CN112487689B - 基于统计ckf模型更新混合试验方法 - Google Patents

基于统计ckf模型更新混合试验方法 Download PDF

Info

Publication number
CN112487689B
CN112487689B CN202011474780.5A CN202011474780A CN112487689B CN 112487689 B CN112487689 B CN 112487689B CN 202011474780 A CN202011474780 A CN 202011474780A CN 112487689 B CN112487689 B CN 112487689B
Authority
CN
China
Prior art keywords
value
model
formula
test
updating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011474780.5A
Other languages
English (en)
Other versions
CN112487689A (zh
Inventor
王涛
李勐
孟丽岩
刘家秀
杨格
许国山
王贞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang University of Science and Technology
Original Assignee
Heilongjiang University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang University of Science and Technology filed Critical Heilongjiang University of Science and Technology
Priority to CN202011474780.5A priority Critical patent/CN112487689B/zh
Publication of CN112487689A publication Critical patent/CN112487689A/zh
Application granted granted Critical
Publication of CN112487689B publication Critical patent/CN112487689B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Operations Research (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geometry (AREA)
  • Computing Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于统计CKF模型更新混合试验方法,本发明涉及一种应用于结构模型更新混合试验技术。本发明提出了一种基于统计CKF模型更新混合试验方法,以解决混合试验模型更新精度和鲁棒性的瓶颈问题,可以提高在线模型参数识别精度。采用统计方法得到状态在线识别值均值,将状态识别值均值用于当前步在线更新应用,从而弱化识别算法初始参数选择对试验结果的影响,提高模型更新混合试验精度及鲁棒性。

