that the pH value of ore pulp is 7-9.
The magnesium-containing silicate mineral is high-talc copper-molybdenum sulfide ore containing copper, sulfur, molybdenum, lead and zinc, talc, serpentine or chlorite.
The magnesium-containing silicate mineral is copper-molybdenum sulfide ore containing useful minerals such as copper, molybdenum, lead, zinc and the like with high content of magnesium-containing silicate gangue minerals such as talc, serpentine, chlorite and the like.
The sulfur inhibitor is lime.
The copper molybdenum collector is butyl xanthate or Z-200.
The DH consists of guar gum, carboxymethyl cellulose CMC and lignin. The application method comprises the steps of grinding ore pulp, preparing a talc inhibitor suspension from DH and sodium hexametaphosphate according to the proportion of 1: 1-1: 3 under the condition that the pH value is = 7-9, adding a proper amount of foaming agent into lime serving as a sulfur inhibitor and butyl xanthate or Z-200 serving as a copper-molybdenum flotation collector, fully and uniformly stirring, inflating, and carrying out flotation separation on copper, molybdenum and sulfur.
The talc inhibitor suspension can inhibit talc alone without inhibiting molybdenite, and compared with the traditional method for inhibiting talc alone without inhibiting sulfur, the method has the advantages that the grade of copper concentrate is improved by 5-8%, the grade of molybdenum in copper-molybdenum bulk concentrate is improved by 5-10%, the content of MgO is reduced by 50-80%, and the gangue mineral mixing rate in copper-molybdenum bulk concentrate is reduced by 40%. The method has the advantages of simple process, less raw material consumption, low cost, no need of heating, environmental friendliness and no pollution, and effectively solves the problem that the magnesium-containing silicate minerals such as talc and the like are difficult to separate from the useful minerals such as copper, molybdenum and the like by flotation.
The invention is further illustrated by the following specific examples:
example 1
The ore is mixed copper-molybdenum ore in Yunnan province, non-ferrous metal mineral containing copper, molybdenum, lead, zinc, etc., and gangue mineral containing talc, serpentine, etc.
(1) The inhibitor is mixed by DH and sodium hexametaphosphate in a ratio of 1:2, and the mass concentration is 10%;
(2) the DH medicament formula is formed by mixing 40 percent of guar gum, 40 percent of carboxymethyl cellulose (CMC) and 20 percent of lignin by mass percent respectively;
(3) ore treatment: crushing copper-molybdenum ore containing talc and serpentine, and adding water to grind the ore until the ore pulp with the particle size of-20 mu m accounts for 79%;
(4) flotation: adding 4000 g of sulfur inhibitor, 500g of talc inhibitor suspension, 200 g of copper-molybdenum flotation collector and 20 g of foaming agent into each ton of ore, fully and uniformly stirring, aerating, and floating copper and molybdenum ores under the condition that the pH value of ore pulp is 7.0. The sulfur inhibitor is lime, and the copper molybdenum flotation collector is butyl xanthate.
Example 2
The ore is high talc type copper molybdenum ore, non-ferrous metal mineral containing copper, molybdenum, lead, zinc, etc., and gangue mineral containing talc, serpentine, chlorite, etc.
(1) The talc inhibitor is prepared by mixing DH and sodium hexametaphosphate in a ratio of 1:3, and the mass concentration is 15%;
(2) the DH medicament formula is formed by mixing 50 percent of guar gum, 40 percent of carboxymethyl cellulose (CMC) and 10 percent of lignin by mass percent respectively;
(3) ore treatment: crushing copper-molybdenum ore containing talc, serpentine and chlorite, and adding water to grind the ore until the ore pulp with the particle size of-20 mu m accounts for 78%;
(4) flotation: 5000 g of sulfur inhibitor, 600 g of talc inhibitor suspension, 300 g of copper-molybdenum flotation collector and 30 g of foaming agent are added into each ton of ore, the mixture is fully stirred uniformly and aerated, and copper and molybdenum ores are floated under the condition that the pH value of ore pulp is 8.0. The sulfur inhibitor is lime, and the copper-molybdenum flotation collector is Z-200.