Description

基于统计CKF模型更新混合试验方法
技术领域
本发明涉及一种应用于结构模型更新混合试验技术,特别涉及基于统计CKF模型更新混合试验方法,属于结构工程抗震试验领域。
背景技术
混合试验方法结合子结构试验与数值模拟,是一种有效的结构抗震试验手段,可较为真实地反应结构在地震作用下的破坏机制。该方法具有对试验环境要求低、经济性高等优势,且可一定程度解决缩尺试验带来的误差。
但其数值子结构通过数值模拟进行计算,模型更新参数的精度往往依赖于应用的算法。考虑CKF算法本身存在着随机性,采用CKF算法进行一次参数识别所得到的结果并不能代表整体的状态量均值,同时参数识别结果通常受制于算法初始参数,如初始状态协方差矩阵、待识别参数初值、观测噪声协方差等因素的影响,通常写着因素在试验前仅能根据试验者的经验进行选择,并且常常需要多次试验才能确定比较理想的组合。
本发明提出了一种基于统计CKF(cubature Kalman filter,CKF)模型更新混合试验方法,以解决混合试验模型更新精度和鲁棒性的瓶颈问题。
发明内容
本发明研发目的是为了解决上述技术问题,在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关键或重要部分,也不是意图限定本发明的范围。
本发明的技术方案:
基于统计CKF模型更新混合试验方法,包括以下步骤:
S1.采用OpenSees有限元分析软件建立整体结构有限元模型;选择结构受力复杂部分作为物理子结构;选择与物理子结构相同部分作为模型更新数值子结构;
S2.明确预识别的模型参数,建立CKF算法状态方程f和观测方程h,并给出CKF算法初始状态估计均值
Figure GDA0002911351090000011
初始状态估计协方差矩阵P0、过程噪声协方差矩阵WQ和观测噪声协方差矩阵WR
S3.根据试验要求确定地震动加速度记录,对整体结构模型进行逐步积分,得到第k步结构动力反应;
S4.将第k步物理子结构位移加载命令发送给试验加载系统,完成试验加载,得到第k步物理子结构反力
Figure GDA0002911351090000021
和位移观测值
Figure GDA0002911351090000022
S5.根据第k步物理子结构反力观测值
Figure GDA0002911351090000023
和观测系统噪声分布特性,生成多组第k步物理子结构反力观测值
Figure GDA0002911351090000024
S6.基于多组第k步物理子结构反力
Figure GDA0002911351090000025
和位移观测值
Figure GDA0002911351090000026
分别采用CKF算法重复在线识别物理子结构模型参数;
S7.将多次物理子结构模型参数识别值进行统计,得到第k步物理子结构模型参数识别值均值
Figure GDA0002911351090000027
并发送给整体数值模型,在线更新与物理子结构相同的所有构件数值模型参数;
S8.重复步骤S3-S7,直至试验结束。
优选的,步骤S6中采用CKF算法重复在线识别物理子结构模型参数的具体方法为:
假设k时刻误差协方差Pk,初始状态量
Figure GDA0002911351090000028
过程噪声和观测噪声分别为WQ和WR,将误差协方差Pk进行Cholesky分解,得出
Figure GDA0002911351090000029
式中:Sk为误差协方差分解的一个下三角矩阵;
求出容积点集,计算容积点:
Figure GDA00029113510900000210
式中:ζi为容积点集;
Figure GDA00029113510900000211
为容积点;
容积点集ζi为:
Figure GDA00029113510900000212
Figure GDA00029113510900000213
式中:n是状态的维数;[e]i是第i个容积点;
将求出的容积点通过状态方程
Figure GDA00029113510900000214
传播得到传播后的容积点
Figure GDA00029113510900000215
uk为系统输入,传播后的容积点计算公式为:
Figure GDA00029113510900000216
由传播后的容积点
Figure GDA00029113510900000217
计算得出状态量的预测值:
Figure GDA0002911351090000031
式中:w为各个容积点的权重,
Figure GDA0002911351090000032
为状态量的预测值;
由传播后的容积点
Figure GDA0002911351090000033
状态量的预测值
Figure GDA0002911351090000034
和过程噪声WQ计算误差协方差预测值Pk+1|k
Figure GDA0002911351090000035
式中:Pk+1|k是误差协方差预测值;
将求出的误差协方差Pk+1|k通过Cholesky分解:
Figure GDA0002911351090000036
重采样
Figure GDA0002911351090000037
将求得的容积点集通过观测方程
Figure GDA0002911351090000038
传播,得到传播后的容积点:
Figure GDA0002911351090000039
式中:
Figure GDA00029113510900000310
为传播后的容积点;
分别计算观测预测值
Figure GDA00029113510900000311
自相关协方差阵
Figure GDA00029113510900000312