Claims (8)

1. The magnesium-containing silicate mineral inhibitor is characterized by consisting of DH and sodium hexametaphosphate, wherein the DH consists of guar gum, carboxymethyl cellulose (CMC) and lignin.
2. The magnesium silicate mineral inhibitor as claimed in claim 1, wherein the mass ratio of DH to sodium hexametaphosphate is 1: 1-1: 3.
3. The magnesium-containing silicate mineral inhibitor as claimed in claim 1, wherein the mass ratio of guar gum, carboxymethyl cellulose CMC and lignin is (3-5): (2-4): (1-2).
4. The application of the magnesium-containing silicate mineral inhibitor as defined in any one of claims 1 to 3, wherein the magnesium-containing silicate mineral inhibitor is applied to a flotation process of magnesium-containing silicate minerals.
5. The application of the magnesium-containing silicate mineral inhibitor in the magnesium-containing silicate mineral flotation process is characterized in that the specific operation of the magnesium-containing silicate mineral inhibitor in the magnesium-containing silicate mineral flotation process comprises ore treatment, magnesium-containing silicate mineral inhibitor configuration and flotation steps, and specifically comprises the following steps:
A. ore treatment: crushing raw material ores, adding water, grinding the ores until the ore pulp with the particle size of-20 mu m accounts for 75-80%, and adjusting the pH value of the ore pulp to 7-9 to obtain a material a;
B. preparing a magnesium silicate mineral inhibitor: adding water into a magnesium-containing silicate mineral inhibitor to prepare a suspension with the mass percentage concentration of 8-15% to obtain a material b;
C. flotation: adding 4000-6000 g of sulfur inhibitor, 300-1000 g of material b, 200-500 g of copper-molybdenum collecting agent and 20-50 g of foaming agent into each ton of raw material ore, fully and uniformly stirring, aerating, and floating copper and molybdenum ore under the condition that the pH value of ore pulp is 7-9.
6. The use of the magnesium-containing silicate mineral inhibitor as claimed in claim 4 or 5, wherein the magnesium-containing silicate mineral is copper-molybdenum sulfide ore of high talc type containing copper, sulfur, molybdenum, lead and zinc, talc, serpentine or chlorite.
7. The use of the magnesium silicate mineral inhibitor as claimed in claim 5, wherein the sulfur inhibitor is lime.
8. The use of the magnesium silicate mineral inhibitor as claimed in claim 5, wherein the copper molybdenum collector is butyl xanthate or Z-200.
CN202110012491.1A 2021-01-06 2021-01-06 Magnesium-containing silicate mineral inhibitor and application thereof Pending CN112495590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110012491.1A CN112495590A (en) 2021-01-06 2021-01-06 Magnesium-containing silicate mineral inhibitor and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110012491.1A CN112495590A (en) 2021-01-06 2021-01-06 Magnesium-containing silicate mineral inhibitor and application thereof

Publications (1)

Publication Number Publication Date
CN112495590A true CN112495590A (en) 2021-03-16

Family

ID=74952135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110012491.1A Pending CN112495590A (en) 2021-01-06 2021-01-06 Magnesium-containing silicate mineral inhibitor and application thereof

Country Status (1)

Country Link
CN (1) CN112495590A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367376A (en) * 2022-01-10 2022-04-19 中南大学 Method for recovering copper-molybdenum minerals through flotation
CN114832948A (en) * 2022-03-13 2022-08-02 中南大学 Flotation depressor, preparation and application thereof
CN115672559A (en) * 2022-11-10 2023-02-03 昆明理工大学 Application of inhibitor in reverse flotation removal of calcite from fluorite

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301948A (en) * 2013-06-28 2013-09-18 中南大学 Method for improving flotation recovery rate of copper and nickel and reducing content of magnesium oxide in concentrates of copper-nickel sulfide ores
CN104084314A (en) * 2014-07-03 2014-10-08 四川省地质矿产勘查开发局成都综合岩矿测试中心 Gangue inhibitor for flotation of high-magnesium and low-nickel polymetallic ores
CN104874484A (en) * 2015-04-28 2015-09-02 中国地质科学院郑州矿产综合利用研究所 Method for reducing content of magnesium oxide in concentrate in copper-nickel sulfide ore flotation
JP2018162509A (en) * 2017-03-27 2018-10-18 Jx金属株式会社 Molybdenum concentrate separation method
CN111330740A (en) * 2020-03-05 2020-06-26 中南大学 Method for improving flotation separation efficiency of magnesium-containing layered silicate minerals and copper sulfide minerals
CN111359782A (en) * 2018-12-26 2020-07-03 有研工程技术研究院有限公司 Combined flotation reagent for inhibiting magnesium-containing silicate gangue minerals
CN111451003A (en) * 2020-03-05 2020-07-28 铜陵有色金属集团股份有限公司 Beneficiation method for copper-containing talc-serpentine ore easy to argillize and float