互相关协方差阵
Figure GDA00029113510900000313
Figure GDA00029113510900000314
Figure GDA00029113510900000315
Figure GDA00029113510900000316
通过自相关协方差阵
Figure GDA00029113510900000317
互相关协方差阵
Figure GDA00029113510900000318
得出卡尔曼增益:
Figure GDA00029113510900000319
式中:Wk+1是卡尔曼增益;
更新状态量:
Figure GDA0002911351090000041
式中:yk+1为第k+1步的试验观测值;
更新协方差阵:
Figure GDA0002911351090000042
优选的,步骤S7中采用CKF算法统计物理子结构模型参数识别值的具体方法为:
考虑多次试验观测样本,重复生成k+1步状态量识别值:
Figure GDA0002911351090000043
式中:
Figure GDA0002911351090000044
—第s次试验观测样本,s为样本个数,N为统计的总次数;
Figure GDA0002911351090000045
为状态量识别值;
求出第s次试验观测样本:
Figure GDA0002911351090000046
式中:
Figure GDA0002911351090000047
为随机生成的第s次观测噪声;
Figure GDA0002911351090000048
为第s次试验观测样本;
将更新后的状态量进行统计求出状态量的统计值:
Figure GDA0002911351090000049
式中:
Figure GDA00029113510900000410
为第s次状态量的识别值;
Figure GDA00029113510900000411
为统计后的最终状态量识别值,用于当前步在线更新应用。
本发明具有以下有益效果:本发明提出的一种基于统计CKF模型更新混合试验方法,可以提高在线模型参数识别精度,采用统计方法得到CKF算法在线状态识别值均值,将状态识别值均值用于当前步在线模型更新应用,从而弱化识别算法初始参数选择对试验结果的影响,提高模型更新混合试验精度及鲁棒性。
附图说明
图1是基于统计CKF模型更新方法流程图;
图2是二层碟簧式自复位防屈曲支撑单跨平面钢框架整体结构示意图;
图3是支撑加载示意图;
图4是基于统计CKF模型更新的混合试验方法流程图;
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面通过附图中示出的具体实施例来描述本发明。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
具体实施方式一:参照图1-4说明本实施方式,基于统计CKF模型更新混合试验方法,本实施方式以二层碟簧式自复位防屈曲支撑单跨平面钢框架结构为例,针对二层碟簧式自复位防屈曲支撑单跨平面钢框架,框架底层柱与基础为刚接,该框架层高为3.6m,跨度为6.0m,梁柱截面均采用热轧H型钢,钢框架梁、柱均采用非线性梁柱单元,钢材纤维的本构模型选择单轴Steel02模型,支撑采用桁架单元,桁架单元选用OpenSees官网提供的Bouc-Wen模型材料,待识别参数为Bouc-Wen材料本构模型参数:模型刚度k,以及影响Bouc-Wen模型滞回曲线的参数β、γ、n。该发明通过OpenSees有限元软件对结构整体分析,获得整体的结构反应,并通过整体分析结果,获得物理子结构的真实加载命令,利用MATLAB数学分析软件进行结构参数识别,采用基于TCP/IP协议的Socket通讯技术进行OpenSees和MATLAB之间的数据传输,从而进行混合试验。
具体实验步骤如下:
第一步:采用OpenSees有限元分析软件建立整体结构有限元模型;选择第一层支撑作为物理子结构;选择第二层支撑作为模型更新数值子结构;
第二步:假定物理结构数值模型为Bouc-Wen模型,明确预识别模型参数模型刚度k,以及影响Bouc-Wen模型滞回曲线的参数β、γ、n。建立CKF算法状态方程
Figure GDA0002911351090000051
式中:x′为试验加载速度;z为滞变位移;F为恢复力;
对试验加载速度采用中心差分法假定,详细过程如下
Figure GDA0002911351090000052
Figure GDA0002911351090000053
算法观测方程为
Figure GDA0002911351090000054
给出CKF算法初始状态估计均值
Figure GDA0002911351090000055
过程噪声协方差矩阵WQ、观测噪声协方差矩阵WR和初始状态估计协方差矩阵P0
第三步:根据1940年5月19日Imperial Valley地震El Centro(1940,NS)台站测得的地面运动位移记录,对整体结构模型进行逐步积分,得到第k步结构动力反应。(本实施例只是给出一个关于地震动加速度位移记录示例,并不限于唯一位移记录)
第四步:将第k步物理子结构位移加载命令
Figure GDA0002911351090000061
发送给试验加载系统,完成试验加载,得到第k步物理子结构反力
Figure GDA0002911351090000062
和位移观测值
Figure GDA0002911351090000063
第五步:根据第k步物理子结构反力观测值
Figure GDA0002911351090000064
和观测系统噪声分布特性,生成多组第k步物理子结构反力观测值
Figure GDA0002911351090000065
第六步:基于多组第k步物理子结构反力
Figure GDA0002911351090000066
和位移观测值
Figure GDA0002911351090000067
分别采用CKF算法重复在线识别物理子结构模型参数。
第七步:将多次物理子结构模型参数识别值进行统计,得到第k步物理子结构模型参数识别值均值
Figure GDA0002911351090000068
并发送给整体数值模型,在线更新与物理子结构相同的所有构件数值模型参数。
第八步:重复第三步至第七步,直至试验结束。
第六步中采用CKF算法重复在线识别物理子结构模型参数的具体方法为:
假设k时刻误差协方差Pk,初始状态量
Figure GDA0002911351090000069
过程噪声和观测噪声分别为WQ和WR,将误差协方差Pk进行Cholesky分解,得出
Figure GDA00029113510900000610
式中:Sk为误差协方差分解的一个下三角矩阵;
求出容积点集,计算容积点:
Figure GDA00029113510900000611
式中:ζi为容积点集;
Figure GDA00029113510900000612
为容积点;
容积点集ζi为:
Figure GDA00029113510900000613
Figure GDA00029113510900000614
式中:n是状态的维数;[e]i是第i个容积点;
将求出的容积点通过状态方程
Figure GDA00029113510900000615
传播得到传播后的容积点
Figure GDA00029113510900000616
uk为系统输入,传播后的容积点计算公式为:
Figure GDA0002911351090000071
由传播后的容积点
Figure GDA0002911351090000072
计算得出状态量的预测值:
Figure GDA0002911351090000073
式中:w为各个容积点的权重,
Figure GDA0002911351090000074
为状态量的预测值;
由传播后的容积点
Figure GDA0002911351090000075
状态量的预测值
Figure GDA0002911351090000076
和过程噪声WQ计算误差协方差预测值Pk+1|k
Figure GDA0002911351090000077
式中:Pk+1|k是误差协方差预测值;
将求出的误差协方差Pk+1|k通过Cholesky分解:
Figure GDA0002911351090000078
重采样
Figure GDA0002911351090000079
将求得的容积点集通过观测方程
Figure GDA00029113510900000710
传播,得到传播后的容积点:
Figure GDA00029113510900000711
式中:
Figure GDA00029113510900000712
为传播后的容积点;
分别计算观测预测值
Figure GDA00029113510900000713
自相关协方差阵
Figure GDA00029113510900000714
互相关协方差阵
Figure GDA00029113510900000715
Figure GDA00029113510900000716
Figure GDA00029113510900000717
Figure GDA00029113510900000718
通过自相关协方差阵
Figure GDA00029113510900000719
互相关协方差阵
Figure GDA00029113510900000720
得出卡尔曼增益:
Figure GDA0002911351090000081
式中:Wk+1是卡尔曼增益;
更新状态量:
Figure GDA0002911351090000082
式中:yk+1为第k+1步的试验观测值;
更新协方差阵:
Figure GDA0002911351090000083
第七步中采用CKF算法统计物理子结构模型参数识别值的具体方法为:
考虑多次试验观测样本,重复生成k+1步状态量识别值:
Figure GDA0002911351090000084
式中:
Figure GDA0002911351090000085
—第s次试验观测样本,s为样本个数,N为统计的总次数;
Figure GDA0002911351090000086
为状态量识别值;
求出第s次试验观测样本:
Figure GDA0002911351090000087
式中:
Figure GDA0002911351090000088
为随机生成的第s次观测噪声;
Figure GDA0002911351090000089
为第s次试验观测样本;
将更新后的状态量进行统计求出状态量的统计值:
Figure GDA00029113510900000810
式中:
Figure GDA00029113510900000811
为第s次状态量的识别值;
Figure GDA00029113510900000812
为统计后的最终状态量识别值,用于当前步在线更新应用。
需要说明的是,在以上实施例中,只要不矛盾的技术方案都能够进行排列组合,本领域技术人员能够根据排列组合的数学知识穷尽所有可能,因此本发明不再对排列组合后的技术方案进行一一说明,但应该理解为排列组合后的技术方案已经被本发明所公开。
本实施方式只是对本专利的示例性说明,并不限定它的保护范围,本领域技术人员还可以对其局部进行改变,只要没有超出本专利的精神实质,都在本专利的保护范围内。