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301948A (en) * 2013-06-28 2013-09-18 中南大学 Method for improving flotation recovery rate of copper and nickel and reducing content of magnesium oxide in concentrates of copper-nickel sulfide ores
CN104084314A (en) * 2014-07-03 2014-10-08 四川省地质矿产勘查开发局成都综合岩矿测试中心 Gangue inhibitor for flotation of high-magnesium and low-nickel polymetallic ores
CN104874484A (en) * 2015-04-28 2015-09-02 中国地质科学院郑州矿产综合利用研究所 Method for reducing content of magnesium oxide in concentrate in copper-nickel sulfide ore flotation
JP2018162509A (en) * 2017-03-27 2018-10-18 Jx金属株式会社 Molybdenum concentrate separation method
CN111359782A (en) * 2018-12-26 2020-07-03 有研工程技术研究院有限公司 Combined flotation reagent for inhibiting magnesium-containing silicate gangue minerals
CN111330740A (en) * 2020-03-05 2020-06-26 中南大学 Method for improving flotation separation efficiency of magnesium-containing layered silicate minerals and copper sulfide minerals
CN111451003A (en) * 2020-03-05 2020-07-28 铜陵有色金属集团股份有限公司 Beneficiation method for copper-containing talc-serpentine ore easy to argillize and float

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367376A (en) * 2022-01-10 2022-04-19 中南大学 Method for recovering copper-molybdenum minerals through flotation
CN114832948A (en) * 2022-03-13 2022-08-02 中南大学 Flotation depressor, preparation and application thereof
CN115672559A (en) * 2022-11-10 2023-02-03 昆明理工大学 Application of inhibitor in reverse flotation removal of calcite from fluorite

Similar Documents

Publication Publication Date Title
CN112495590A (en) Magnesium-containing silicate mineral inhibitor and application thereof
CN102371212B (en) Technology of enhanced-dispersion partial selective and bulk flotation of lead and zinc sulfide ores under low and high alkalinity
CN110548592B (en) Beneficiation method for improving comprehensive recovery index of complex low-grade molybdenum multi-metal ore
CN102698878A (en) Pyrite inhibitor used under low-alkalinity condition
CN106540816A (en) Suppress the flotation composite inhibitor and its using method of pyrite under a kind of low alkalinity
CN110465411B (en) Preferential flotation method for copper-lead sulfide minerals
CN111715411A (en) Beneficiation method for high-sulfur lead-zinc ore
CN105312160A (en) Novel collecting agent and application thereof to low-alkaline flotation separation beneficiation of lead zinc sulfide minerals
CN110918263A (en) Non-copper sulfide ore inhibitor and application thereof
CN112317135B (en) Combined inhibitor for flotation separation of copper-lead sulfide ore and application thereof
CN111298982B (en) High-efficiency collecting agent for copper and gold in copper smelting slag by pyrometallurgy and application of high-efficiency collecting agent
CN111229451B (en) Flotation separation method of talc and chalcopyrite
CN113856911B (en) Beneficiation method for high-sulfur copper gold and silver ore
CN109967262B (en) Noble metal ore flotation reagent and application thereof
CN115155824A (en) Beneficiation method for recovering tin from tin-containing fine mud
CN101003029A (en) Method for floating inhibited iron sulfide minerals
CN107899755B (en) Synergist for flotation of refractory copper oxide ore
CN117181451A (en) Enhanced activation flotation method for carbonate copper oxide ore
CN114011582B (en) Flotation method for improving beneficiation index of gold-bearing copper sulfide ore
CN116441058A (en) Method for reducing magnesium oxide content of concentrate in copper-nickel sulfide ore floatation
CN113617532A (en) Combined inhibitor for lead-sulfur sulfide ore flotation separation and application
CN113333177A (en) Combined inhibitor for separating copper sulfide ore containing secondary copper and separation method
CN109731692A (en) A kind of efficient flotation separation separation method of copper-sulphide ores
CN113210137B (en) Combined inhibitor for separation of kaolin-containing copper sulfide ore and separation method
CN115318446B (en) Flotation reagent system for refractory low-grade nickel-cobalt sulfide ores and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210316