Claims (2)

1.基于统计CKF模型更新混合试验方法,其特征在于,包括以下步骤:
S1.采用OpenSees有限元分析软件建立整体结构有限元模型;选择结构受力复杂部分作为物理子结构;选择与物理子结构相同部分作为模型更新数值子结构;
S2.明确预识别的模型参数,建立CKF算法状态方程f和观测方程h,并给出CKF算法初始状态估计均值
Figure FDA0003623310350000011
初始状态估计协方差矩阵P0、过程噪声协方差矩阵WQ和观测噪声协方差矩阵WR
S3.根据地震动加速度记录,对整体结构模型进行逐步积分,得到第k步结构动力反应;
S4.将第k步物理子结构位移加载命令发送给试验加载系统,完成试验加载,得到第k步物理子结构反力
Figure FDA0003623310350000012
和位移观测值
Figure FDA0003623310350000013
S5.根据第k步物理子结构反力观测值
Figure FDA0003623310350000014
和观测系统噪声分布特性,生成多组第k步物理子结构反力观测值
Figure FDA0003623310350000015
S6.基于多组第k步物理子结构反力
Figure FDA0003623310350000016
和位移观测值
Figure FDA0003623310350000017
分别采用CKF算法重复在线识别物理子结构模型参数;
S7.将多次物理子结构模型参数识别值进行统计,得到第k步物理子结构模型参数识别值均值
Figure FDA0003623310350000018
并发送给整体数值模型,在线更新与物理子结构相同的所有构件数值模型参数,具体方法为:
考虑多次试验观测样本,重复生成k+1步状态量识别值:
Figure FDA0003623310350000019
式中:
Figure FDA00036233103500000110
—第s次试验观测样本,s为样本个数,N为统计的总次数;
Figure FDA00036233103500000111
为状态量识别值;
求出第s次试验观测样本:
Figure FDA0003623310350000021
式中:
Figure FDA0003623310350000022
为随机生成的第s次观测噪声;
Figure FDA0003623310350000023
为第s次试验观测样本;
将更新后的状态量进行统计求出状态量的统计值:
Figure FDA0003623310350000024
式中:
Figure FDA0003623310350000025
为第s次状态量的识别值;
Figure FDA0003623310350000026
为统计后的最终状态量识别值,用于当前步在线更新应用;
S8.重复步骤S3-S7,直至试验结束。
2.根据权利要求1基于统计CKF模型更新混合试验方法,其特征在于,步骤S6中采用CKF算法重复在线识别物理子结构模型参数的具体方法为:
假设k时刻误差协方差Pk,初始状态量
Figure FDA0003623310350000027
过程噪声和观测噪声分别为WQ和WR,将误差协方差Pk进行Cholesky分解,得出
Figure FDA0003623310350000028
式中:Sk为误差协方差分解的一个下三角矩阵;
求出容积点集,计算容积点:
Figure FDA0003623310350000029
式中:ζi为容积点集;
Figure FDA00036233103500000210
为容积点;
容积点集ζi为:
Figure FDA00036233103500000211
Figure FDA00036233103500000212
式中:n是状态的维数;[e]i是第i个容积点;
将求出的容积点通过状态方程
Figure FDA0003623310350000031
传播得到传播后的容积点
Figure FDA0003623310350000032
uk为系统输入,传播后的容积点计算公式为:
Figure FDA0003623310350000033
由传播后的容积点
Figure FDA0003623310350000034
计算得出状态量的预测值:
Figure FDA0003623310350000035
式中:w为各个容积点的权重,
Figure FDA0003623310350000036
为状态量的预测值;
由传播后的容积点
Figure FDA0003623310350000037
状态量的预测值
Figure FDA0003623310350000038
和过程噪声WQ计算误差协方差预测值Pk+1|k
Figure FDA0003623310350000039
式中:Pk+1|k是误差协方差预测值;
将求出的误差协方差Pk+1|k通过Cholesky分解:
Figure FDA00036233103500000310
重采样
Figure FDA00036233103500000311
将求得的容积点集通过观测方程
Figure FDA00036233103500000312
传播,得到传播后的容积点:
Figure FDA00036233103500000313
式中:
Figure FDA00036233103500000314
为传播后的容积点;
分别计算观测预测值
Figure FDA00036233103500000315
自相关协方差阵
Figure FDA00036233103500000316
互相关协方差阵
Figure FDA00036233103500000317
Figure FDA00036233103500000318
Figure FDA00036233103500000319
Figure FDA0003623310350000041
通过自相关协方差阵
Figure FDA0003623310350000042
互相关协方差阵
Figure FDA0003623310350000043
得出卡尔曼增益:
Figure FDA0003623310350000044
式中:Wk+1是卡尔曼增益;
更新状态量:
Figure FDA0003623310350000045
式中:yk+1为第k+1步的试验观测值;
更新协方差阵:
Figure FDA0003623310350000046
CN202011474780.5A 2020-12-14 2020-12-14 基于统计ckf模型更新混合试验方法 Active CN112487689B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011474780.5A CN112487689B (zh) 2020-12-14 2020-12-14 基于统计ckf模型更新混合试验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011474780.5A CN112487689B (zh) 2020-12-14 2020-12-14 基于统计ckf模型更新混合试验方法

Publications (2)

Publication Number Publication Date
CN112487689A CN112487689A (zh) 2021-03-12
CN112487689B true CN112487689B (zh) 2022-06-14

Family

ID=74916956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011474780.5A Active CN112487689B (zh) 2020-12-14 2020-12-14 基于统计ckf模型更新混合试验方法

Country Status (1)

Country Link
CN (1) CN112487689B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115796038B (zh) * 2022-12-02 2023-06-30 哈尔滨工业大学 基于循环神经网络的实时混合试验方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061716A (zh) * 2019-01-15 2019-07-26 河海大学 一种基于最小二乘和多重渐消因子的改进kalman滤波方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10677944B2 (en) * 2014-08-23 2020-06-09 Trimble Inc. Earthquake and displacement early warning system
CN106093207A (zh) * 2016-03-24 2016-11-09 南京航空航天大学 一种基于非线性无味卡尔曼滤波算法的兰姆波损伤定位方法
CN110795884B (zh) * 2019-11-20 2022-10-28 黑龙江科技大学 一种基于多尺度模型更新的新型混合试验方法
CN111310392B (zh) * 2020-03-04 2021-04-27 青岛理工大学 一种用于评估基坑开挖边坡失稳面积放大效应的方法
CN111273327B (zh) * 2020-03-20 2022-04-08 中国人民解放军61081部队 一种基于组合和非组合混合观测模型的精密单点定位方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061716A (zh) * 2019-01-15 2019-07-26 河海大学 一种基于最小二乘和多重渐消因子的改进kalman滤波方法

Also Published As

Publication number Publication date
CN112487689A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
Lei et al. A novel unscented Kalman filter for recursive state-input-system identification of nonlinear systems
Ebrahimian et al. Extended Kalman filter for material parameter estimation in nonlinear structural finite element models using direct differentiation method
Lin et al. On‐line identification of non‐linear hysteretic structural systems using a variable trace approach
DiPasquale et al. Seismic damage assessment using linear models
Erazo et al. Bayesian seismic strong-motion response and damage estimation with application to a full-scale seven story shear wall structure
Wu et al. Hybrid simulation of steel frame structures with sectional model updating
Abazarsa et al. Extended blind modal identification technique for nonstationary excitations and its verification and validation
Castiglione et al. Auto-regressive model based input and parameter estimation for nonlinear finite element models
Beck System identification methods applied to measured seismic response
Chakraverty Identification of structural parameters of multistorey shear buildings from modal data
Moschen et al. Vertical acceleration demands on column lines of steel moment‐resisting frames
Rostami et al. Bayesian joint state-parameter-input estimation of flexible-base buildings from sparse measurements using Timoshenko beam models
CN112487689B (zh) 基于统计ckf模型更新混合试验方法
CN112231821B (zh) 一种基于可靠度分析的基础隔震结构体系优化方法
Li et al. Parametric time‐domain identification of multiple‐input systems using decoupled output signals
Ghorbani et al. Time‐varying reliability analysis based on hybrid Kalman filtering and probability density evolution
Pan Earthquake ground motion estimation for buildings using absolute floor acceleration response data
Karimi-Moridani et al. Seismic failure probability of a curved bridge based on analytical and neural network approaches
Lei et al. Simultaneous assessment of damage and unknown input for large structural systems by UKF-UI
Ebrahimian et al. A nonlinear model inversion to estimate dynamic soil stiffness of building structures
Hosseini et al. A framework for multi‐element hybrid simulation of steel braced frames using model updating
Li et al. Prediction error method‐based second‐order structural identification algorithm in stochastic state space formulation
Garrido et al. Hysteresis and parameter estimation of MDOF systems by a continuous-time least squares method
Paul et al. Comparison of the performance of nonlinear Kalman filter based algorithms for state‐parameter identification of base isolated structures
Li et al. Estimating seismic interstory drifts of building structures using time-varying shear model with acceleration data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant